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We introduce three new analytical and semi-analytical tools that allow one to determine the
topological character of impurity Shiba chains. The analytical methods are based on calculating
the effective Green’s function of an infinite embedded chain using the T-matrix formalism. We thus
provide a solution to the longstanding size-effects problem affecting the only general alternative
method, the numerical tight-binding analysis. As an example we consider a chain of magnetic im-
purities deposited on an s-wave superconducting substrate with Rashba spin-orbit and we calculate
its topological phase diagram as a function of the magnetic impurity strength and the chemical
potential. We find a perfect agreement between all our new techniques and a numerical analysis.

Introduction. Magnetic impurities in conventional super-
conductors give rise to impurity-bound subgap states, the
so-called Yu-Shiba-Rusinov states [1–5]. The topologi-
cal properties of chains of such magnetic impurities, also
known as Shiba chains, have come into focus in recent
years. Since the pioneering theoretical proposals [6–10]
these chains became one of the most prominent platforms
for Majorana bound states. Various alternatives have
been considered theoretically [11–33], while experimen-
tal work has mostly focused on magnetic islands [34, 35]
and on emulating magnetic Shiba chains on top of su-
perconducting substrates [36–42]. In the latter experi-
ments, zero-bias peaks observed in the tunneling spectra
at the ends of magnetic-atom chains are assumed to cor-
respond to Majorana bound states. The true nature of
these states remains, however, open to question, since the
presence of zero-bias peaks is not an unambiguous proof
of the topological character of the underlying system.

Previously, the only general versatile tool to deter-
mine the topological character of an impurity chain was
a numerical tight-binding analysis. Other theoretical
approaches proposed were not so generally applicable:
among the few alternative proposals one can mention
describing the fine-tuned case of dilute impurities cor-
responding to Shiba states forming very close to zero en-
ergy [7], and approaches based either on Pfaffian invari-
ants for effective one-dimensional models [11, 33, 36, 41,
43] or on the zeros of the Green’s function in the presence
of impurities [44]. However, the tight-binding method,
when applied to a large but finite two-dimensional sys-
tem with a modified charge/spin chemical potential along
a finite chain of atoms, exhibits size-effects problems,
and thus the computing times and resources necessary
to model the chain accurately are very large. This is due
especially to the interactions between the states forming
at the ends of the chain, as well as due to the leakage of
the latter into the two-dimensional bulk [19, 45].

In what follows we introduce two analytical tools and

Figure 1. Schematics of the systems considered. Panel (a)
shows a chain of magnetic impurity atoms (green) on the sur-
face of the superconductor (dark blue). For I (see main text)
the system is infinite in both directions. For III the surface
is finite in the x-direction, and infinite in the y-direction. In
panel (b) the red atom is an additional probe point-impurity,
as described in II in the main text. All numerical tight-
binding solutions are performed for systems finite in both
directions.

one semi-analytical tool that allow one to bypass the size-
effects problem and provide us with at least one fully
general and size-independent approach to test if a given
impurity chain is topological. To exemplify our method
we focus on a two-dimensional s-wave superconducting
substrate with Rashba spin-orbit interaction and a chain
of magnetic impurities deposited on top.

I. We consider an infinite two-dimensional bulk and
we model the Shiba chain as an infinite impurity line de-
scribed by a finite magnetic potential along the central
line of atoms (see Fig. 1). We solve this system exactly
using the T -matrix formalism [46–53]. We thus obtain
the effective Green’s function for the impurity wire. Fi-
nally, using the latter we calculate the standard topolog-
ical chiral invariant [54] enabling us to predict in which
parameter range the Shiba chain is topologically non-
trivial.

II. In the second approach we use the effective Green’s
function obtained within the first approach, but we test
the formation of Majorana bound states by adding an ex-
tra probe point-impurity on the wire, see Fig. 1(b). We
model the impurity as an infinite-amplitude scalar poten-
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tial that effectively cuts the wire in two. We check the
formation of Majorana states by calculating the average
zero-energy density of states in the wire in the presence of
the probe impurity. If such states form, the zero-energy
density of states in the wire is finite, while if the sys-
tem is nontopological it is equal to zero. Additionally,
one needs to check that no zero-energy states exist in the
wire in the absence of the probe impurity.

III. We compare these methods with a semi-analytical
approach based on Ref. [55] for calculating the Z2 in-
variant of quasi-1D systems. We consider a quasi-one-
dimensional system, infinite in one direction and finite
in the other. The Shiba chain is modeled the same way
as in I, see Fig. 1(a) but now our system is finite in the
x direction. We consider systems of different width; for
sufficiently wide systems the invariant no longer depends
explicitly on the width.

The first two approaches are fully analytical and are
bereft of finite-size problems, rendering the problem
much more tractable and accurate than tight-binding
simulations. The effective Green’s function for the wire
can be obtained using at most a numerical integral in
momentum space, and in some cases, such as the one
presented here, a closed-form expression can be derived
without resorting to numerical integration.

The third approach is semi-analytical in the sense that
we have a fully analytical formula for the topological in-
variant, but its complexity depends on the transverse size
of the system, and thus for large widths it can be evalu-
ated only numerically.

The main advantage of our approaches is that they
do not depend on the size of the system, thus provid-
ing reliable tools that are not perturbed by finite-size ef-
fects. Furthermore, while the first and third approaches
require some basic symmetry analysis in order to be im-
plemented, the second one is fully general and can be ef-
fortlessly implemented and straightforwardly applied to
any system.
Model. We consider a two-dimensional square lattice
with Rashba spin-orbit interaction and s-wave supercon-
ductivity, which can be described in real space by the
following tight-binding Hamiltonian

H2D =
∑
r

Ψ†r (−µτ z −∆τx) Ψr

−Ψ†r (t+ iλσy) τ zΨr+x + H.c.

−Ψ†r (t− iλσx) τ zΨr+y + H.c. , (1)

written in the basis Ψr = (cr,↑, cr,↓, c
†
r,↓,−c

†
r,↑)

T, where

c
(†)
r,σ annihilates (creates) an electron with spin σ =↑, ↓ at

site r = (x, y). We denote by µ the chemical potential, ∆
is the superconducting pairing parameter, t the hopping
constant, and λ the Rashba spin-orbit coupling constant.
The Pauli matrices σ and τ act in the spin and particle-
hole subspaces, respectively. In momentum space, in the

basis Ψk = (ck,↑, ck,↓, c
†
−k,↓,−c

†
−k,↑)

T, the Hamiltonian
of this system is given by

H2D
k = − [µ+ 2t (cos kx + cos ky)] τ z (2)

−2λ [sin kxσ
y − sin kyσ

x] τ z −∆τx .

The Shiba chain is modeled as a set of onsite potentials
corresponding to local Zeeman fields of the form V =
V σz,

Himp =
∑
r∈C

Ψ†rV Ψr , (3)

with C describing the sites of the one-dimensional infi-
nite chain. Therefore, the full system in real space is
described by H2D +Himp.
Effective Green’s function for the chain. The effective
one-dimensional Green’s function G for the chain can
be computed using the technique presented in Ref. [56].
Thus, for a Hamiltonian H2D

k we can define the bulk un-
perturbed Green’s function G0(ω,k) = (iω +H2D

k )−1. In
the presence an impurity potential Vδ(x) we can com-
pute an effective Green’s function with the help of the
T -matrix [46–50, 52]:

T = [I−VG1(ω, ky)]
−1

V , (4)

where

G1(ω, ky) ≡ G1(ω, x = 0, ky) =

∫ π

−π

dkx
2π
G0(ω,k) . (5)

In what follows we are interested in evaluating the effec-
tive Green’s function at x = 0, i.e. along the impurity
chain. In the T-matrix formalism this can be written as:

G(ω, ky) = G1(ω, ky) + G1(ω, ky)TG1(ω, ky) . (6)

where G1(ω, ky) at ω = 0 can be obtained either by
performing the integral in Eq. (5) numerically, or for
the system considered here can also be computed ana-
lytically (see Eq. (S49) in the Supplementary Material).
Hereinafter we set ky → k where possible. This Green’s
function defines an effective Hamiltonian for the chain:
H−1k ≡ G(0, k). In what follows we apply the three dif-
ferent methods mentioned in the introduction, and cal-
culate the topological phase diagram for the magnetic
Shiba chains.
I. The chiral invariant from the Green’s function. In
order to calculate the appropriate topological invariant
from the effective Green’s function we first investigate
the symmetries of the problem. The model we con-
sider exhibits several symmetries important for the topol-
ogy [57, 58]: a particle–hole (PH) symmetry described
by an anti-unitary operator P, such that PH∗kP−1 =
−H−k and P2 = 1; a “time-reversal” (TR) symme-
try described by the anti-unitary operator T , where
T H∗kT −1 = H−k with T 2 = 1; and finally we have
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Figure 2. (a) The chiral invariant, ν, plotted as a function of
the chemical potential and the magnetic impurity strength,
as obtained from the effective wire GF. (b) The zero-energy
DOS, ρ, in the presence of a probe point-impurity; shown in
the inset is the total density of states in the absence of the
probe. (c,d) The Majorana polarization C and the energy
corresponding to the lowest-energy state calculated using a
tight-binding model for a chain of 60 sites introduced into a
two-dimensional system of size 21×80. We take λ = 0.2t and
∆ = 0.4t

the combination of these symmetries, the sublattice or
“chiral” symmetry, described by the unitary operator
S = PT , with S−1HkS = −Hk. When all of these
symmetries are present the Hamiltonian is in the BDI
symmetry class [59], and hence has a Z topological invari-
ant. Our model has a chiral symmetry operator for the
effective chain Hamiltonian given by S = τ yσx. Note,
however that this is not a symmetry of the full prob-
lem, H2D + Himp, as the term λ sin kxσ

yτ z breaks the
TR symmetry. We note here that the two-dimensional
lattice described by H2D is always topologically trivial.
Therefore, we can use the topological invariant [54],

ν =
1

4πi

∫ π

−π
dk trSHk∂kH−1k , (7)

suitable for a one-dimensional system with chiral sym-
metry.

The result for the chiral invariant as a function of the
chemical potential and the magnetic impurity strength
for an exemplary set of parameters (∆ = 0.4t and
λ = 0.2t) is given in Fig. 2(a). One can see that a large
topologically non-trivial phase exists, in particular for
large values of V .
II. Testing the formation of Majorana bound states via

a probe impurity. Our second approach is also based
on the effective Green’s function obtained in Eq. (6). To
test the formation of Majorana states we add an infinite-
amplitude scalar probe impurity which breaks the wire
into two semi-infinite parts, see Fig. 1(b) [60, 61]. The
perturbed Green’s function of the wire in the presence
of the probe impurity can be obtained via the T -matrix
formalism using the effective Green’s function of the in-
finite wire in Eq. (6) as an unperturbed Green’s func-
tion describing the infinite chain. Assuming that the
probe impurity is localized at y = 0 and is described
by Udiag {1, 1, 1, 1}δ(y), we can find the T -matrix and
the correction to the Green’s function as follows:

T̃ =

[
I− U

∫ π

−π

dk

2π
G(0, k)

]−1
U (8)

The local density of states is given by

δρ̃(0, y) = − 1

π
Im tr G(0, y)T̃G(0,−y), (9)

where G(0, y) =
∫ π
−π

dk
2πG(0, k)eiky. To verify the forma-

tion of Majorana states, in Fig. 2(b) we plot the zero-
energy local density of states in the presence of the infi-
nite impurity, as a function of the chemical potential and
the magnetic impurity strength in the chain. To check
that these states are indeed forming inside a bulk gap
and are not just regular bulk states, in the inset we plot
the zero-energy total DOS in the bulk of the wire:

δN(0) =

∫
dy δρ̃(0, y) . (10)

We confirm that this is indeed negligible except along the
bulk-gap closing lines. Thus the states that we observe
at zero-energy do not correspond to any bulk states, but
come from adding the impurity and are thus Majorana
bound states. This is in very good agreement with the
chiral invariant in Fig. 2(a).

Our results are checked against standard tight-binding
calculations, thus in Figs. 2(c,d) we consider a finite-size
system of dimensions 21 × 80, with a magnetic impu-
rity chain embedded in it, and we solve the tight-binding
model in real space numerically. We focus on the lowest-
energy state, and we calculate the corresponding Majo-
rana polarization C[55, 62–66], i.e., the normalized ex-
pectation value of the particle-hole operator integrated
over half the wire. For a localized Majorana bound state,
i.e. an eigenstate of P, we should have C = 1, and this
is indeed what we observe in Fig. 2(c). We note that
there is a perfect agreement between our two new meth-
ods introduced above, and the numerical tight-binding
analysis: the topological regions in the phase diagram as
predicted by our methods are exactly the same as those
that exhibit a perfect Majorana polarization (C = 1) and
a zero-energy state in the numerical tight-binding calcu-
lation.
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III. Invariant from the quasi-one-dimensional strip. We
now consider that the system described by H2D +Himp

has a finite number of sites along the x-direction, Nx.
The resulting system is a quasi-1D strip described by
the Hamiltonian HQ1D, with the finite-size segment in
the x-direction constituting the unit cell. This configu-
ration breaks TR symmetry and so the system belongs
to the class D with a Z2 invariant. This invariant can
be calculated by considering the parity of the bands
at high symmetry points, which encodes the band in-
version [67]. At the time reversal invariant momenta,
following a rotation the Hamiltonian can be written as
HQ1D

0,π → diag (H̄0,π,−H̄0,π), and calculating the parity
of the negative energy bands becomes equivalent to cal-
culating δ = (−1)νQ1D = sgn

[
det H̄0 det H̄π

]
. Following

Ref. [55] a closed form expression can be found for δ. As
νQ1D is a Z2 invariant we can unambiguously write that

νQ1D =
1− sgn

[
det H̄(0) det H̄(π)

]
2

. (11)

More details can be found in the Supplemental Material.
The quasi-one-dimensional invariant works very well,

and its predictions agree perfectly with the previous cal-
culations for the topological phase diagram presented in
Fig. 2, provided Nx is large enough. In Fig. 3(a) we
plot the quasi-one-dimensional invariant as a function of
chemical potential and magnetic impurity strength for a
a strip of width of Nx = 51, while in the right panel we
consider Nx = 11. Note that the oscillations present at
small widths go away for Nx = 51.
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Figure 3. The quasi-one-dimensional invariant, νQ1D, for (a)
Nx = 51 and (b) Nx = 11.

Comparison with experiments. To facilitate the numeri-
cal computations, so far we have used unrealistically large
values of the parameters. In what follows we consider a
set of parameters expected to correspond more closely
to realistic experimental parameters. In the experiments
the value of the superconducting gap varies from 1.1 to
1.4 meV [36–41], while the estimate for the spin-orbit
coupling constant and magnetic exchange constant in
Ref. [36] are 22 meV [68] and 2.4 eV, respectively.

In Fig. 4 we plot the quasi-one-dimensional invariant
for λ = ∆ = 0.005t ∼ 8 meV, closer to what one may
expect in a realistic system. We note that the conver-
gence is slower in this case with the width of the system,
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Figure 4. The quasi-one-dimensional invariant for λ = ∆ =
0.005t for Nx = 1001. Small panels (b,c) demonstrate the
parts of the phase diagram close to µ/t = 0 and µ/t = 4 in a
higher resolution.

but the results are comparable to those for larger ∆ and
λ. The main differences come from the points close to
µ = 0 and µ = 4 and for these points we performed de-
tailed analyses in the panels (b,c) of Fig. 4. We note
in particular that smaller values of the magnetic impu-
rity potential are required close to µ = 4 to give rise
to a topological phase. It appears that quite large mag-
netic impurity potentials are necessary in the other re-
gions of the phase diagram, which may not be always
easy to achieve experimentally. However, we note that
this could be achieved in an alternative configuration, in
which impurities are deposited above the surface atoms
and connected with the substrate via a tunneling cou-
pling t′. We found that this configuration of suspended
atoms with an impurity potential U is exactly equivalent
with that of embedded impurities with an effective im-
purity potential V = t′2/U . Thus larger values of the
effective impurity potential V can be reached, even for
not so large values of the bare U , see the Supplemental
Material for more details.

Conclusions. We proposed three new analytical and
semi-analytical techniques to calculate the topological
phase diagrams of Shiba chains. The first relies on calcu-
lating the the effective Green’s function of the impurity
chain using the T-matrix formalism and evaluating the
corresponding chiral invariant. The second technique is
also based on the effective GF of the chain, and consists
in calculating the zero-energy DOS in the presence of a
probe impurity. The third method is based on calculat-
ing the quasi-one-dimensional invariant of a ribbon with
an embedded impurity chain in the limit of infinite rib-
bon width. We applied our techniques to the example of
a chain of magnetic impurities on an s-wave supercon-
ducting substrate with Rashba spin-orbit coupling. We
compared the results obtained with the newly introduced
tools to those obtained via tight-binding numerical calcu-
lations, and we found a perfect agreement. We discussed
the experimental relevance of our results. It will be in-
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teresting to apply our techniques to problems that are
difficult to solve correctly numerically due to size effects
[19, 45].
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Quasi-one-dimensional invariant

We can write the Hamiltonian for H2D +HCh as if the x direction is a unit cell, and making a Fourier transform
along y:

HQ1D
k =


fk + VDCy Lk −∆ 0

L†k fk − VDCy
0 −∆

−∆ 0 VDCy
− f †−k LT−k

0 −∆ L∗−k −f †−k − VDCy

 . (S1)

The matrix DCy is a square matrix with a non-zero entry only for the site of the chain Cy, and ∆ is a diagonal matrix.
Furthermore we have

fk = −[2t cos[k] + µ]INx
− tI+Nx

− tI−Nx
, (S2)

and

Lk = −2iα sin[k]INx
− iαI+Nx

+ iαI−Nx
, (S3)

where INx is an Nx ×Nx identity matrix and [I±Nx
]ij = δi,j±1 are also Nx ×Nx matrices.

We write H̃(k) = U†H(k)U where

U =
1− σyτ y

2
INx

+
σzτ z − σxτx

2
ĪNx

, (S4)

we have introduced an Nx ×Nx matrix whose entries are
[
ĪNx

]
nn′ = δn,Nyx+1−n′ . Then

H̃(Γ̂i) =

(
H̄(Γ̂i) 0

0 −H̄(Γ̂i)

)
, (S5)

from which we can calculate the invariant same as in the main text [55, 67]:

νQ1D =
1− sgn

[
det H̄(0) det H̄(π)

]
2

. (S6)

For example for Nx = 3 we find, with t = 1,

det H̄0,π = −
(
∆2 + (µ± 2)2

) [
∆4 − V 2

(
∆2 + (µ± 2)2

)
+
(
2− 2λ2 + µ(µ± 4)

)2
+ 2∆2

(
6 + 2λ2 + µ(µ± 4)

)]
.

(S7)
For larger Nx the expressions become rapidly rather complicated, but can be calculated numerically relatively quickly.

It is worth noting that the effective 1D chain calculated from the Green’s function and the quasi-1D system
considered here belong to different symmetry classes with different invariants, Z and Z2 respectively. In the case in
which the chiral invariant |ν| ≥ 2 one can ask what happens to the additional Majorana bound states in the quasi-1D
picture. They would become gapped on an energy scale related to the inverse transverse width of the strip. For wide
enough strips one would neglect such an effect. We note that this situation does not occur for the model we are
considering.

Impurities as a suspended chain

If the magnetic impurity sites for the chain are above the superconductor’s surface, see Fig. S1, then the system is
described by the Hamiltonian H2D +HAd where

HAd = t′
∑
r∈C

Ψ†rτ
zΦr + H.c. + U

∑
r∈C

Φ†rσ
zΦr . (S8)
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Figure S1. A schematic of the magnetic impurity sites (green atoms) above the superconducting surface (dark blue atoms).

Φr = (ar,↑, ar,↓, a
†
r,↓,−a

†
r,↑)

T, where a
(†)
r,σ annihilates (creates) an electron with spin σ =↑, ↓ at site r ∈ C. H2D is

given by (1), same as in the main text.

The effect of the extra impurity sites is to generate an effective Zeeman term on the sites directly underneath given
by V = t′2/U . One can therefore approximately map this system to H2d +Himp with V = t′2/U . To demonstrate
this we numerically diagonalized this tight-binding model and calculated the Majorana polarisation and the energy
corresponding to the lowest-energy eigenvalue, see the main text for more details. The results can be seen in Fig. S2,
where these quantities are plotted as a function of µ and V = t′

2
/U . Note that we obtain a perfect agreement to

Fig. S2.
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Figure S2. A comparison of the lowest energy state energy ε1 and its Majorana polarization C for the impurities defined as
sites above the two-dimensional lattice. Here we take λ = 0.2t, and ∆ = 0.4t. Either t′ or U are kept constant and the other
term is varied, as labelled in the figures.

Analytical result for the chain Green’s function

We start with the momentum-space Hamiltonian for the two-dimensional superconducting substrate with Rashba
spin-orbit coupling:

H2D
k = −ξτz − 2λ [sin kxσy − sin kyσx] τz −∆τx, (S9)

where ξ ≡ [µ+ 2t(cos kx + cos ky)]. In what follows we first calculate the unperturbed Green’s function of the bulk

using G0(ω,k) =
(
iω +H2D

k

)−1
. For the sake of simplicity we perform this calculation only at ω = 0. Thus we get:

G0(0,k) = −{[µ+ 2t(cos kx + cos ky)] τz + 2λ [sin kxσy − sin kyσx] τz + ∆τx}−1 (S10)

This inversion can be performed using the following identity:(
M ∆I
∆I −M

)−1
≡
(
M(M2 + ∆2I)−1 ∆(M2 + ∆2I)−1
∆(M2 + ∆2I)−1 −M(M2 + ∆2I)−1

)
, (S11)
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where we denoted

M ≡
(

ξ −2iλ(sin kx − i sin ky)
2iλ(sin kx + i sin ky) ξ

)
. (S12)

Finally, we get:

G0(0,k) = − 1

2∆

[
1

(∆− iξ)2 + 4λ2(sin2 kx + sin2 ky)

(
M− ∆−
∆− −M−

)
+

1

(∆ + iξ)2 + 4λ2(sin2 kx + sin2 ky)

(
M+ ∆+

∆+ −M+

)]
,

(S13)

where we defined:

M± =

(
ξ(∆± iξ)∓ 4iλ2(sin2 kx + sin2 ky) −2i∆λ(sin kx − i sin ky)

2i∆λ(sin kx + i sin ky) ξ(∆± iξ)∓ 4iλ2(sin2 kx + sin2 ky)

)
(S14)

∆± =

(
∆(∆± iξ) ∓2∆λ(sin kx − i sin ky)

±2∆λ(sin kx + i sin ky) ∆(∆± iξ)

)
(S15)

To calculate the line Green’s function G1(0, ky) at zero energy we need to integrate the bulk Green’s function
G0(0,k) found above over kx from −π to π. All the odd integrands in kx yield zero, and hence we are left with the
three following integrals to compute:

I±0 =

∫ π

−π

dkx
2π

1

(∆± iξ)2 + 4λ2(sin2 kx + sin2 ky)
(S16)

I±1 =

∫ π

−π

dkx
2π

cos kx

(∆± iξ)2 + 4λ2(sin2 kx + sin2 ky)
(S17)

I±2 =

∫ π

−π

dkx
2π

cos 2kx

(∆± iξ)2 + 4λ2(sin2 kx + sin2 ky)
(S18)

We note that for every integral above I+i = I−i (∆→ −∆), therefore, we can compute only I−i , where i = 0, 1, 2.

The integrations can be straightforwardly performed in the complex plane assuming z = eikx . We rewrite the
denominators of the integrands as follows:

(∆− iξ)2 + 4λ2(sin2 kx + sin2 ky) = −(t2 + λ2)

(
z +

1

z
− w+

)(
z +

1

z
− w−

)
= ? (S19)

where

w± ≡ −A±
√
A2 +B, A ≡ t(µ+ 2t cos ky + i∆)

t2 + λ2
, B ≡ 4λ2(1 + sin2 ky)− (µ+ 2t cos ky + i∆)2

t2 + λ2
. (S20)

Solving the remaining two quadratic equations, we get:

? = −(t2 + λ2) · 1

z2
(z − z1)(z − z2)(z − z3)(z − z4), z1,2 =

1

2

(
w− ∓

√
w2
− − 4

)
, z3,4 =

1

2

(
w+ ∓

√
w2

+ − 4

)
.

(S21)

A simple analysis of the roots shows that:

1) |z2,3| < 1 and |z1,4| > 1, if 2λ
√

1 + sin2 ky + µ+ 2t cos ky > 0, 2λ
√

1 + sin2 ky − (µ+ 2t cos ky) > 0 (S22)

2) |z2,4| < 1 and |z1,3| > 1, if 2λ
√

1 + sin2 ky + µ+ 2t cos ky > 0, 2λ
√

1 + sin2 ky − (µ+ 2t cos ky) < 0 (S23)

3) |z1,3| < 1 and |z2,4| > 1, if 2λ
√

1 + sin2 ky + µ+ 2t cos ky < 0, 2λ
√

1 + sin2 ky − (µ+ 2t cos ky) > 0 (S24)

This means that every integral in Eqs. (S16-S18) should be computed for three three different cases described above.
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We present the calculation below:

I−0 = − 1

t2 + λ2
1

2πi

∮
|z|=1

dz
z

Π4
i=1(z − zi)

= (S25)

1) = − 1

t2 + λ2

[
z2

(z2 − z1)(z2 − z3)(z2 − z4)
+

z3
(z3 − z1)(z3 − z2)(z3 − z4)

]
(S26)

2) = − 1

t2 + λ2

[
z2

(z2 − z1)(z2 − z3)(z2 − z4)
+

z4
(z4 − z1)(z4 − z2)(z4 − z3)

]
(S27)

3) = − 1

t2 + λ2

[
z1

(z1 − z2)(z1 − z3)(z1 − z4)
+

z3
(z3 − z1)(z3 − z2)(z3 − z4)

]
(S28)

I−1 = −1

2

1

t2 + λ2
1

2πi

∮
|z|=1

dz
z2 + 1

Π4
i=1(z − zi)

= (S29)

1) = −1

2

1

t2 + λ2

[
z22 + 1

(z2 − z1)(z2 − z3)(z2 − z4)
+

z23 + 1

(z3 − z1)(z3 − z2)(z3 − z4)

]
(S30)

2) = −1

2

1

t2 + λ2

[
z22 + 1

(z2 − z1)(z2 − z3)(z2 − z4)
+

z24 + 1

(z4 − z1)(z4 − z2)(z4 − z3)

]
(S31)

3) = −1

2

1

t2 + λ2

[
z21 + 1

(z1 − z2)(z1 − z3)(z1 − z4)
+

z23 + 1

(z3 − z1)(z3 − z2)(z3 − z4)

]
(S32)

I−2 = −1

2

1

t2 + λ2
1

2πi

∮
|z|=1

dz
z4 + 1

zΠ4
i=1(z − zi)

= (S33)

1) = −1

2

1

t2 + λ2

[
1 +

z42 + 1

z2(z2 − z1)(z2 − z3)(z2 − z4)
+

z43 + 1

z3(z3 − z1)(z3 − z2)(z3 − z4)

]
(S34)

2) = −1

2

1

t2 + λ2

[
1 +

z42 + 1

z2(z2 − z1)(z2 − z3)(z2 − z4)
+

z44 + 1

z4(z4 − z1)(z4 − z2)(z4 − z3)

]
(S35)

3) = −1

2

1

t2 + λ2

[
1 +

z41 + 1

z1(z1 − z2)(z1 − z3)(z1 − z4)
+

z43 + 1

z3(z3 − z1)(z3 − z2)(z3 − z4)

]
(S36)

The residue at z = 0 is calculated using the fact that Π4
i=1zi = 1 (consequence of the Vieta’s formula). The remaining

integrals I+0 , I
+
1 , I

+
2 can be computed by substituting ∆ → −∆ in the expressions above. Changing the sign of ∆ is

equivalent to taking complex conjugates of the roots, i.e., zi → z∗i for i = 1, 4. Therefore, I+i =
(
I−i
)∗

for i = 0, 2.

The remaining part of the calculation boils down to expressing all the integrals of the Green’s function in terms of
the three integrals discussed above. For the M± matrices we get

M11
± = M22

± = µ∆± i(µ2 + 4t2 − 4λ2) + 2t(∆± 2iµ) cos ky ± 2i(t2 + λ2) cos 2ky

+ [2t∆± 4it(µ+ 2t cos ky)] cos kx ± 2i
(
t2 + λ2

)
cos 2kx (S37)

M12
± = −2i∆λ(sin kx − i sin ky) (S38)

M21
± = +2i∆λ(sin kx + i sin ky) (S39)

Integrating the expressions above over kx, we get:

M̃11
± = M̃22

± =
[
µ∆± i(µ2 + 4t2 − 4λ2) + 2t(∆± 2iµ) cos ky ± 2i(t2 + λ2) cos 2ky

]
I±0

+ [2t∆± 4it(µ+ 2t cos ky)] I±1 ± 2i
(
t2 + λ2

)
I±2 (S40)

M̃12
± = −2∆λ sin ky · I±0 (S41)

M̃21
± = −2∆λ sin ky · I±0 (S42)
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For the ∆± matrices we get:

∆11
± = ∆22

± = ∆2 ± i∆(µ+ 2t cos ky)± 2it∆ cos kx (S43)

∆12
± = ∓2∆λ(sin kx − i sin ky) (S44)

∆21
± = ±2∆λ(sin kx + i sin ky) (S45)

Integrating the expressions above over kx, we get:

∆̃11
± = ∆̃22

± =
[
∆2 ± i∆(µ+ 2t cos ky)

]
I±0 ± 2it∆ · I±1 (S46)

∆̃12
± = ±2i∆λ sin ky · I±0 (S47)

∆̃21
± = ±2i∆λ sin ky · I±0 (S48)

Finally, we can write the integral of the Green’s function as follows:

G1(0, ky) =

π∫
−π

dkx
2π
G0(0,k) =

1

2∆

∑
σ=±

(
M̃σ ∆̃σ

∆̃σ −M̃σ

)
. (S49)


