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Abstract

Physical phenomena are commonly modeled by numerical simulators. Such
codes can take as input a high number of uncertain parameters and it is impor-
tant to identify their influences on the outputs via a Global Sensitivity Analysis
(GSA). However, these codes can be time consuming which prevents a GSA
based on the classical Sobol’ indices, requiring too many code simulations. This
is all the more true as the number of inputs is important. To address this lim-
itation, we consider recent advances in dependence measures, focusing on the
Hilbert-Schmidt independence criterion (HSIC). In this framework, this paper
proposes new goal-oriented algorithms to optimize the permuted HSIC-based
tests for screening and ranking purposes.

HSIC-based tests are built upon a sample of inputs/output of the studied
model (simulator) and relies on the estimation of a p-value under independence
hypothesis. These p-values can be estimated either by an asymptotic approxi-
mation (for large sample size) or by permutation method. However in the latter
case, a brute approach with a large number of permutations can be prohibitive
in practice, especially when the testing procedure is repeated a large number of
times. To overcome this, we propose several strategies to greedy estimate the
p-value, according to the final goal of GSA. Three sequential permuted tests
are thus proposed: screening-oriented, ranking-oriented and ranking-screening-
oriented. These algorithms are tested and compared on analytical examples.
The performances in terms of accuracy, efficiency and time saving are clearly
demonstrated. Their use is then illustrated on a nuclear engineering use case
simulating an intermediate-break loss-of-coolant accident on a pressurized water
reactor. A convergence study, made computationally tractable by the optimized
algorithms, is carried out to assess the convergence of the results, according to
the sample size.
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1. Introduction

As part of safety studies for nuclear reactors, computation codes (or nu-
merical simulators) are fundamental tools for understanding, modelling and
predicting physical phenomena. These tools can take a large number of input
parameters, characterizing the studied phenomenon or related to its physical
and numerical modelling. The information related to some of these parameters
is often limited or uncertain, this can be due to the lack or absence of data,
measurement or modelling errors, or a natural variability of the parameters.
These input parameters, and consequently the simulator output, are thus un-
certain. This is referred to as uncertainty propagation. It is therefore important
not only to consider the nominal values of the inputs, but also to take into ac-
count their uncertainties and their effects on the output. Alongside uncertainty
propagation, a sensitivity analysis can be conducted. The Sensitivity Analysis
(denoted SA) aims at determining how the variability of the input parameters
affects the value of the output or the quantity of interest [1]. It thus allows to
identify and perhaps quantify, for each input parameter or group of parameters,
its contribution to the variability of the output. In a simplified way, SA can
have two main goals:

• to prioritize input parameters by order of influence on the output variabil-
ity, this is referred to as ranking ;

• to separate the inputs into two groups: those which mostly influence the
output uncertainty and those whose influence can be neglected. This input
splitting is known as screening.

Whatever its purpose, SA results provide valuable information for the im-
pact of uncertain inputs, the comprehension of the model and the underlying
physical phenomenon. They can also be used for various purposes: reducing
uncertainties by targeting the characterization efforts on the most influential
inputs, simplifying the model by setting non-influential inputs to reference val-
ues, or validating the model with respect to the modeled phenomenon. These
issues explain the amount of recent studies on statistical tools and methods for
sensitivity analysis. One of the most commonly used SA methods in industrial
applications is based on a decomposition of the output variance [2, 3]: each term
of the decomposition represents the contribution share of an input or a group
of inputs to the output variance. As a result of this approach, Sobol’s indices
are obtained. However, these easy-to-interpret indices have several practical
drawbacks: a very costly estimate in terms of the number of code simulations
(several tens to hundreds of thousands) and partial information provided by
the variance towards to the notion of probabilistic dependence. To overcome
these limitations, other approaches based on dependence measures have recently
been proposed by [4] for GSA, then deeply studied in [5, 6] and just recently by
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[7]. The interest in these methods is explained by their theoretical and practi-
cal advantages, which are described below, and the promising results obtained
in several industrial applications. The work presented in this article focus on
the Hilbert-Schmidt Independence Criterion, denoted HSIC [8], which general-
izes the notion of covariance between two random variables and thus makes it
possible to capture a very wide spectrum of forms of dependence between the
variables. Moreover, as illustrated by [5], HSIC indices also have the advantage
of having a low estimation cost (in practice a few hundred code simulations).
HSIC-based statistical independence tests can also be built to determine in a
robust and objective way if an input is significantly influential on the output.
Thus, depending on the study case and the objectives, HSIC measures can be
used either to screen or rank inputs by order of influence on the output.

Asymptotic version [9] but also non-asymptotic one [5, 10] of HSIC-based
tests exist. The non-asymptotic extension based on permutation method makes
it possible to deal with simulation samples of smaller size (a few tens to hun-
dreds). However, some practical limitations remain in the use of permutation-
based HSIC tests. More precisely, a large number of permutations (several
thousands) is recommended to ensure the convergence of the estimated p-value
of each independence test (test of dependence between each input and the out-
put). The resulting computation cost can therefore become significant when:

• the number of inputs is large (one or more hundreds);

• the SA procedure is repeated a large number of times. For example, this
happens if the input laws are uncertain and their uncertainty is taken into
account in a second-level SA, as proposed by [11]. SA procedure can also
be repeated according to a variable parameter: for instance, if we consider
target or conditional1 SA [12, 7]. In this latter case, we may wish to vary
the threshold value;

• the HSIC-test is included in an additional outer loop of bootstrap sam-
pling, in order to take into account the sampling variance and control the
convergence according to the number of simulations (sample size).

In all these cases, a brute approach with a large number of permutations can
therefore be prohibitive, especially when the sample size is intermediate (and
not enough large to guarantee the validity of the asymptotic framework and use
asymptotic HSIC tests). To overcome this limitation, the work presented in this
paper aims at developing an efficient methodology and associated operational
tool in order to optimize the number of permutations in HSIC-based tests, with
regard to the final objective of GSA. The resulting benefit on numerical examples
and industrial applications is also illustrated and quantified.

1Target and conditional SA focus on a restricted domain of the studied phenomenon, most
often defined by exceeding a threshold value. In this framework, target SA aims at measuring
the influence of the inputs on the occurrence of the threshold being exceeded, while conditional
SA evaluates the influence of the inputs on the output within this critical domain only, ignoring
what happens outside.

3



The paper is organized as follows. In Section 2, we detail the HSIC and asso-
ciated SA measures, we also describe the HSIC-based independence tests. Sec-
tion 3 introduces the proposed methodology to optimize the number of permu-
tations and sequentially well estimate the p-values of HSIC-based independence
tests. The new proposed algorithms are then tested on analytical examples in
Section 4. Finally, in Section 5, a further application is proposed, on a use case
simulating an accidental scenario on a nuclear pressurized water reactor.

2. HSIC: General principle and use for independence test

First we introduce a few notations. Throughout the rest of this paper, the
numerical model is represented by the relation:

M : X −→ Y
X 7−→M(X) = Y,

where X = (X1, . . . , Xd)
> and Y are respectively the d uncertain inputs and

the uncertain output2, evolving in measurable spaces respectively denoted X =
×di=1Xi where Xi ⊂ R and Y ⊂ R. As part of the probabilistic approach, the
d inputs are assumed to be continuous and independent random variables with
known densities. These densities are respectively denoted pX1 , . . . , pXd

. Finally,

pX =
∏d
i=1 pXi denotes the density of the random vector X. As the modelM is

not known analytically, a direct computation of the output probability density as
well as dependence measures between X and Y is impossible. Only observations
(or realizations) ofM are available. It is therefore assumed in the following that
we have a n sample of inputs and associated outputs (X(m), Y (m))1≤m≤n where
Y (m) =M(X(m)) for m = 1, . . . , n.

2.1. HSIC definition and estimation

As mentioned in Section 1, the HSIC measure between an input Xi and the
output Y is based on a generalization of the notion of covariance between these
random variables. For this, we associate to Xi a universal Reproducing Kernel
Hilbert-Schmidt space (RKHS) Fi composed of functions mapping from Xi to R
and defined by the characteristic kernel function ki (see, e.g. [13] for a complete
bibliography on RKHS spaces). The same transformation is associated to Y ,
considering the universal RKHS G and the kernel function k. To do so, we
define a (possibly nonlinear) mapping Φi : Xi → Fi from each Xi to a feature
space Fi (and an analogous map ψ : Y → G). Each feature map is composed
of a set of feature functions Φi(x) = (φi,j(x))j and can be of finite or infinite
dimension. And the most important, the feature map is linked to the positive
definite kernel function via the following relationship:

ki(x, x
′) = 〈Φi(x),Φi(x

′)〉Fi
and k(y, y′) = 〈ψ(y), ψ(y′)〉G , (1)

2or any quantity of interest derived from the output(s).
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where 〈·, ·〉Fi and 〈·, ·〉G denote the inner scalar product over Fi and G respec-
tively. The kernels ki and k are associated uniquely with respective reproducing
kernel Hilbert spaces Fi and G. We may now define a cross-covariance between
the feature maps of Xi and Y , associated to the probability density function
pXiY of (Xi, Y ):

COV(Φi(Xi), ψ(Y )) = EXiY [Φi(Xi)⊗ ψ(Y )]− EXi
[Φi(Xi)]⊗ EY [ψ(Y )]

where ⊗ denotes the tensor product. Then, the crossed-covariance operator
CXiY [.] generalizes the notion of covariance between Xi and Y . Finally, the
HSIC is defined as the Hilbert-Schmidt norm of the operator CXiY (as demon-
strated in [14]):

||CXiY ||HS =
∑
l,m

|〈 ul, CXiY [vm]〉Fi |2,

where (ul)l≥0 and (vm)m≥0 are orthonormal bases of, respectively, Fi and G.
Thanks to the kernel trick, [8] show that the HSIC measure can be written, in
an equivalent manner, using expected values of kernels:

HSICFi,G(Xi, Y ) =E[ki(Xi, X
′
i)k(Y, Y ′)] + E[ki(Xi, X

′
i)]E[k(Y, Y ′)]

− 2E[E[ki(Xi, X
′
i)|Xi]E[k(Y, Y ′)|Y ]],

where (X ′i, Y
′) is an independent and identically distributed (iid) copy of (Xi, Y ).

Note that the dependence on RKHS Fi,G is often omitted, as in the following,
to adopt the simplified notation HSIC(Xi, Y ). We note that the nullity of this
measure is not always equivalent to the independence between Xi and Y . This
propriety depends on the RKHS associated to Xi and Y . In particular, it has
been proven that when the kernels ki and k belong to the specific class of char-
acteristic kernels then,

HSIC(Xi, Y ) = 0⇐⇒ Xi ⊥⊥ Y, (2)

⊥⊥ meaning that Xi and Y are independent (see, e.g. [15, 16] for a detailed
overview on the subject).

For GSA purposes, the nullity of the measure indicates that Xi does not in-
fluence Y . This property is crucial for testing dependence, as it will be described
in Section 2.2. A most commonly used characteristic kernel for real variable is
the Gaussian kernel which is defined for a pair of variables (z, z′) ∈ Rq ×Rq by:

`λ(z, z′) = exp(−λ||z− z′||22),

where λ is the bandwidth parameter of the kernel `λ and ||.||2 is the Euclidean
norm in Rq. Usually, one uses in practice λ = 1/σ2 with σ2 being the empirical
variance of the sample of the considered variable Z.

To conclude on HSIC, it remains to deal with its estimation in practice. From

a n-sample (X
(m)
i , Y (m))1≤m≤n of (Xi, Y ), The V-estimator of the measure

HSIC is proposed in [8]:

ĤSIC(Xi, Y ) =
1

n2
Tr(LiHLH), (3)
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where the Gram matrices Li and L are defined by Li = (ki(X
(l)
i , X

(m)
i ))1≤l,m≤n

and L = (k(Y (l), Y (m)))1≤l,m≤n, and H = (δlm − 1/n)1≤l,m≤n, with δlm is the
Kronecker operator.

Remark 1. Several methods based on the use of HSIC measures are developed
for GSA. For ranking purpose, [4] defines normalized sensitivity indices. These
indices classify the inputs X1, . . . , Xd by order of influence on the output Y .
They are defined for all i ∈ {1, . . . , d} by:

R2
HSIC,i =

HSIC(Xi, Y )√
HSIC(Xi, Xi)

√
HSIC(Y, Y )

. (4)

Thanks to the property given by Eq. (2) with characteristics kernels, in-
dependence tests can be built upon HSIC and offer a mathematical rigorous
framework for GSA screening, as described in the next section.

2.2. Statistical independence tests based on HSIC: asymptotic and non-asymptotic
versions

In a screening context, the objective is to separate the input parameters
into two sub-groups, the significant ones and the non-significant ones. For this,
HSIC can be used to conduct a statistical hypothesis test. For a given input
Xi, it aims at testing the null hypothesis ”(Hi0): Xi and Y are independent”,
against, its alternative ”(Hi1): Xi and Y are dependent”. Since the nullity of
HSIC (with characteristic kernels) is equivalent to the independence between X
and Y , testing independence is equivalent to test:

(Hi0) : HSIC(Xi, Y ) = 0 versus (Hi1) : HSIC(Xi, Y ) > 0.

The statistic estimator T̂i = n × ĤSIC(Xi, Y ) is then a natural choice to test
independence between Xi and Y . The probability of being wrong under the null
hypothesis (Hi0) is generally called first-kind error or level of test3 and denoted
α. Theoretical and practical control of the level of independence tests is possible
and generally set at a threshold of 5% or 10%. By contrast, there is currently
no theoretical or practical control of the second-kind error.

The test can be defined in an equivalent way using the p-value which is
defined as the probability that, under (Hi0), the test statistic (in this case,

T̂i) is greater than or equal to the observed value on the data T̂i,obs = n ×
ĤSIC(Xi, Y )obs. Therefore, the p-value is defined by:

pval,i = P(Hi
0)

(T̂i ≥ T̂i,obs).

Finally, the null hypothesis Hi0 is rejected if pval,i < α, which means here that
the input Xi is significantly influential.

3Rigorously, the level of the test is an upper bound of the first-kind error.
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To carry out the test, it remains to compute pval,i under Hi0. Unfortunately,

the law of the statistic T̂i under Hi0 is not theoretically known and its estimation
depends on the framework in which we are placed. Under asymptotic conver-
gence (i.e., when n is sufficiently large), [9] have proved that the asymptotic law

of the T̂i estimator can be approached by a Gamma distribution.
Outside the asymptotic framework, i.e., when n is rather small (e.g., lower

than thousand), the Gamma approximation cannot be used anymore. In this
case, non-asymptotic versions of the tests [5, 10] based on permutation-method
offers a suitable and relevant alternative. For this, B independent and uni-
formly distributed random permutations Y[1], . . . ,Y[B] of the output sample

Y = {Y (1), . . . , Y (n)} are generated. The initial input sample Xi where Xi =

{X(1)
i , . . . , X

(n)
i } is associated to each Y[b] with b ∈ {1, . . . , B}:

X
(1)
i Y (1)

...
...

X
(n)
i Y (n)

→
(

X
(1)
i Y

(1)
[b]

...
...

X
(n)
i Y

(n)
[b]


)
.

By doing so, B iid n-size samples ((Xi,Y[b])1≤b≤B) of (Xi, Y ) under the inde-
pendence hypothesis (Hi0) are simulated. Then, the HSIC is computed for each
n-size sample (Xi,Y[b]). A sample of iid realisations of the HSIC under (Hi0) is
obtained and the p-value can be estimated by the empirical estimator (Monte-
Carlo approximation). The resulting permutation-based test is summarized by
Algorithm 1. More details and demonstration of test properties are available in
[10]. This permuted test with Monte Carlo approximation of p-value is demon-
strated to be of prescribed non-asymptotic level α.

Algorithm 1 – Permutation-based independence test (for each Xi)

Require: The learning sample (Xi,Y) of n inputs/outputs

{(X(1)
i , Y (1)), . . . , (X

(n)
i , Y (n))}, B and α

1: Compute ĤSICobs(Xi, Y ) from Eq. (3)
2: Generate B permutation-based samples

(
Xi,Y[b]

)
1 ≤ b ≤B

3: Compute the B permutation-based estimators
(

ĤSICb(Xi, Y )
)
1 ≤ b ≤B

by

replacing Y by Y[b] in Eq. (3)
4: Estimate the p-value by Monte-Carlo estimator:

p̂Bval,i =
1

B

B∑
b=1

1
ĤSICb(Xi,Y )>ĤSICobs(Xi,Y )

5: if p̂Bval,i < α then

6: return reject (Hi0)
7: else
8: return accept (Hi0)
9: end if
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Therefore, HSIC can be used, through the associated independence test, for
screening purpose. By controlling the level of the test α, the test provides a
more robust and objective interpretation of HSIC values in order to conclude
on the significant influence of an input. Moreover, beyond allowing a decision
for screening purpose, the estimated p-value can also be used for ranking pur-
pose. The p-value can be viewed as an indicator of the likelihood of the observed
statistics under (Hi0). The lower the p-value, the stronger (Hi0) is rejected and
the higher the influence of the input. Consequently, under the assumption that
the same RKHS is used for all the inputs, HSIC-test p-values can be compared:
the inputs can be ordered according to the estimated p-value. This approach
has notably been used by [12] for a preliminary screening and ranking before
building a metamodel.

As discussed in the previous subsection, the p-value of HSIC statistics can
be estimated either by permutation or, in an asymptotic framework, by the ap-
proximation of the HSIC distribution with a Gamma law. In practice, it is often
difficult to know if we are in the asymptotic framework and if the law conver-
gence is ensured. These hypotheses are perfectly acceptable when the sample
size n is higher than several thousands but it is really more questionable when
n is equal to few hundred or one or two thousands. In this latter case, it seems
more reasonable to apply permutation-based tests. However, the estimation of
the p-value mainly depends on the number of permutations B. Even if the es-
timator is unbiased, its variance (and therefore its mean square error) depends
on B. One solution can consist in considering systematically a very large value
of B, e.g. B = 5000, to ensure convergence of the estimated p-value of each
independence test between each input and the output. Since the computational
complexity of each HSIC estimation is O(n2), the total resulting computation
cost for d inputs is O(dBn2) and can therefore become significant when the
number of inputs d is large. All the more so if the procedure is repeated a large
number of times, as in the situations listed in Section 1 (large number of inputs,
several SA, call in a bootstrap outer loop, etc.). A brute approach with a large
number of permutations can therefore be prohibitive.

To overcome this problem, it is relevant to optimize the number of permuta-
tions for each estimated p-value to ensure a given convergence at a lower cost.
The objective of the next section is to propose new algorithms for sequentially
estimating the p-values, according to the GSA purpose.

3. Sequential permutation-based test

The permutation tests based on dependence measures presented in Section
2.2 are efficient tools for the selection of the influential input variables. However,
they are considerably depending on the prior choice of the number of permu-
tations B: a too low B does not allow sufficient convergence of p-value (and
conclusion of the test) to be achieved. To get more general results on conver-
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gence, let’s go back to the formula of the p-value permutation-based estimator:

p̂Bval,i =
1

B

B∑
b=1

1
ĤSICb(Xi,Y )>ĤSICobs(Xi,Y )

.

It can be shown that p̂Bval,i is an unbiased estimator of the p-value pval,i, since
permutations are independent (see [10] for demonstration). The law of large
numbers ensures that pBval,i will converge to pval,i as B grows. The remaining
question is how fast. The answer lies in the variance of the estimator which is:

VAR(p̂Bval,i) =
1

B
pval,i (1− pval,i).

The exact value of pval,i is actually not known. Anyway, considering a target
coefficient of variation, we can estimate how many permutations are needed to
compute a given probability pval,i within some prescribed accuracy. Indeed the
coefficient of variation may be cast as:

δ =

√
1
B pval,i(1− pval,i)

pval,i
=

√
1− pval,i
Bpval,i

.

From this relationship, one can conversely find the number of permutations
required for a given probability and coefficient of variation

B =
1− pval,i
δ2pval,i

.

For instance, if we look for a p-value close to 5% (which corresponds to the
usual level of the test) with a coefficient of variation of 5%, we would need ap-
proximately 7600 permutations. This can be hardly tractable even if each HSIC
measure is relatively cheap to calculate (all the more so when the procedure is
repeated). Consequently, it would be of great interest to have sequential process
to control the convergence of the p-value estimation with regard to its interpre-
tation for screening and ranking purposes, with the ultimate goal of optimizing
the required number of permutations. Indeed, the decision whether or not to
reject the hypothesis of independence can be made on the basis of the history
of the estimate. Thus, based on the stagnation of this estimate, a decision can
be taken much earlier. The same approach can be implemented for the ranking
of the inputs. It is therefore not necessary to obtain a great precision on all
the estimated p-values to converge on the screening or ranking results. Conse-
quently, we propose in the following several approaches in order to well estimate
the p-value with a reasonable number of permutations, according to the GSA
purposes. In addition, this sequential estimation makes it possible to study
and control in practice the convergence of the permutation-based estimation of
p-values.
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3.1. Stopping criterion based on screening

The sequentiality of the proposed estimation methods of the p-values leads
us to define a stopping criterion. The first proposed approach relies on the
quantity of interest eBi defined, for each input, by the test decision (screening
decision):

eBi = 1p̂Bval,i<α
, (5)

where p̂Bval,i = 1
B

∑B
b=1 1ĤSICb(Xi,Y )>ĤSICobs(Xi,Y )

. The first stopping criterion

is based (for each input) on the stagnation of eBi given by the following relation:

∀k ∈ {1, . . . , l0} , eBi = eB−ki . (6)

It ensures that the p-values are well estimated since the decision is unchanged
during the l0 previous steps. This first approach can be summarized by Algo-
rithm 2.

In addition to the learning sample and the level of the test (α), the algorithm
requires the specific following parameters: an initial and final number of permu-
tations (Bstart and Bfinal respectively), a number of permutations to be added
to each iteration (Bbatch) and a convergence parameter lo which guarantees the
stability of the estimate. Concerning the step 10 of Algorithm 2, for iteration j
in the while loop, we update the estimation of the p-values using the previous

estimate p
Bstart+(j−1)Bbatch

val,i and the new batch of Bbatch permutation-samples.

3.2. Stopping criterion based on ranking

The second criterion is based on the ranking of the inputs according to their
p-values. For this, we define the rank vector given by

rB = rank
(
(p̂Bval,i)

>
i=1:d

)
, (7)

where rank(.) is the ranking function. More precisely, rB is a permutation
on the set {1, . . . , d}, which verifies that rB(k) = i if and only if the variable
Xi is the k-th in the ranking. The second stopping criterion is based on the
stagnation of the ranking, i.e. rB , and is given by:

∀k ∈ {1, . . . , l0} , rB = rB−k. (8)

This second approach is summarized by Algorithm 3.

3.3. Stopping criterion based on both ranking and screening

Finally, the third criterion consists in checking the two previous ones in order
to guarantee a good ordering and a good screening. The algorithm is similar to
Algorithm 3 but with the following stopping criterion (step 10 of Algorithm 3):

SB =

l0∏
k=0

(
1rB−k= rB

d∏
i=1

1eB−k
i = eBi

)
(9)

with rB and eBi defined by Eq. (5) and Eq. (7) respectively. It should be
noted that this criterion, more demanding to be satisfied, may require more
permutations. This third approach will be denoted Algorithm 4.
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Algorithm 2 – Screening-oriented sequential permutation-based independence
test (for each Xi)

Require: The n-size learning sample (Xi,Y), Bstart, Bfinal, Bbatch, lo and α

1: Compute ĤSICobs(Xi, Y ) from Eq. (3)
2: B ←− Bstart
3: Generate B permutation-based samples

(
Xi,Y[b]

)
1 ≤ b ≤B

4: Compute the B permutation-based estimators
(

ĤSICb(Xi, Y )
)
1 ≤ b ≤B

by

replacing Y by Y[b] in Eq. (3)
5: Estimate the p-value by Monte-Carlo estimator:

p̂Bval,i =
1

B

B∑
b=1

1
ĤSICb(Xi,Y )>ĤSICobs(Xi,Y )

6: Compute the stopping criterion: SBi =

l0∏
k=1

1eB−k
i = eBi

with eBi defined by

Eq. (5)
7: while (SBi = 0 and B ≤ Bfinal) do
8: Add a new Bbatch iid permutation-based samples to the existing B sam-

plings
9: B ←− B +Bbatch

10: Update the p-value estimate p̂Bval,i and stopping criterion SBi
11: end while

12: if p̂Bval,i < α then

13: return reject (Hi0)
14: else
15: return accept (Hi0)
16: end if

4. Numerical experiments and practical recommendations

4.1. Numerical experiments

In this section, the efficiency of the proposed algorithms is first assessed on
two numerical examples well-known from the sensitivity analysis community.
The first one is the G-Sobol function which is defined in dimension d = 8 and
given by:

M1(X) =

8∏
i=1

|4Xi − 2|+ ai
1 + ai

, (10)

where ∀i = 1, . . . , d, ai = i−2
2 and the inputs X1, . . . , X8 are independent ran-

dom variables, following a uniform distribution over [0, 1]. The second analytical
model is the Ishigami function defined in dimension d = 3 by:

M2(X) = sin(X1) + 5 sin(X2) + 0.1X4
3 sin(X1), (11)
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Algorithm 3 – Ranking-oriented sequential permutation-based independence
test, dealing with all inputs {X1, . . . , Xd} simultaneously

Require: The n-size learning sample (X1, . . . ,Xd,Y), Bstart, Bfinal, Bbatch,
lo and α

1: for i = 1 to d do
2: Compute ĤSICobs(Xi, Y ) from Eq. (3)
3: end for

4: B ←− Bstart
5: Generate B permutation-based samples

(
X1, . . . ,Xd,Y[b]

)
1 ≤ b ≤B

6: for i = 1 to d do
7: Compute the B permutation-based estimators

(
ĤSICb(Xi, Y )

)
1 ≤ b ≤B

by replacing Y by Y[b] in Eq. (3)
8: Estimate the p-value by Monte-Carlo estimator:

p̂Bval,i =
1

B

B∑
b=1

1
ĤSICb(Xi,Y )>ĤSICobs(Xi,Y )

9: end for

10: Compute the stopping criterion: SB =

l0∏
k=1

1rB−k= rB with rB defined by

Eq. (7)
11: while (SBi = 0 and B ≤ Bfinal) do
12: Add a new Bbatch iid permutation-based samples to the existing B sam-

plings
13: B ←− B +Bbatch
14: Update the p-value estimate p̂Bval,i and stopping criterion SBi
15: end while

16: if p̂Bval,i < α then

17: return reject (Hi0)
18: else
19: return accept (Hi0)
20: end if

Algorithm 4 – Ranking-Screening-oriented sequential permutation-based in-
dependence test (for {X1, . . . , Xd})

Algorithm 3 with SB =

l0∏
k=1

(
1rB−k= rB

d∏
i=1

1eB−k
i = eBi

)
with rB and eBi de-

fined by Eq. (5) and Eq. (7) respectively

where all inputs X1, X2 and X3 are independent and uniformly distributed over
[−π, π].

To highlight the performance of the proposed algorithms, we generate 100
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iid samples of inputs/output and compare the obtained results to the reference
permutation-based test (Algorithm 1) performed with B = 7600. Note that
the whole computational aspect is carried out in the R4 environment. We rely
on the function sensiHSIC from the R sensitivity package to run the algo-
rithms 1 to 4. The internal parameters of the sequential algorithms are set to
Bstart = 100, Bfinal = 10000 and Bbatch = 100 and l0 = 200. Note that the
value of parameter l0, which guarantees the stability of the estimate and avoids
premature stops, will be discussed in Section 4.2. The number of permutations
for Algorithm 1 is B = 7600. A level α = 5% is set for all algorithms.

Table 1 supplies, for the two analytical models, the percentage of ranking
and/or screening similar to the reference method, according to the objective
of the algorithm (screening and/or ranking). More precisely, for Algorithm 2,
the percentage is the one of good screening, i.e. the percentage of times where
Algorithm 2 selects the same groups of influential and non-influential inputs as
the reference test (Algorithm 1). For Algorithm 3, the percentage is the one of
good ranking, i.e. the percentage of times where Algorithm 3 orders the inputs
in the same way as the reference test. Finally, for Algorithm 4, it corresponds
to the percentage of times where both screening and ranking results are similar.
From this table, we note that the proposed Algorithms 2, 3 and 4 succeed very
well in providing the same screening and/or ranking results as the reference
algorithm, while significantly reducing the number of permutations. Indeed,
the mean number of permutations required to reach each stopping criterion
(written in brackets in Table 1) indicates that, in average:

• for the G-Sobol function, around B = 300 and B = 700 permutations are
required to find the screening and ranking results, respectively (regardless
of n);

• for the Ishighami function, around B = 300 are required for both targets,

against, as we recall, B = 7600 here for the reference algorithm. Again, we
note that Algorithm 4 needs more permutations to satisfy both conditions, this
increase obviously depending on the model.

Figures 1 and 2 illustrates on a single sample of size n = 200 the sequential
estimation of p-values for the G-Sobol M1 and Ishigami models M2 respec-
tively. The vertical lines indicate where the algorithms stop the estimation. For
Algorithm 2 and the two models, process stops at B = 300 for all the inputs:
this corresponds to two iterations of the algorithm (since Bbatch = 100). More
iterations are necessary for Algorithm 3 and Algorithm 4: four and one more
iteration for M1 and M2, receptively. We note that for this particular exam-
ple (model and sample), both algorithms stop at the same iteration. It is also
recalled that, in general, it is not guaranteed to obtain a screening result with

4Language and opensource environment for statistical calculation and data analysis, avail-
able on the CRAN website (Comprehensive R Archive Network) : https://cran.r-project.

org/.
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Algorithm 3, similar to that of the reference solution, since Algorithm 3 is only
based on ranking.

M1 n = 20 n = 50 n = 70 n = 100 n = 150 n = 200
Algorithm 2 100 (306) 100 (308) 100 (307) 100 (307) 100 (303) 100 (304)
Algorithm 3 98 (659) 98 (639) 100 (635) 99 (631) 100 (599) 100 (607)
Algorithm 4 100 (753) 100 (675) 100 (713) 100 (707) 100 (609) 100 (659)

M2 n = 20 n = 50 n = 70 n = 100 n = 150 n = 200
Algorithm 2 100 (306) 100 (303) 100 (303) 100 (303) 100 (301) 100 (301)
Algorithm 3 100 (331) 100 (323) 100 (313) 100 (301) 100 (299) 100 (299)
Algorithm 4 100 (383) 100 (343) 100 (341) 100 (301) 100 (327) 100 (335)

Table 1: G-Sobol function M1 (top) and Ishigami function M2 (bottom) – Percentage of
similar screening and/or ranking obtained with sequential algorithms, compared to the results
obtained from the simple permutation-based algorithm (Algorithm 1), for different sample
sizes and with a level α = 5% for all the tests. Written in brackets is the mean number of
permutations required to reach the stopping criterion.

Figure 1: G-Sobol function M1 – Sequential estimation of the p-values according to the
number of permutations B, for a given sample of n = 200 simulations (the vertical lines of
Algorithm 3 and 4 overlap).

4.2. Sensitivity to the parameter l0

Among the parameters of the proposed sequential algorithms, the parameter
l0 is of major importance. Indeed, this parameter is used to check the stability
of the estimate. If it is too small, there is a risk of stopping the estimate while
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Figure 2: Ishighami function M2 – Sequential estimation of the p-values according to the
number of permutations B, for a given sample of n = 200 simulations (the vertical lines of
Algorithm 3 and 4 overlap).

convergence is not yet ensured. On the contrary, the greater its value, the
less the gain in terms of reduction of the number of permutations B. From a
practical point of view and based on our experience, we can recommend to set
l0 = 200, to ensure both a good ranking and a good screening while significantly
optimize B. However, it is relevant to check the sensitivity of the algorithm to
this parameter. For this, we consider the analytical model M1 and vary the
parameter l0 ∈ {50, 100}. The other parameters Bstart, Bfinal, Bbatch and α
remain unchanged. The percentage of similar ranking and/or screening to the
reference test is given by Table 2 (similar protocol to Table 1). Two remarks can
be made. The first one is that Algorithm 2 is not sensitive (for this model) to the
parameter l0, since we can correctly classify the inputs even with a value set to
50. The second is that the other two algorithms lose efficiency for low l0 values
(l0 = 50); a value of l0 = 100 is at least necessary and l0 = 200 offers a good
compromise between a good performance guarantee and an optimal procedure.
Same behaviours and remarks, not described here for the sake of brevity, are
observed for M2.

5. Application on IBLOCA accidental use

To finish illustrating the practical benefit of the methodology, we consider
here an accidental scenario on a Pressurized Water Reactor (PWR), namely the
loss of primary coolant accident due to intermediate break described in [17]. A
simple HSIC-based GSA was performed by [17] in order to identify the non-
influential inputs and rank the influential ones. This screening and ranking step
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l0 = 50 n = 20 n = 50 n = 70 n = 100 n = 150 n = 200

Algorithm 2 98 (202) 99 (202) 100 (201) 100 (201) 100 (201) 100 (200)

Algorithm 3 61 (295) 63 (259) 66 (273) 68 (275) 65 (256) 61 (265)

Algorithm 4 65 (328) 67 (281) 70 (280) 72 (279) 64 (267) 69 (290)

l0 = 100 n = 20 n = 50 n = 70 n = 100 n = 150 n = 200

Algorithm 2 99 (203) 99 (204) 100 (203) 100 (204) 100 (202) 100 (202)

Algorithm 3 94 (289) 95 (335) 92 (369) 90 (357) 95 (357) 98 (349)

Algorithm 4 95 (478) 97 (389) 93 (421) 98 (388) 94 (383) 98 (369)

l0 = 200 n = 20 n = 50 n = 70 n = 100 n = 150 n = 200

Algorithm 2 100 (306) 100 (308) 100 (307) 100 (307) 100 (303) 100 (304)

Algorithm 3 98 (659) 98 (639) 100 (635) 99 (631) 100 (599) 100 (607)

Algorithm 4 100 (753) 100 (675) 100 (713) 100 (707) 100 (609) 100 (659)

Table 2: G-Sobol function M1 – Percentage of similar screening and/or ranking obtained with
sequential algorithms, compared to the results obtained from the simple permutation-based
algorithm, for different sample sizes and different parameters l0. Written in brackets is the
mean number of permutations required to reach the stopping criterion.

was preliminary to the building of a metamodel for the final estimation of high-
order quantiles of the output. In the following, we apply on this use-case our
sequential methodology for screening and ranking with permuted HSIC-based
independence tests.

5.1. Brief description of the use case

In support of regulatory work and nuclear power plant design and opera-
tion, safety analysis considers the so-called ”Loss Of Coolant Accident” which
takes into account a double-ended guillotine break with a specific size piping
rupture. The numerical model is based on code CATHARE2 (V2.5 3mod3.1)
which simulates the time evolution of physical quantities during a thermal-
hydraulic transient. The model used is representative of an Intermediate Break
Loss Of Coolant Accident (IBLOCA) [18]. The simulated accidental transient is
an IBLOCA with a break on the cold leg and no safety injection on the broken
leg (see [17] for more details). In this use-case, d = 27 scalar input variables
of CATHARE2 code are uncertain. These inputs listed in Table 3 correspond
to various system parameters. Within a probabilistic approach, the uncertainty
on the 27 inputs is defined by probability density functions (pdf), which can be
uniform, log-uniform, normal or log-normal. The output variable of interest is
a single scalar which is the maximal peak cladding temperature (PCT) during
the accident transient.

5.2. Results of global sensitivity analysis

As detailed in [17], a sample of n = 500 CATHARE2 simulations is available
built from a Latin Hypercube Design and following the prior distributions of
inputs defined in Table 3. The histogram of the obtained values for the output
of interest, namely the PCT, is given by Figure 3 (temperature is in ◦C). A
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Type of inputs Inputs pdfa Physical models

Heat transfer X1 N Departure from nucleate boiling
in the core X2 U Minimum film stable temperature

X3 LN HTCb for steam convection
X4 LN Wall-fluid HTC
X5 N HTC for film boiling

Heat transfer in the X6 LU HTC forced wall-steam convection
steam generators U-tube X7 N Liquid-interface HTC for film condensation

Wall-steam friction X8 LU
in the core

Interfacial friction X9 LN Steam generator outlet plena and crossover
legs together

X10 LN Hot legs (horizontal part)
X11 LN Bend of the hot legs
X12 LN Steam generator inlet plena
X13 LN Downcomer
X14 LN Core
X15 LN Upper plenum
X16 LN Lower plenum
X17 LN Upper head

Condensation X18 LN Downcomer
X19 U Cold leg (intact)
X20 U Cold leg (broken)
X27 U Jet

Break flow X21 LN Flashing (undersaturated)
X22 N Wall-liquid friction (undersaturated)
X23 N Flashing delay (undersaturated)
X24 LN Flashing (saturated)
X25 N Wall-liquid friction (saturated)
X26 LN Global interfacial friction (saturated)

aU , LU , N and LN respectively stands for uniform, log-uniform, normal and log-normal
probability distributions.

bHeat Transfer Coefficient.

Table 3: IBLOCA test case – List of the 27 uncertain input parameters, associated pdf and
physical models in CATHARE2 code.

kernel density estimator of the data is also added on the plot to provide an
estimator of the probability density function.

The first analysis consists in highlighting the performance of the sequential-
permutation based test for a screening purpose. To do so, we compare the
result obtained by Algorithm 2 to the reference solution given by the simple
permutation-based test (Algorithm 1). Parameters of Algorithm 2 are set to
Bstart = 100, Bfinal = 10000, Bbatch = 100 and lo = 200. Algorithm 1 is
performed with B = 4000 and a level α = 5% is set for all the algorithms.

Figure 4 shows the sequential estimation of the p-values according to the
number of permutations. The p-values estimated at the end of the sequential
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Figure 3: IBLOCA test case – Histogram of the PCT output from the sample of size n = 500.

process are also given by Table 4. The level of the independence tests is still set
at α = 5%. The analysis of results (similar to those in [17]) shows a group of 8 in-
fluential variables (X2, X9, X10, X12, X13, X14, X15, X21) and another group of
19 non-influential. Same classification is obtained with the optimized algorithm
and the reference one, but with a much smaller total number of permutations:
around 8500 (300×26+700) for Algorithm 2 against 108000 (4000×27) for the
basic algorithm. The observation of convergence for Algorithm 2 shows that the
number of permutations could have been further reduced for most variables by
reducing Bstart, Bbatch and/or l0. Moreover, a level set to α = 10% could have
reduced this number since the estimated p-value of X6 is located around the
decision threshold α = 5% (number of permutation increased by the stabiliza-
tion of X6 p-value above the threshold). Note that, in a safety framework, it is
recommended to keep an input variable with a p-value as close to the decision
threshold.

Inputs X2 X9 X10 X12 X14 X15 X21 X13 X6

p̂val, Algo 2 0 0 0 0 0 0 3.10−3 0.019 0.054

p̂val, Algo 1 0 5.10−4 0 0 0 4.10−3 1.10−3 0.021 0.050

Table 4: IBLOCA test case – P-values estimated by Algorithms 1 and 2 for the influential
inputs.

The second analysis consists in checking the performance of Algorithm 4
for screening and ranking. Figure 5 shows the sequential estimation of the
p-values and the rank of the inputs variables. As shown in this figure, this
is mainly driven by the discrimination between non-influential inputs, such as
X8 and X11 p-values curves or X8 and X26. We notice that the number of
permutations is increased to B = 1400 to guarantee the convergence of both
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Figure 4: IBLOCA test case – Sequential estimation of p-values by Algorithm 2 (screening),
according to the number of permutations.

criteria simultaneously (around a total of 37800 permutations). We also remark
that all variables are similarly ranked except for X8 and X11 (indicated by circles
in Figure 5). We also notice that some very influential variables share the same
place in the ranking (rectangle in Figure 5), this is due to the zero values of
p-values estimates.

Remark 2. When the dependence on several variables is very strong, the es-
timated p-values are zero. More precisely, the observed HSIC for two very in-
fluential inputs are very far in the distribution tail of HSIC statistics under in-
dependence. This occur when dependence of both inputs is clearly and strongly
detected, this happening all the more as sample size is large. Consequently in
that case, it is no possible to rank the variables with p-values and R2

HSIC (Eq
(4)) can then be used in addition for ranking.

From a physical interpretation point of view, we notice the predominant in-
fluence of the interfacial friction coefficient in the horizontal part of the hot legs
(X10) and the interfacial friction coefficient in the steam generator inlet plena
(X12). As explained in [17], larger values of X10 in the horizontal part of the hot
legs lead to larger PCT. This can be explained by the increase of vapor which
brings the liquid in the horizontal part of hot legs, leading to a reduction of the
liquid water return from the rising part of the U-tubes of the steam generator to
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the core (through the hot branches and the upper plenum). Since the amount of
liquid water available to the core cooling is reduced, higher PCT are observed.
For X12, its higher values lead to a greater supply (by the vapor) of liquid pos-
sibly stored in the water plena to the rest of the primary loops (then lower PCT).

Figure 5: IBLOCA test case – Top: Sequential estimation of p-values by Algorithm 4 (screen-
ing + ranking), according to the number of permutations. Bottom: Rank of the inputs based
on the p-values estimated by Algorithm 4.
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The previous study was carried out on a learning sample of size n = 500
and some decision-making still seems indecisive, such as the classification as
influential or not of the variable X6. In addition, it is relevant to conduct
convergence studies (according to n) in order to take into account the sampling
uncertainties, and assess the stability and convergence of GSA results. For this,
we will consider a bootstrap-based approach which is made tractable thanks
to our optimized algorithms. More precisely, for different sample sizes n ∈
{100, 200, 300, 400, 500}, 100 n-size random samples are randomly drawn with
replacement from the original data set. Then, for each sample thus generated,
Algorithm 2 (screening) is performed and we store if the variable is selected
or not. Figure 6 shows the selection rate of each variable as influential, as a
function of the sample size n. The inputs variables can be classified into 2
groups:

• those that are detected as influential (X2, X10, X12 or X21, e.g.) or not
(X3, X4, X11 or X16, e.g.) very quickly, with a high rate, even for small
sample sizes. Remember that the levels of independence tests (error or
first order) is set at 5%, it is therefore normal to have detection cases as
influential even for non-influential variables;

• a second group of variables (X9, X13, X14, X15, e.g.) whose detection is
more indecisive, significantly more variable for smaller n, and even not yet
converged for n = 500. In particular, this is the case of X6 where the trend
of increasing detection rates suggests that this variable could be detected
as significantly influential with more data. In a context of reduction of
variables for a safety study, this reinforces the idea already mentioned to
keep this variable.

Same convergence studies could also be done for ranking (or screening-ranking)
results. Generally speaking, such a convergence study also makes it possible
to assess whether a dependence is easy to detect or not, this very probably
depending on the global or more local nature of the dependence.

From a computational point of view, thanks to our optimized algorithms
this study could be carried out within a reasonable time. Indeed, if we look for
a probability close to the level set (fixed at 5%) with a coefficient of variation
of 5%, we would need hours to perform this study, as detailed in Table 5 for a
Intel 2,3 GHz processor.

Sample size (n) 100 200 300 400 500
Algorithm 1 0.61 1.97 4.52 8.42 13.74
Algorithm 2 0.05 0.17 0.35 0.54 0.85

Table 5: IBLOCA test case – Running time (in hours) for a Intel 2,3 GHz processor.

This application clearly shows the gain in number of permutations, while
preserving the accuracy of the results in terms of screening, ranking or both.
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Figure 6: IBLOCA test case – Selection rate of inputs as influential, according to the sample
size n.

In addition, confidence in the results obtained is also significantly increased
by checking the convergence of the estimated p-values. Finally, accelerating
the algorithm by optimizing permutations makes an external bootstrap loop
computationally tractable: convergence studies can be performed to evaluate
the convergence of results, according to the sample size.

6. Conclusion

In this paper, new goal-oriented algorithms were proposed to perform inde-
pendence tests with HSIC for screening and ranking purposes in the context of
global sensitivity analysis of numerical simulators. More precisely, we proposed
an efficient methodology and associated operational tool in order to optimize
the number of permutations in permuted HSIC-based tests. Resulting optimized
tests can be applied whatever the size of sample and the number of inputs. We
also quantified the resulting benefit on numerical examples and industrial ap-
plication.

The permutation-tests based on HSIC are efficient and relevant statistical
tools to identify which inputs significantly impact the output value and also to
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rank the inputs by order influence on the output. These tests are built upon
a n-size sample of inputs/output and rely on the estimation of a p-value under
independence hypothesis. These p-values can be estimated either by permuta-
tion method which makes it possible to deal with simulation samples of smaller
size (a few tens to one or two thousands). However, a brute (or blind) approach
performed with a large number of permutations, which ensures convergence of
the estimated p-value, can be prohibitive in practice when the testing procedure
is repeated a large number of times. To overcome this, several strategies have
been proposed to estimate this quantity in a greedy fashion, according to the
final goal: screening-oriented, ranking-oriented and ranking-screening-oriented
sequential permuted tests. These algorithms save a significant number of per-
mutations and computation time (in practice, up to more than a factor 10,
according to the model and the controlled criterion).

In addition to their dedicated tasks, there is a rich field of applications
where our optimized procedures for permuted tests will be of great benefit. For
example, practitioners may be interested in taking into account the sampling
uncertainty and control the convergence according to the number of simulations
in the hypothesis testing. For this, an outer loop based on bootstrap process
could be used to compute confidence intervals for the p-values. Therefore, this
kind of study will require a lot of permutations and such goal-oriented sequential
approaches will be very useful.

Other variants of these algorithms could be envisaged according to the ob-
jectives of the sensitivity analysis and our algorithms can easily be adapted.
For instance, the third algorithm can be adapted to screen the non-influential
variables and rank only the influential variables, the order of the non-influential
being not relevant.
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