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We provide an exact analytical technique to obtain within a lattice model the wave functions
of the edge states in zigzag- and bearded-edge graphene, as well as of the Fermi-arc surface states
in Weyl semimetals described by a minimal bulk model. We model the corresponding boundaries
as an infinite scalar potential localized on a line, and respectively within a plane. We use the T-
matrix formalism to obtain the dispersion and the spatial distribution of the corresponding boundary
modes. Furthermore, to demonstrate the power of our approach, we write down the surface Green’s
function of the considered Weyl semimetal model, and we calculate the quasiparticle interference
patterns originating from an impurity localized at the respective surface.

I. INTRODUCTION

Systems which exhibit edge states, be they topo-
logical or not, one-, two- or three-dimensional, su-
perconducting or normal, have come under intense
scrutiny over the past years. Among such examples
one can mention graphene,1–3 topological insulators and
topological superconductors,4–6 Weyl semimetals,7 and
many others. Traditional techniques to calculate the
wave functions associated with the boundary modes in-
clude numerical techniques such as tight-binding ex-
act diagonalization,8–13 solving the Schrödinger equation
with the corresponding boundary conditions,14–21 using
the bulk-boundary correspondence22–26 and the extended
Bloch theorem.27

Here we focus on a qualitatively different approach
to solving the problem of finding boundary modes,
which was first introduced for Majorana bound states in
Refs. [28–30], and subsequently developed in Refs. [31]
and [32] for topological insulators and Andreev bound
states, respectively. In this work we extend the tech-
nique to derive analytically the boundary modes of Dirac
systems. The core of the technique consists of modeling
the boundary as a point-, line-, or plane-like localized
scalar impurity potential with an infinite amplitude. This
model can be solved exactly using the T-matrix formal-
ism and allows to obtain in a very elegant and straight-
forward analytical manner the energy dispersion and the
wave function of the bound states, as well as the sur-
face/edge Green’s functions of the system.

In this paper we focus on deriving exact closed-form
analytical expressions for the edge modes of zigzag-
and bearded-edge graphene, as well as for their three-
dimensional generalization — Fermi-arc surface states in
Weyl semimetals described by a minimal tight-binding
model.33 Our results are consistent with previous findings
obtained using different techniques, both in graphene and
in Weyl semimetals, including, e.g., a recursive evalu-
ation of the edge states in a tight-binding model,34–37

and analytical studies of the Schrödinger equation with
specific boundary conditions in graphene38–40 and Weyl

semimetals.41,42 Additionally, using the analytical result
for the surface Green’s functions, we calculate the quasi-
particle interference patterns originating from a localized
impurity at the surface of the considered Weyl semimetal.
We should stress that our method provides a number of
advantages with respect to more traditional ones, in that
it does not require any numerical algorithms, such as re-
cursive Green’s function calculation43–46 or exact diago-
nalization, and therefore, can significantly speed up other
calculations that require finding the boundary modes
(e.g., in transport simulations). Moreover, in certain
cases, like the ones described in this work, it yields exact
closed-form expressions for the surface Green’s functions,
the edge states and the surface states, which provides one
with more insight into the physics of the problem. Also,
our technique is general, being applicable to any tight-
binding model on any type of lattice structure in any
number of dimensions. Finally, we are not required to
make any low-energy approximations, as we can employ
the full lattice model for the system under consideration.

The paper is organized as follows: in Sec. II we ob-
tain the energy dispersion and the wave functions of
the boundary modes for both zigzag- and bearded-edge
graphene. We derive the Fermi-arc surface states and
compute quasiparticle interference patterns in a Weyl
semimetal in Sec. III, and we leave the conclusions to
Sec. IV.

II. ZIGZAG- AND BEARDED-EDGE MODES IN
GRAPHENE

The simplest lattice model for graphene can be written

as H0 =
∫

dk
(2π)2 Ψ†kH0(kx, ky)Ψk, with Ψk ≡ {ψAk , ψBk }T,

where the indices A and B refer to the corresponding
sublattices, and

H0(kx, ky) =

t

(
0 e−ikx+2ei

kx
2 cos

ky
√

3
2

eikx+2e−i
kx
2 cos

ky
√

3
2 0

)
, (1)
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where we set the lattice constant to unity and t is
the hopping amplitude. In what follows we express
all energies in units of the hopping amplitude, equiva-
lently we set t = 1. The first Brillouin zone for this
model is defined as a hexagon with corners located at

(kx, ky) =
(
± 2π

3 , ± 2π
3
√

3

)
,
(

0, ± 4π
3
√

3

)
. The bare Mat-

subara Green’s function for the Hamiltonian in Eq. (1)
can be calculated using the standard definition:

G0(kx, ky, iω`) ≡ [iω` −H0(kx, ky)]
−1

=

− 1

3 + 2 cos ky
√

3 + 4 cos
ky
√

3
2 cos 3kx

2 − (iω`)2
×(

iω` e−ikx + 2ei
kx
2 cos

ky
√

3
2

eikx + 2e−i
kx
2 cos

ky
√

3
2 iω`

)
. (2)

where ω` = πT (2`+ 1), with ` ∈ Z, denote the fermionic
Matsubara frequencies.

Our goal is to find the boundary modes for the two
types of edges we are interested in: zigzag and bearded
edges (shown in red in Fig. 1). In order to model an
edge along the y axis, we introduce an impurity potential
localized solely on the atoms of sublattice A, as shown
by large blue circles at x = 0 in Fig. 1. Such an impurity

can be described by V = U
∑
n∈Z

[
ψA

(0,n
√

3)

]†
ψA

(0,n
√

3)
, with

(0, n
√

3) being the real-space lattice points. This choice
of the impurity potential in the limit of U → ∞ divides
the infinite graphene sheet into two halves, at x < 0 and
x > 0, where the former has a zigzag edge and the latter
a bearded one, both terminating on atoms of sublattice
B (see the green lattice sites in Fig. 1).

To find the impurity-induced states, which evolve into
boundary modes when U is much larger than the other
energy scales in the model, we calculate the bare Mat-
subara Green’s function in the mixed coordinate space
and momentum space representation, keeping in mind
that the momentum along the y direction ky is in this
configuration a good quantum number:

G0(x, ky, iω`) ≡
2π/3∫
−2π/3

dkx
4π/3

G0(kx, ky,iω`)e
ikxx. (3)

The integration limits ±2π/3 and the numerical fac-
tor 4π/3 were derived in Ref. [31] for a hexagonal lat-
tice. Note also that in the expression above, x can only
take discrete values corresponding to the positions of the
atoms in the honeycomb lattice. These values can be di-
vided into two classes, corresponding to the atoms of the
sublattices A and B,

xA =
3n

2
and xB =

3n+ 1

2
, with n ∈ Z. (4)

We note that when n < 0 we are dealing with lattice sites
on the left side of the impurity line, whereas for n > 0
with those on the right side.

−3 −3
2 0 3

2 3−5
2 −1 1

2 2 7
2

x

y

A

B

Figure 1. Graphene lattice with an infinite-amplitude δ-
function impurity introduced at x = 0 (impurity sites are
thus effectively disconnected from the lattice, as indicated by
the dashed lines). Effectively we have a zigzag edge half-plane
on the left side of the impurity, i.e., for x < 0, and a bearded
edge half-plane on the right side of the impurity, i.e., for x > 0
(red lines).

In order to perform the integration in Eq. (3), we first
denote:

Xm(x, ky, iω`) ≡ −
2π/3∫
−2π/3

dkx
4π/3

eikxm/2eikxx

D
, (5)

where D ≡ 3 + 2 cos ky
√

3 + 4 cos
ky
√

3
2 cos 3kx

2 − (iω`)
2,

m ∈ {0, ±1, ±2}. Due to the translational invariance
in the y direction, the integrals above are periodic func-

tions of ky, with a period given by
[
0, 2π√

3

]
. The Green’s

function in Eq. (3) can thus be written as

G0(x, ky, iω`) =(
iω`X0 2X1 cos

ky
√

3
2 +X−2

2X−1 cos
ky
√

3
2 +X2 iω`X0

)
, (6)

where for simplicity we have omitted the explicit argu-
ments of the Xm functions. The detailed calculation of
the five Xm integrals is presented in Appendix A.

Below, using the Green’s function in Eq. (6) we com-
pute the T -matrix in order to find its poles defining the
energies of the edge states of graphene in the limit where
the impurity potential amplitude U is the largest en-
ergy scale in the system. The T -matrix can be found
as follows47,48 T ≡ (I− V G0)

−1
V , which in our case be-
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comes:

T (ky, iω`)

≡
[(

1 0
0 1

)
−
(
U 0
0 0

)
·G0(x = 0, ky, iω`)

]−1

·
(
U 0
0 0

)
−−−−→
U→∞

−
([
G11

0 (x = 0, ky, iω`)
]−1

0
0 0

)
, (7)

where G11
0 denotes the 11 component of the correspond-

ing Green’s function. We perform the analytical contin-
uation iω` → E + iδ, δ → +0, and we find that the
imaginary part of the trace of the T -matrix,

Im trT (ky, E + i0) =

Im

√(
3 + 2 cos ky

√
3− (E + i0)2

)2 − 16 cos2 ky
√

3
2

E + i0
(8)

has a pole at E = 0 for all ky ∈
[
0, 2π√

3

]
\
{

2π
3
√

3
, 4π

3
√

3

}
(see

Fig. 2). Thus, there exists a zero-energy edge state for
all the possible values of ky except for the special points{

2π
3
√

3
, 4π

3
√

3

}
. It is known from literature35–37 that if we

had only one type of edge—bearded or zigzag—we would
only recover edge modes for specific values of ky. Namely,
for the zigzag edge we would have a zero-energy edge

state only for ky ∈
(

2π
3
√

3
, 4π

3
√

3

)
, whereas for the bearded

edge we would have it for ky ∈
[
0, 2π√

3

]
\
[

2π
3
√

3
, 4π

3
√

3

]
. The

special points 2π
3
√

3
and 4π

3
√

3
are the points where the

zero-energy state cease to be edge states and merge with
the bulk. For our particular configuration we have both
zigzag and bearded edges, and thus it is not surprising
that the existence of the edge states extends to the entire
range of ky.

0 2π
3
√

3
4π

3
√

3
2π√

3

ky

−0.75

0

0.75

E

−80

−60

−40

−20

Figure 2. Imaginary part of the trace of the T-matrix, as
computed in Eq. (8). At E = 0, we recover the edge states
corresponding to both the zigzag and the bearded edges for

ky ∈
(

2π

3
√
3
, 4π

3
√
3

)
and ky ∈

[
0, 2π√

3

]
\
[

2π

3
√
3
, 4π

3
√
3

]
, respectively.

To find the wave functions corresponding to the edge
states we use the same algorithm as for the Yu-Shiba-
Rusinov states.49–54 First, we obtain the wave function
at the impurity position (x = 0) using[(

1 0
0 1

)
−G0(x = 0, ky, E = 0)·

(
U 0
0 0

)]
Ψ(x=0, ky) = 0.

(9)

We then use the propagation relation

Ψ(x, ky) = G0(x, ky, E = 0) ·
(
U 0
0 0

)
Ψ(x = 0, ky) (10)

to recover the dependence of the wave function on x, and
we get:

Ψ(x, ky) =

(
0

X0(xB + 1) + 2 cos
ky
√

3
2 X0(xB − 1

2 )

)
,

(11)

where we have set E = 0 and we have omitted the ky
dependence in X0 for the sake of brevity. The explicit
definitions of xB and X0 are given in Eqs. (4) and (5),
and the exact expression for the latter can be found in
Appendix A. Note that this result is in qualitative agree-
ment with previous studies of zigzag edge states34–38,55–57

in that the edge wave function is nonzero only on the
atoms of the sublattice B. The wave function is thus de-
fined only for x = xB ≡ 3n+1

2 (see Eq. (4)), and it is
equal to zero for x = xA.

Further simplifications can be made assuming that ky
lies in one of the two previously mentioned intervals. The
wave function in Eq. (11) then simplifies to:

Ψ(n, ky) =

(
0

−
(
−2 cos

ky
√

3
2

)−n−1

)
, (12)

which yields the zigzag-edge wave functions for n < 0,

ky ∈
(

2π
3
√

3
, 4π

3
√

3

)
and the bearded-edge wave functions

for n > 0, ky ∈
[
0, 2π√

3

]
\
[

2π
3
√

3
, 4π

3
√

3

]
. Other combina-

tions of n and ky yield non-normalizable solutions, and
thus can be discarded. Note the exact equivalence to pre-
vious results obtained using recursive calculations34–37

and specific boundary conditions.17,38

In Fig. 3 we plot the corresponding lattice local den-
sity of states (LDOS) ρ(x, ky) = |Ψ(x, ky)|2. For values
of ky between 2π

3
√

3
and 4π

3
√

3
the LDOS calculated from

the wave function in Eq. (11) is nonzero only for x < 0,
corresponding to the zigzag edge state. Contrary to that,
if the value of ky is chosen to be outside of the aforemen-
tioned range, the LDOS is nonzero only for x > 0, and
therefore corresponds to the bearded edge state.

III. WEYL SEMIMETAL: FERMI ARCS AND
QUASIPARTICLE INTERFERENCE PATTERNS

In this section we turn to calculating the wave func-
tions for the Fermi-arc states and the quasiparticle in-
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ky ≈ π√
3 ky ≈ 2π√

3

−9
2 −3 −3

2 0−11
2 −4 −5

2 −1

ky ≈ 4π
3
√

3

0 3
2 3 9

2
1
2 2 7
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ky ≈ 4π
3
√

3

x

Figure 3. The LDOS calculated for the wave function in
Eq. (11) for four different values of ky. In the left and right
columns we show the zigzag and bearded edges, respectively.
The values of ky on the upper two panels correspond to the
cases in which the edge states are the most localized, i.e., the
localization length as a function of ky reaches a minimum,
whereas the lower two panels show the opposite case, where
the edge states are the most delocalized. The size of the circles
reflects the magnitude of the LDOS.

terference patterns on the surface of a Weyl semimetal
described by the following model:

H0(k) = v sin kxσx + v sin kyσy+

(m− t cos kx − t cos ky − t cos kz)σz. (13)

The above Hamiltonian is defined on a cubic lattice with
the lattice constant set to unity. Here k ≡ (kx, ky, kz),
the Pauli matrices are denoted by (σx, σy, σz), v char-
acterizes the group velocity of the low-energy Weyl
fermions, m is the mass term, and t is the hopping ampli-
tude. In what follows we express all quantities with the
dimensionality of energy in terms of the hopping am-
plitude, and thus we set t = 1. We assume also for
simplicity that v = 1. For 1 < m < 3 the Hamilto-
nian above describes a Weyl semimetal phase. The Weyl
nodes appear along the kz axis, at the two points defined
by cos k0

z = m − 2. Note that this is a simple minimal
model exhibiting only two Weyl nodes in the Brillouin
zone. The bare Matsubara Green’s function is defined as
follows:

G0(k, iω`) ≡ [iω` −H0(k)]
−1

= (14)

− iω`σ0 + g̃σz + sin kxσx + sin kyσy

g̃2 + sin2 kx + sin2 ky − (iω`)2
,

where we denote g̃ ≡ g̃(k) ≡ m− cos kx− cos ky − cos kz.

A. Fermi-arc surface states

In order to find the Fermi-arc states we introduce into
the system a plane-like boundary at y = 0, emulated
by a δ-function impurity with the following potential

V (y) =

(
U 0
0 U

)
δ(y). To solve the corresponding impu-

rity problem we compute the Matsubara Green’s function
in the mixed coordinate space and momentum space rep-
resentation, i.e.,

G0(kx, y, kz, iω`) ≡
π∫
−π

dky
2π

G0(k,iω`)e
ikyy. (15)

In the expression above y is not a continuous variable
since the system is defined on a lattice, therefore, it ad-
mits only integer values (both positive and negative, de-
pending on whether the system lies at y > 0 or y 6 0), in
other words, y = na, where a = 1 is the lattice constant,
and n ∈ Z. To perform the Fourier transform in Eq. (15)
we define three integrals:

Xs ≡ −
π∫
−π

dky
2π

(•) eikyy
g̃2 + sin2 kx + sin2 ky − (iω`)2

, (16)

where (•) = 1, cos ky and sin ky for s = 0, 1 and 2, re-
spectively. We leave the step-by-step calculations of the
integrals above to Appendix B. In terms of these integrals
the Green’s function can be written as

G0(kx, y, kz, iω`) =

iω`X0σ0 + (gX0 −X1)σz + sin kxX0σx +X2σy, (17)

where we denote g ≡ g(kx, kz) ≡ m − cos kx − cos ky.
Here we have omitted the arguments of the Xs functions
for the sake of brevity.

In what follows we compute the T -matrix using the
mixed real and reciprocal space representation of the bare
Green’s function given in Eq. (17), and assuming that the
impurity potential amplitude U is the largest energy scale
in the system, i.e., U � 1. Thus, we get

T (kx, kz, iω`) ≡
[(

1 0
0 1

)
− UG0(kx, y = 0, kz, iω`)

]−1

−−−−→
U→∞

− [G0(kx, y = 0, kz, iω`)]
−1
. (18)

The poles of the imaginary part of the trace of the T -
matrix found via analytical continuation iω` → E +
iδ, δ → +0 define the energies of the impurity-bound
states at finite values of U , whereas at U →∞ they yield
the surface modes, i.e., the Fermi-arc surface states. We
perform the analytical continuation, and we find that

trT (kx, kz, E + i0) =

2(E + i0)X0

(gX0 +X1)
2

+
[
sin2 kx − (E + i0)2

]
X2

0

(19)
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whose imaginary part has two poles, at E = ± sin kx,
for kz lying in the interval between the Weyl nodes, i.e.,(
−k0

z , k
0
z

)
, and kx such that cos kx > m − 1 − cos kz.

Outside of these regions, the T -matrix does not have any
poles, and therefore, the Fermi arcs cease to exist. It is
worth noting that there are two solutions, E = + sin kx
and E = − sin kx, due to the fact that a plane-like impu-
rity introduces both a ‘top’ surface and a ‘bottom’ sur-
face, one for the Weyl semimetal in the lower half-space,
y 6 0, and another one for that in the upper half-space,
y > 0.

To study the spatial dependence of the Fermi-arc wave-
functions we use the same procedure as in the previous
section.49–54 First, we find the wave function at y = 0
from the equation:

G0(kx, y = 0, kz, E = ± sin kx)Ψ±(kx, y = 0, kz) = 0,

whose non-trivial solutions can be found by imposing
detG0(kx, y = 0, kz, E = ± sin kx) = 0, which in turn
yields:

E = + sin kx → Ψ+(kx, y = 0, kz) ∝
(

1
−1

)
, (20)

E = − sin kx → Ψ−(kx, y = 0, kz) ∝
(

1
1

)
. (21)

The solution for E = + sin kx corresponds to the Weyl
semimetal lying in the upper half-space, whereas the one
for E = + sin kx to that in the lower half-space. The
y-dependence of the wave function can be found using
Ψ(kx, y, kz) = G0(kx, y, kz, E) · UΨ(kx, y = 0, kz):

Ψ+(kx, y, kz) = (gX0 −X1 + iX2)

(
1
1

)
(22)

Ψ−(kx, y, kz) = (gX0 −X1 − iX2)

(
1
−1

)
. (23)

The physics encoded in these two wave functions is quali-
tatively the same, and thus in Fig. (4) we plot the LDOS
for one of the solutions at E = 0 (equivalently, kx = 0),
i.e.,

ρ(kx = 0, y, kz, E = 0) ≡ |Ψ+(kx = 0, y, kz)|2 (24)

as a function of y > 0, at different values of kz. It is
clear that the localization length of the Fermi-arc surface
state changes with kz, and as expected, the state becomes
completely delocalized exactly at the Weyl nodes, i.e., at
k0
z = ±2π/3.

B. Quasiparticle interference pattern

To demonstrate the power of our approach for solv-
ing boundary problems, in what follows we calcu-
late the quasiparticle interference patterns associated to
the presence of a single localized impurity Vs(x, z) =

1 2 3 4 5 6 7 8 9 10

y

−π

0

π

kz

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 4. The LDOS for the solution at E = 0, as defined
by Eq. (24), plotted as a function of y and kz. The mass
term is set to m = 1.5, yielding Weyl nodes at k0z = ±2π/3,
in the vicinity of which the Fermi-arc surface state becomes
more delocalized, and the corresponding LDOS becomes more
bulk-like.

(
Us 0
0 Us

)
δ(x, z) on the surface of a Weyl semimetal.

Along the lines of Ref. [31], the surface Green’s function
for the Weyl semimetal in the upper half plane (y > 0)
is given by:

Gs(kx, kz) =

∫
dk1ydk2y

(2π)2
G(kx, k1y, k2y, kz)e

i(k1y−k2y)y
∣∣∣
y=1

,

(25)

with

G(kx, k1y, k2y, kz) = 2πG0(kx, k1y, kz)δ(k1y − k2y)+

G0(kx, k1y, kz)T (kx, kz)G0(kx, k2y, kz), (26)

where the unperturbed bulk Green’s function and the T -
matrix are given by Eqs. (14) and (18), respectively. We
set y = 1 in the expression above because in the presence
of an infinite-amplitude δ-potential impurity all sites at
y = 0 are cut out of the system, thus moving the surface
of the system to y = 1. Above we omitted writing down
the explicit energy dependence in all Green’s functions.
We rewrite the integrand in Eq. (25) using Eq. (26), and
we obtain the surface Green’s function performing both
integrals over momenta in Eq. (25):

Gs(kx, kz) = G0(kx, y = 0, kz)+

G0(kx, y = 1, kz)T (kx, kz)G0(kx, y = −1, kz), (27)

where the mixed coordinate space-momentum space rep-
resentation of the unperturbed Green’s function is given
by Eq. (17).
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−π 0 π

kx

−π

−2π
3

−π
3

0

π
3

2π
3

π

kz

Weyl points

1

2

3

4

5

6

7

Figure 5. Spectral function at E = 0, as defined by Eq. (28),
plotted as a function of kx and kz. We set m = 2.5, thus Weyl
nodes appear at k0z = ±π/3. We can clearly see the Fermi arc
(in this toy model, a line) connecting the two nodes.

In what follows, we study the spectral function defined
through the surface Green’s function in Eq. (27) as fol-
lows:

A(kx, kz) ≡ −
1

π
Im trGs(kx, kz). (28)

In Fig. 5 we plot the spectral function taken at E = 0,
and we observe a line in the momentum space, corre-
sponding to the Fermi arc. Since we employ one of the
simplest lattice models of a Weyl semimetal (i.e., ob-
tained by stacking Chern insulators in reciprocal space),
the Fermi-arc surface states at a fixed value of energy ap-
pear as lines in the momentum space. Therefore, a priori
we expect a very simple quasiparticle interference pattern
in this toy-model case, namely, the scattering at the sur-
face occurs mostly between the surface states, along with
some residual scattering into the bulk as well.

Below we define the quasiparticle interference patterns
in the momentum space via

∆ρ(kx, kz) = − 1

2πi

∫
dqxdqz
(2π)2

f(qx, qz, kx, kz) (29)

where

f ≡ tr
[
Gs(qx, qz)TsGs(qx + kx, qz + kz)−
G∗s(qx + kx, qz + kz)T

∗
sG
∗
s(qx, qz)

]
.

Also

Ts =

[(
1 0
0 1

)
− Us

∫
dkxdkz
(2π)2

Gs(kx, kz)

]−1

Us,

Us is the amplitude of the impurity potential, and ∗ de-
notes complex conjugation.

−π 0 π

kx

−π

−2π
3

−π
3

0

π
3

2π
3

π

kz

0.02

0.03

0.04

0.05

0.06

Figure 6. Quasiparticle interference pattern at E = 0, as de-
fined by Eq. (29), plotted as a function of kx and kz. The mass
term is set to m = 2.5, yielding Weyl nodes at k0z = ±π/3.
The impurity potential amplitude is set to Us = 1. The strong
line-like feature in the middle reflects the surface-surface scat-
tering processes, while the small background (∆ρ ≈ 10−2)
accounts for the surface-bulk and bulk-bulk ones.

In Fig. 6 we plot the quasiparticle interference pat-
tern for the case of a shorter Fermi arc, i.e., when the
Weyl nodes lie within the interval [−π/2, π/2], or in other
words, when k0

z < π/2. Most of the weight in the plot
is concentrated, as expected, in a narrow line lying from
−2k0

z to −2k0
z at kx = 0, which corresponds to surface-

surface scattering processes. Indeed, most of the scat-
tering occurs within the Fermi arc, and the maximum
change in momentum along the kz axis is 2k0

z , while along
the kx axis it is 0. The very small and undifferentiated
background corresponds to surface-bulk and bulk-bulk
scattering processes. In the case of a longer Fermi arc
(e.g., m = 1.5), the overall change in kz can go beyond
the first Brillouin zone, and thus the narrow line is ex-
pected to lie in the interval [−π, π].

More complex and realistic models for Weyl semimet-
als exhibiting topological Fermi-arc states were treated
in Ref. [58], with a stark focus on spin-resolved compo-
nents of quasiparticle interference patterns and the sur-
face Green’s function derivation employing the technique
from Refs. [28–32]. Most importantly, no closed-form an-
alytical solutions for the wave functions of the Fermi-arc
states are presented in Ref. [58], contrary to the present
work which mostly focuses on analytical derivations of
boundary-mode wave functions.

IV. CONCLUSIONS

To summarize, we have proposed an analytical route
to calculate the boundary modes of graphene and Weyl
semimetals within a lattice model. For the Weyl
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semimetals we have considered a minimal tight-binding
model exhibiting two cones and a line-like Fermi arc,
and we have also computed the quasiparticle interference
patterns via a calculation of the surface Green’s func-
tion. Our results are obtained by modeling the bound-
aries as localized infinite-amplitude impurity potentials
and treating the problem exactly within the T-matrix
formalism. More specifically, we have recovered an ex-
act closed form for the wave functions of the zigzag
and the bearded edge states for graphene, as well as for
the Fermi-arc surface states and surface Green’s func-
tion for a Weyl semimetal model considered. The results
presented in this work are in agreement with previous
calculations performed either by recursive tight-binding
methods,34–36 or by solving the Schrödinger equation
with specifically derived boundary conditions,17,42 or
other methods.25,27

The technique we have employed is very general and
can be applied to any lattice model no matter its com-
plexity or its dimensionality, and it is in no way limited
to only minimal tight-binding models, but can be used
for any tight-binding model. It allows to recover energies
of the boundary modes, as well as exact forms for their
wave functions without requiring any numerical calcula-

tions such as, e.g., exact diagonalization, except at most
a numerical integral of the Green’s function to Fourier
transform it from momentum space to real space; how-
ever, in the present work we have obtained all integrals
in a closed analytical form.

Potential applications include, but are not limited
to: using the technique in setups with pseudomag-
netic fields;59 studying disordered systems numerically
by treating a single disorder realization via the general-
ized T-matrix or analytically by introducing a boundary-
emulating impurity after averaging over disorder; con-
sidering more realistic models for studying quasiparticle
interference patterns in Weyl and Dirac semimetals.58
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Appendix A: Derivation of the edge states for zigzag- and bearded-edge graphene

In this Appendix we calculate the integrals in Eq. (5) for m ∈ {−2,−1, 0, 1, 2}:

Xm(x, ky, iω`) ≡ −
2π/3∫
−2π/3

dkx
4π/3

eikxm/2eikxx

3 + 2 cos ky
√

3 + 4 cos
ky
√

3
2 cos 3kx

2 − (iω`)2
, (A1)

Translational invariance in the y direction implies that the integral above is a periodic function of ky, and we choose

one period to be ky ∈
[
0, 2π√

3

]
. The case of ky = π√

3
should be considered separately since the integral simplifies

significantly due to the fact that the denominator does not depend on kx anymore. Note also that the integral above
is defined solely on the graphene lattice shown in Fig. 1, and thus x = xA = 3n

2 or x = xB = 3n+1
2 , with n ∈ Z.

We start with the case of ky = π√
3
, where we have:

Xm(x, ky, iω`) = − 1

1− (iω`)2

2π/3∫
−2π/3

dkx
4π/3

eikxm/2eikxx = − 1

1− (iω`)2

sinπ
(

2
3x+ m

3

)
π
(

2
3x+ m

3

) (A2)

When additionally x = −m/2, we get: X0

(
0, π√

3
, iω`

)
= − 1

1−(iω`)2
.

In what follows we turn to the case of ky 6= π√
3
. In this case the integral in Eq. (A1) can be rewritten as a contour

integral in the complex plane, using the substitution z = e
3
2kx :

Xm(x, ky, iω`) ≡ −
1

2 cos
ky
√

3
2

1

2πi

∮
|z|=1

dz
z

2
3 (x+m

2 )

z2 + fz + 1
, (A3)
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where the circle |z| = 1 is oriented counter-clockwise, and we defined

f ≡ f(ky, iω`) =
3 + 2 cos ky

√
3− (iω`)

2

2 cos
ky
√

3
2

. (A4)

For simplicity we rewrite this integral for x lying on sublattices A and B separately:

sublattice A: XA
m(x =

3n

2
, ky, iω`) = − 1

2 cos
ky
√

3
2

1

2πi

∮
|z|=1

dz
zn+m/3

z2 + fz + 1
, (A5)

sublattice B: XB
m(x =

3n+ 1

2
, ky, iω`) = − 1

2 cos
ky
√

3
2

1

2πi

∮
|z|=1

dz
zn+(m+1)/3

z2 + fz + 1
, (A6)

Before we proceed with the calculation, several important simplifications are worth pointing out:

• It is easy to notice that for sublattice A we have XA
−2(x) = XA

2 (−x), XA
−1(x) = XA

1 (−x), whereas for sublattice B

XB
−2(x) = XA

1 ( 1
2 − x), XB

−1(x) = XA
0 ( 1

2 − x), XB
0 (x) = XA

1 (x − 1
2 ), XB

1 (x) = XA
2 (x − 1

2 ), and XB
2 (x) = XA

0 (x + 1).
Above we omitted the dependence on ky and iω`. Therefore, it is sufficient to compute only the three integrals in
Eq. (A5), for m = 0, m = 1 and m = 2, respectively, and for x = xA only, since all integrals on sublattice B can be
expressed in terms of those on sublattice A.

• From the definition in Eq. (A5) it is clear that the case of m = 0 and the case of m 6= 0 (i.e., m = 1 and m = 2)
should be considered separately. The reason for it is that when m = 0 there are no functions in the integrand
requiring to make a branch cut in the complex plane, thus significantly simplifying the integration.

• Another important remark can be made about the roots of the quadratic polynomial in the denominator of the
integrand in Eq. (A5). A simple analysis of the roots given by

z± =
1

2

[
−f ±

√
f2 − 4

]
(A7)

shows that, first, both roots are always real for the values of the parameters in consideration. Second, one of the roots
always belongs to the interval (−1, 1), namely,

if 0 6 ky <
π√
3
, then z+ ∈ (−1, 0), z− < −1, (A8)

if
π√
3
< ky 6

2π√
3
, then z− ∈ (0,+1), z+ > +1. (A9)

This means that regardless of the value of ky one of the poles of the integrand always lies inside the unit circle in the
complex plane, and has to be taken into account while applying the residue theorem. Additionally, Vieta’s formula
dictates z+z− = 1.

1. The sub-case of m = 0

Using the roots in Eq. (A7) we rewrite the integral in Eq. (A5) in the following form (omitting the prefactor):

1

2πi

∮
|z|=1

dz
zn

(z − z+)(z − z−)
= ∗ (A10)

It is easy to prove that this integral is unchanged if one changes n to −n, therefore, here we compute it only for n > 0.
In that case one of the poles lies inside the unit circle, whereas the other one – outside. We start with the case in
which z+ lies inside the circle (0 6 ky < π/

√
3), and using the residue theorem, we get:

∗ = res
z=z+

zn

(z − z+)(z − z−)
= − z

|n|
+

z− − z+
(A11)
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γ

γ

γ

γ

Figure 7. Auxiliary contour Γ for complex plane integration for 0 6 ky <
π√
3

(left panel) and π√
3
< |ky| 6 2π√

3
(right panel).

To get the expression for the case where z = z− is inside the unit circle, and z = z+ is outside (π/
√

3 < ky 6 2π/
√

3),
we just need to exchange z+ → z− and vice versa in expression above. Taking into account the symmetry with respect
to flipping the sign of n, we get the final expression:

XA
0

(
x =

3n

2
, ky, iω`

)
= − 1

2 cos
ky
√

3
2

−
z
|n|
+

z−−z+ , 0 6 ky <
π√
3

+
z
|n|
−

z−−z+ ,
π√
3
< ky 6 2π√

3

. (A12)

2. The sub-cases of m = 1 and m = 2

In this subsection we calculate the integral

1

2πi

∮
|z|=1

dz
zn+m/3

(z − z+)(z − z−)
= ∗ (A13)

for m = 1 or m = 2. In this case we have to introduce a branch cut on the non-positive part of the real axis, i.e., for
z ∈ (−∞, 0]. In order to start the calculation, we first define auxiliary contours in the complex plane, Γ = C1∪γ+∪γ−
(see left and right panels of Fig. A 2). The unit circle is denoted C1, and γ± are the right and left banks of the branch
cut, parametrized by t ± i0 with t ∈ [−1, 0], correspondingly. Note, that to be entirely rigorous we should have
added also a circle of infinitesimal radius around the point z = 0, to ensure that we treat correctly the divergence
at that point when n < −1, however, it appears that the method of calculation we apply takes care of that problem
automatically. For 0 6 ky < π/

√
3 and π/

√
3 < ky 6 2π/

√
3 we choose the left and the right panels of Fig. A 2,

respectively. The difference between these panels is the position of the pole inside the unit circle: on the left panel, it
falls into the branch cut, whereas on the right panel it lies within (0, 1). We note that in the definition of the auxiliary
contour Γ we neglect the tiny line between γ+ and γ−, i.e., [−i0,+i0], since it never contributes to the value of the
integral.

We start by considering the case of 0 6 ky < π/
√

3 and we write down the residue theorem for the contour
Γ = C1 ∪ γ+ ∪ γ− defined in the left panel of Fig. A 2. Since there are no poles inside the contour Γ we have:

1

2πi

∮
Γ

dz
zn+m/3

(z − z+)(z − z−)
= 0 =

1

2πi

 ∫
C1

+

∫
γ+

+

∫
γ−

dz zn+m/3

(z − z+)(z − z−)
. (A14)
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Therefore, we can express the sought-for line integral along C1 ≡ {∀z : |z| = 1} as

∗ = − 1

2πi

 ∫
γ+

+

∫
γ−

dz zn+m/3

(z − z+)(z − z−)
= ∗∗

In order to compute the integrals along γ+ and γ− we use a parametrisation z = t + i0, t ∈ [−1, 0] and z = t − i0,
t ∈ [0,−1], respectively. We start with γ+ and we get:

∫
γ+

dz
zn+m/3

(z − z+)(z − z−)
=

0∫
−1

dt
(t+ i0)n+m/3

(t+ i0− z+)(t− z−)
=

0∫
−1

dt
e(n+m/3) Ln(t+i0)

(t+ i0− z+)(t− z−)
=

0∫
−1

dt
e(n+m/3)[ln |t|+πi]

(t+ i0− z+)(t− z−)
=

= eiπ(n+m/3)

0∫
−1

dt
|t|n+m/3

(t+ i0− z+)(t− z−)
= eiπ(n+m/3)

1∫
0

dw
wn+m/3

(w + z+ − i0)(w + z−)
=

= eiπ(n+m/3)

P 1∫
0

dw
wn+m/3

(w + z+)(w + z−)
+ iπ

1∫
0

dw
wn+m/3

w + z−
δ(w + z+)


Similarly, we get:

∫
γ−

dz
zn+m/3

(z − z+)(z − z−)
= −e−iπ(n+m/3)

P 1∫
0

dw
wn+m/3

(w + z+)(w + z−)
− iπ

1∫
0

dw
wn+m/3

w + z−
δ(w + z+)


Therefore, combining two integrals from left and right banks, we obtain:

∗∗ =
(−1)n+1

π

(
IP sin

πm

3
+ πIδ cos

πm

3

)
= ∗ ∗ ∗,

where we defined

IP = P
1∫

0

dw
wn+m/3

(w + z+)(w + z−)
=

(−z−)n+m
3 B

[
− 1
z−
, n+ m

3 + 1, 0
]
− (−z+)n+m

3

(
B
[
−z+,−n− m

3 , 0
]

+ π ctg πm
3

)
z− − z+

(A15)

Iδ =

1∫
0

dw
wn+m/3

w + z−
δ(w + z+) =

(−z+)n+m/3

z− − z+
(A16)

Substituting IP and Iδ into the equation above, we obtain after simplifications:

∗ ∗ ∗ =
(−1)n+1

π
sin

πm

3

(−z−)n+m
3 B

[
− 1
z−
, n+ m

3 + 1, 0
]
− (−z+)n+m

3 B
[
−z+,−n− m

3 , 0
]

z− − z+
.

Thus we get:

1

2πi

∮
|z|=1

dz
zn+m/3

(z − z+)(z − z−)
=

(−1)n+1

π
sin

πm

3

(−z−)n+m
3 B

[
− 1
z−
, n+ m

3 + 1, 0
]
− (−z+)n+m

3 B
[
−z+,−n− m

3 , 0
]

z− − z+
,

where B[z, α, β] is the incomplete Beta-function defined as:

B [z, α, β] ≡
z∫

0

tα−1(1− t)β−1dt. (A17)
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In what follows we consider the remaining case of π√
3
< ky 6 2π√

3
. First, we rewrite the integral as follows:

1

2πi

∮
C1

dz
zn+m/3

(z − z+)(z − z−)
=

1

z− − z+

 1

2πi

∮
C1

dz
zn+m/3

z − z−
− 1

2πi

∮
C1

dz
zn+m/3

z − z+

 (A18)

The first integral in the sum can be expressed in terms of the second integral (with a parameter change) by means of
a variable change z = 1/w. Note that such a variable change inverts the orientation of the integration contour, thus
multiplying the result by −1:

1

2πi

∮
C1

dz
zn+m/3

z − z−
=

1

2πi

∮
C1

dw

w2

w−n−m/3

1/w − z−
= − 1

z−

1

2πi

∮
C1

dw
w−n−m/3−1

w − 1/z−
= − 1

z−

1

2πi

∮
C1

dw
w−n−m/3−1

w − z+
. (A19)

From the expression above we see that to obtain the first integral from the second one we need to replace n→ −n−2,
m→ 3−m and multiply the result by −1/z−. Next, we compute the second integral

1

2πi

∮
C1

dz
zn+m/3

z − z+
(A20)

by writing down the residue theorem for the contour Γ = C1 ∪ γ+ ∪ γ− defined in the panel panel of Fig. A 2 for the
second integral. Since there are no poles inside the contour Γ we have:

1

2πi

∮
Γ

dz
zn+m/3

z − z+
= 0 =

1

2πi

 ∫
C1

+

∫
γ+

+

∫
γ−

dz zn+m/3

z − z+
. (A21)

Therefore, we can express the sought-for line integral along C1 ≡ {∀z : |z| = 1} as

1

2πi

∮
C1

dz
zn+m/3

z − z+
= − 1

2πi

 ∫
γ+

+

∫
γ−

dz zn+m/3

z − z+
= ∗

In order to compute the integrals along γ+ and γ− we use a parametrisation z = t + i0, t ∈ [−1, 0] and z = t − i0,
t ∈ [0,−1], respectively:

∫
γ±

dz
zn+m/3

z − z+
= ±

0∫
−1

dt
(t± i0)n+m/3

t− z+
= ±e±iπ(n+m/3)

1∫
0

dw
wn+m/3

w + z+
(A22)

Thus, we get:

∗ = − 1

2πi

 ∫
γ+

+

∫
γ−

dz zn+m/3

z − z+
= − (−1)n

2πi

[
ei
πm
3 − e−iπm3

] 1∫
0

dw
wn+m/3

w + z+
= − 1

π
sin

πm

3
e−i

πm
3 z

n+m
3

+ B

[
− 1

z+
, n+

m

3
+ 1, 0

]

Using the parameter substitution introduced above, we get the first integral:

1

2πi

∮
C1

dz
zn+m/3

z − z−
=

1

π
sin

π(3−m)

3
e−i

π(3−m)
3 z

n+m
3

− B
[
−z−,−n−

m

3
, 0
]

= − 1

π
sin

πm

3
ei
πm
3 z

n+m
3

− B
[
−z−,−n−

m

3
, 0
]

(A23)

Finally:

1

2πi

∮
|z|=1

dz
zn+m/3

(z − z+)(z − z−)
=

1

π
sin

πm

3

e−i
πm
3 z

n+m
3

+ B
[
− 1
z+
, n+ m

3 + 1, 0
]
− eiπm3 zn+m

3
− B

[
−z−,−n− m

3 , 0
]

z− − z+
(A24)
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Combining the results for different ranges of ky, we present the final result:

XA
m(x =

3n

2
, ky, iω`) = − 1

2 cos
ky
√

3
2


(−1)n+1

π sin πm
3

(−z−)n+m
3 B

[
− 1
z−
, n+m

3 +1, 0
]
−(−z+)n+m

3 B[−z+,−n−m3 , 0]
z−−z+ 0 6 ky <

π√
3

1
π sin πm

3

e−i
πm
3 z

n+m
3

+ B
[
− 1
z+
,n+m

3 +1,0
]
−ei

πm
3 z

n+m
3

− B[−z−,−n−m3 ,0]
z−−z+

π√
3
< ky 6 2π√

3

,

where m = 1 or m = 2.

Appendix B: Derivation of the Fermi-arc states for a Weyl semimetal

In this Appendix we calculate the three integrals defined in Eq. (16):

Xs ≡ −
π∫
−π

dky
2π

(•) eikyy
g̃2 + sin2 kx + sin2 ky − (iω`)2

, (B1)

where (•) = 1, cos ky and sin ky for s = 0, 1 and 2, respectively. First, it is easy to see that integrals X1 and X2 can
be expressed in terms of the integral X0 in the following way:

X1(kx, y, kz, iω`) = −
π∫
−π

dky
2π

cos ky e
ikyy

D
=

1

2

− π∫
−π

dky
2π

eiky(y+1)

D
−

π∫
−π

dky
2π

eiky(y−1)

D

 =

=
1

2
[X0(kx, y + 1, kz, iω`) +X0(kx, y − 1, kz, iω`)] (B2)

X2(kx, y, kz, iω`) = −
π∫
−π

dky
2π

sin ky e
ikyy

D
=

1

2i

− π∫
−π

dky
2π

eiky(y+1)

D
+

π∫
−π

dky
2π

eiky(y−1)

D

 =

=
1

2i
[X0(kx, y + 1, kz, iω`)−X0(kx, y − 1, kz, iω`)] , (B3)

where for the sake of brevity we denoted D ≡ g̃2 + sin2 kx + sin2 ky − (iω`)
2, g̃ = m− cos kx− cos ky cos kz. Therefore,

we need to compute only the integral X0:

X0(kx, y, kz, iω`) = −
π∫
−π

dky
2π

eikyy

m2 + ω2
` + (cos kx + cos ky + cos kz)(−2m+ cos kx + cos ky + cos kz) + sin2 kx + sin2 ky

=

= −
π∫
−π

dky
2π

eikyy

2(−m+ cos kx + cos kz) cos ky + 1 +m2 + ω2
` + (cos kx + cos kz)(−2m+ cos kx + cos kz) + sin2 kx

= ∗

If −m+ cos kx + cos kz = 0, then we have:

∗ = − 1

1 + sin2 kx − (iω`)2

π∫
−π

dky
2π

eikyy = − 1

1 + sin2 kx − (iω`)2
δy,0 (B4)

If −m+ cos kx + cos kz 6= 0, then

∗ =
1

2(m− cos kx − cos kz)

π∫
−π

dky
2π

eikyy

cos ky − f(kx, kz)
=

1

2(m− cos kx − cos kz)

1

2πi

∮
|z|=1

dz

z

zy

1
2 (z + z−1)− f(kx, kz)

=

=
1

m− cos kx − cos kz

1

2πi

∮
|z|=1

dz
zy

z2 − 2f(kx, kz)z + 1
= ∗∗
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Above we introduced

f(kx, kz) ≡
1 + g2 + sin2 kx − (iω`)

2

2g
, g(kx, kz) ≡ m− cos kx − cos kz.

Note, that since m ∈ (1, 3), g(kx, kz) ∈ (−1, 1) for all values of kx and kz. In what follows we assume that we compute
the Fermi-arc states for the half-space above the impurity plane, i.e., for y > 0. The calculation for y < 0 is not
needed, since the integral is symmetric with respect to changing y → −y. In order to perform the integration above,
we analyze the roots of the denominator in the complex plane, as a function of kx, kz and m:

z± = f ±
√
f2 − 1 (B5)

It is easy to show that

z+ ∈ (−1, 0), z− < −1 when g ∈ (−1, 0),

z− ∈ (0, +1), z+ > +1 when g ∈ (0, +1).

Therefore, for the integral above we get:

∗∗ =
1

g


z
|y|
+

z+−z− for g ∈ (−1, 0)

z
|y|
−

z−−z+ for g ∈ (0, +1)
(B6)
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