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ARTICLE OPEN

The fate of Si and Fe while nuclear glass alters with steel and
clay
C. Carriere 1✉, P. Dillmann 1, S. Gin 2, D. Neff1, L. Gentaz1, F. Bruguier2, I. Monnet 3, E. Gardes 3, M. Saheb4, E. Foy 1, N. Nuns 5,
A. Delanoë 1, J. J. Dynes 6, N. Michau 7 and C. Martin7

The French concept developed to dispose high-level radioactive waste in geological repository relies on glassy waste forms,
isolated from the claystone host rock by steel containers. Understanding interactions between glass and surrounding materials is
key for assessing the performance of a such system. Here, isotopically tagged SON68 glass, steel and claystone were studied
through an integrated mockup conducted at 50 °C for 2.5 years. Post-mortem analyses were performed from nanometric to
millimetric scales using TEM, STXM, ToF-SIMS and SEM techniques. The glass alteration layer consisted of a crystallized Fe-rich
smectite mineral, close to nontronite, supporting a dissolution/reprecipitation controlling mechanism for glass alteration. The mean
glass dissolution rate ranged between 1.6 × 10−2 gm−2 d−1 to 3.0 × 10−2 gm−2 d−1, a value only 3–5 times lower than the initial
dissolution rate. Thermodynamic calculations highlighted a competition between nontronite and protective gel, explaining why in
the present conditions the formation of a protective layer is prevented.

npj Materials Degradation            (2021) 5:16 ; https://doi.org/10.1038/s41529-021-00160-x

INTRODUCTION
In France, like in the other countries using nuclear power plants,
plans for disposing high-level radioactive waste (HLW) in a deep
geological repository are being developed. The selected rock is
the Callovo–Oxfordian claystone (Cox) located in the North-East of
the Parisian basin and the concept under consideration is based
on the vitrified HLW poured in a stainless-steel canister and placed
in a carbon steel overpack. The resulting waste package should be
placed in horizontal tunnels dug into the low permeability
claystone. However it is expected that groundwater will corrode
the metallic envelopes and eventually reach the glass. This system
essentially aims at delaying water arrival during the first period of
the disposal1. From the safety standpoint the performance of each
component must be evaluated, as well as that of the global
system. Owing to the amount of radioactive elements that would
be disposed of (roughly 20000 metric tons of glass with ∼18 wt%
waste loading made of fission products and minor actinides), such
a disposal must be safe for a period of ∼1 My. Performance
assessment primarily relies on the calculation of the waste form
durability and the migration of radionuclides in the geosphere.
The release of radionuclides from the waste form depends on
physicochemical parameters (chemical interactions, diffusion
transport) and interactions between materials (glass/steel/clay)
in contact with water2,3. The expected scenario would then be
resaturation of clay, corrosion of the canisters, glass leaching and
the release of radioelements4. Their dispersion/migration in the
geosphere depends on many parameters such as clay sorption
capacity, formation of secondary phases, microbial activity…5

Nuclear glass alteration has been studied for decades. SON68
glass, the inactive surrogate of R7T7 glass produced at La Hague is
certainly one of the most studied borosilicate glass to date6.
Several dissolution mechanisms were observed when glass is

placed in contact with water7. The first step concerns coupled
mechanisms, i.e., glass hydration, where water molecules pene-
trate the borosilicate network8, and interdiffusion which
exchanges protons contained in solution with alkali elements
(i.e., Na, Li, Cs) in the glass. In parallel, hydrolysis of covalent bonds
forming the glass network linkages (mostly Si-O-X (X= Si, Al, Zr, B)
induces depolymerization of the silicate network. This reaction
takes place at the hydrated layer/solution interface and releases of
orthosilicic acid (H4SiO4) into solution. Sparingly soluble elements
can either condense or precipitate at the glass surface, leading to
the formation of a glass alteration layer (GAL), generally composed
of Si, Al, Zr, Ca, and highly depleted in Na and B. Hydrolysis is
characterized by the highest alteration rate, named initial
dissolution rate (r0), which can decrease by several orders of
magnitude when an amorphous protective gel is formed at the
glass/solution interface. The gel is formed either by in situ
condensation of hydrolyzed Si within the gel9, or by precipitation
of aqueous species, depending on the glass composition and the
alteration conditions10–15. The gel self-reorganizes and densifies16.
Glass alteration is generally considered as isovolumetric, i.e., the
gel replaces the glass maintaining the same volume of solids17,18.
When the gel porosity is partly clogged at the gel/solution
interface19,20, it acts as a diffusion barrier that limits exchanges
and slows down the global glass dissolution rate. Gels formed in
circum-neutral pH conditions are stable in solution containing
50–100 ppm of dissolved Si21–27, meaning that Si from the gel
does not exchange with that from the solution in such conditions.
In addition to the gel, secondary phases can precipitate
(phyllosilicate, calcium-silicate-hydrates, zeolites) and impact both
the gel properties and the solution chemistry20,28,29. In this case,
the dissolved constituents of the glass, especially the Si, undergo
both in situ condensation and precipitation30.
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Whatever the mechanism at play, i.e., hydrolysis/condensation
or dissolution/reprecipitation, the fate of Si during glass alteration
is crucial as it controls the glass behavior31. A few studies have
focused on glass alteration mechanisms following Si migration in
isotopic 29Si leaching experiments and secondary ion mass
spectrometry (SIMS) 29Si/28Si ratio detection30,32,33. They observed
that the gel had a 29Si/28Si ratio intermediate between glass and
solution, and an outer phyllosilicate-rich layer with a 29Si/28Si ratio
close to the one detected in solution, clear evidence that the
hydrolysis/condensation or dissolution/reprecipitation can take
place simultaneously. A recent study demonstrated that the two
mechanisms can control sequentially glass corrosion10.
The above-mentioned studies were conducted in the absence

of iron. Iron ions as a result of steel corrosion can precipitate with
Si to form Fe-Si-O phases. These phases are assimilated to
phyllosilicates and could impact the glass alteration mechanisms
and kinetics26,34–39. As an example, Neill et al.26 altered ISG glass at
90 °C and pH 7 in a 29Si saturated solution and after 70 days—a
duration allowing the formation of a dense and protective gel
layer—magnetite (Fe3O4) was added leading to a drop in the
29Si concentration, followed by a subsequent resumption of
alteration. Although global trends were observed, current models
such as GM2001 or GRAAL2,40,41, cannot predict quantitatively the
glass behavior in such complex environments. For that reason, a
better experimental understanding of the interactions between
glass, steel and clay is necessary.
Here, we studied the influence of iron and claystone on glass

alteration mechanisms and kinetics. We focused on a SON68
nuclear glass/steel/claystone system, as presented in Fig. 1. A
piece of SON68 glass doped with 57Fe and 29Si, with one face in
near-contact with a piece of iron was altered for 2.5 years at 50 °C
in a core of water saturated Cox claystone (Fig. 1). Post-mortem
characterization techniques were used to identify the alteration
products and assess the fate of Si. We demonstrate that Fe from
the iron piece reacted with Si from the glass to form nontronite,
leading to a high glass dissolution rate and a low dispersion of Si
released by the glass.

RESULTS
Glass/steel interface
A large area view of the glass/iron/claystone system using
Scanning Electron Microscopy (SEM), focusing on the reaction
products at the doped glass/metallic iron interface, with the
metallic iron on the top and the doped pristine glass (PG) on the
bottom is shown in Fig. 2a. On the right-hand side (where
the iron corrosion products (ICP) are thickest), a layer is present
in the embedding resin (in black) inserted between the two
materials, which is part of the GAL separated from the PG. The
GAL of the left-hand side is close to the PG. Note that the right-
sided GAL separated during sample preparation (freeze-drying,
cutting and/or polishing): the similarity between the GAL surface
appearance of the right side with PG clearly supports this

Fig. 1 Experimental setup of the glass/iron/claystone system.
Arrangement of the two SON68 glass coupons pressed against a
piece of iron in the Cox claystone cylinder (a), and cross section
obtained on the system (b and c).

Fig. 2 SEM analyses at the glass/iron interface. a SEM micrograph of the doped nuclear glass/iron interface. The rectangles indicate the
areas studied in detail (i.e., GAL and ICP). b SEM micrograph and EDS elemental mapping of the doped glass surface. White squares indicate
areas of EDS analyses (Table 1).
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hypothesis (see the SEM micrograph with the appropriate scale,
Supplementary Fig. S1a).

Glass alteration layer characterization
Along the pristine glass specimen, SEM coupled with Energy
Dispersive Spectroscopy (SEM-EDS) analyses show an inner and
outer glass alteration layer, hereafter referred to as i-GAL and

o-GAL, respectively (Fig. 2b). Both the i-GAL and o-GAL thicknesses
are regular and measure 1 µm (σ= 0.2 µm, ten measurements)
and 5 µm (σ= 1 µm, ten measurements), respectively (Fig. 2b). The
main elements detected in the GALs and PG by SEM-EDS are
shown in Table 1 and mapped in Fig. 2b. The GALs contain mainly
Fe, Si, O, Al, and Zr. No Na was detected in the GALs (Na <
detection limit of the EDS), and heavy elements such as Mo, Cs, Ba
and lanthanides (La, Ce, Pr, Nd) are not detected. Conversely, PG
contains 4.5 wt.% of Na and 10.5 wt% of the heavy elements. The
Si/Zr ratio decreases by a factor of 2 in the GALs (4–5) compared
to the PG (∼10), mainly attributed to the Si content of the PG
being twice that of the GALs, as the Zr content is similar since it is
not soluble in water2,9,42. In contrast, GALs are enriched in Fe, as
the Fe/Si ratios are equal to 0.1 and 2 in PG and GALs, respectively.
Note that the incorporation of Fe in GALs has been already
reported in previous studies35,36,38,39,43. Furthermore, the o-GAL
sometimes corresponds to a stack of micrometric layers (Supple-
mentary Fig. S1b), with a total thickness of 10 µm. Each layer has
the same chemical composition as the one described hereafter.
Transmission Electron Microscopy (TEM) with Energy Dispersive

Spectroscopy (TEM-EDS) analyses (Fig. 3a, b and c) show that the
i-GAL consists of a stack of thin alteration layers of 0.2 µm (total
1–1.5 µm thickness), which are composed of foliated aggregates
(Fig. 3c) compatible with the poorly-ordered smectite morphology44.
Also pores are evidenced in the alteration layer, of the order of
10–50 nm in diameter, much larger than that observed in dense
passivating GALs10,45. Note that the PG/i-GAL interface is precisely
located by TEM-EDS due to the change in the Si/Zr ratio and Fe
content (Fig. 3d). TEM analyses performed on the o-GAL shows the
presence of crystallized sheets (Fig. 4), mainly composed of Si, Fe, O,
Al (Table 2). High-resolution TEM (HRTEM) revealed characteristic
morphology of well-ordered clay sheets, with reticular distances of
10.4 Å (σ= 0.6, 15 measurements) between the sheets (Fig. 4c),
corresponding to the d001 distance. This value is compatible with
partially dehydrated smectites46–48, whose reticular distance could be
modified through the freeze-drying preparation process.

Table 1. SEM-EDS composition (σ < 0.5) in wt.% obtained in pristine
glass, in the inner and outer GAL (analyses performed in the white
squares in Fig. 2b), and in the ICP (Fig. 7).

Element PG i-GAL o-GAL ICP
without Si
(left side)

ICP, needles
(right side)

ICP with Si
(right side)

O 44 39 36 33 32 33

Na 4.5 n.d. n.d. n.d. n.d. 1

Al 3.2 5.2 5.5 n.d. n.d. n.d.

Si 26 17 18 n.d. 4 18

Ca 3.2 1.2 1 13 1 1

Fe 3.2 32 35 54 63 47

Zr 2.7 3.4 4.1 n.d. n.d. n.d.

Mo+Cs
+Ba+La
+Ce+Pr
+Nd

10.5 0.4 n.d. n.d. n.d. n.d.

Si/Zr 9.6 5.0 4.4 n.c. n.c. n.c.

Fe/Si 0.1 1.9 1.9 n.c. n.c. n.c.

Other
elements

2.7 1.8 0.4 n.d. n.d. n.d.

(n.d. for not detected, n.c. for not concerned).

Fig. 3 TEM analyses performed in the inner GAL. a TEM micrographs of the i-GAL evidencing several strata and location of the profile
composition (red line) in the first stratum (b). In c, HRTEM in the first stratum of the i-GAL showing foliated aggregates compatible with the
smectite morphology. In d, TEM-EDS profile composition (wt.%) obtained in the first stratum of the i-GAL highlighting the PG/i-GAL interface.
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Carrière et al.37 demonstrated the possibility to identify
nanometric silicates (crystallized or not) contained in glass
matrix with Scanning Transmission X-ray Microscopy (STXM) at Si
K and Fe L-edges. The same comparative approach is led for both
edges using the same database of silicate reference spectra.
STXM spectra at the Si K-edge from the PG, i-GAL and o-GAL are
shown in Fig. 5a. For the PG, the spectrum is characteristic of
amorphous SiO2 (SiO2(am))

37. Spectra obtained from the i-GAL
and o-GAL differ from that of the PG, also having peaks B and C
at around 1850 and 1855 eV, respectively. A qualitative
comparison with the Si K-edge database supports the presence
minerals from the smectite group (peaks in A, C and D positions),
and excludes the presence of minerals from chlorites, mica, and
serpentines-kaolinite groups for the GALs. Linear combination
fitting of the GALs spectra using the Si K-edge database suggests
that the i-GAL is around 75% nontronite and 25% SiO2(am)

(expressed in equivalent thickness) and that the o-GAL is about
90% nontronite and 10% SiO2(am) (Fig. 5b, Table 3). The higher
content of SiO2(am) for the i-GAL than for the o-GAL is consistent
with a less-ordered nontronite.
Fe L-edge spectra are used to assess the Fe valence state in the

PG and GALs, and are presented in Fig. 5c. Linear combination
fitting of the PG and GALs Fe spectra, using reference spectra from
pure Fe(II) (siderite) and Fe(III) (maghemite) compounds49–52, are
shown in Table 4. The Fe valence in PG is 100% Fe(III). On the
contrary, mixed valence is observed in the GALs, 50% Fe(II) and
50% Fe(III) for i-GAL and 10% Fe(II) and 90 % Fe(III) for o-GAL. This
Fe valence ratio corresponds to a well-ordered nontronite for the
o-GAL37, but for i-GAL the Fe valence ratio highlights a nontronite

in formation, poorly ordered, as evoked by the calculated
amorphous part (25%).
The SON68 glass was initially doped with 29Si and 57Fe - two

isotopes at low concentration at the natural abundance (4.68%
and 2.2%, respectively)—to monitor the distribution of these
elements in the GAL, and thus better understand how this
material forms. Note the i-GAL was divided into two parts
(internal, adjacent to PG, and external) to extract the Time-of-
Flight Secondary Ion Mass Spectrometry (ToF-SIMS) data. Table 5
presents the ToF-SIMS Si and Fe isotopic content after extraction
of the mass spectra from the PG, i-GAL (internal and external),
and o-GAL regions. ToF-SIMS analyses performed in the GAL of
the undoped glass (right glass in Fig. 1) does not evidence
any 29Si enrichment (results not shown here), i.e., Si isotopic
contents correspond to the natural abundance of the primal
glass matrix. This strongly suggests that the two compartments
of the experimental cell can be considered as isolated without
interactions. The undoped compartment is not considered
further in the rest of the paper. Note also that the 30Si+ and
54Fe+ contents correspond to the natural abundance and are
not discussed hereafter53.
An overlay mapping of 56Fe+ and B+ ions is represented to

localize at the submicrometric scale the PG/i-GAL interface
(Fig. 6b). Indeed, boron is only present in PG, as it is one of the
first element to solubilize while glass alters9,40. On the contrary,
56Fe+ is quasi-exclusively present in GAL (Fig. 6a, Table 5) and
comes from another source (corrosion of iron, see ICP character-
ization part). PG contains 52% and 45% of 29Si+ and 28Si+,
respectively, similar to that of the internal i-GAL. There is a slight
enrichment in the 28Si+ content in the external i-GAL (54%)
compared to the internal i-GAL (46%). The Cox water initially
contains silicon in the following proportions: 28Si (92.2%), and 29Si
(4.7%) in accordance with the natural abundance53. This suggests
that some of the Si in the external i-GAL originates from the Cox
water. The 29Si+ and 28Si+ isotope content measured in the o-GAL
is 20% and 78%, respectively, considerably different from that of
the PG and i-GALs. Thus, a good portion of the Si content in the
o-GAL originates from the Cox water. The origin of the Si in the

Fig. 4 TEM analyses in the o-GAL. High resolution TEM micrographs (a+ b+ c) highlighting the presence of crystalline phases with inter-
reticular distance of 10.4 Å (σ= 0.6) compatible with smectite group. TEM-EDS spectrum (d) corresponding to the crystalline phase
(composition in Table 2).

Table 2. TEM-EDS composition (σ < 0.5) in wt.% of the diffracted
phase (red rectangles in Fig. 4).

O Mg Al Si Mo K Ca Fe Cu Zr

39 1 6 15 3 2 1 26 6 1

Presence of Cu is only due to the support grid of the FIB foil.
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external i-GAL and in the o-GAL could be estimated precisely
assuming the following equations Eqs. (1) and (2):

29SiGAL ¼ xPG ´ 29SiPG þ ysol ´ 29Sisol (1)

28SiGAL ¼ xPG ´ 28SiPG þ ysol ´ 28Sisol (2)

where 29SiPG and 29Sisol correspond to the isotope content of 29Si
originating from the PG and Cox solution respectively, and the
percentage of 29SiPG and 29Sisol are noted xPG and ysol , respectively.
29SiGAL, 28SiGAL; 29SiPG and 28SiPG correspond to the isotopic
contents estimated by ToF-SIMS and 29Sisol and 28Sisol are related
to the natural abundance. Solving this system yields that about 85%
of Si contained in the external i-GAL comes from the glass, and 15%
from the solution. Regarding o-GAL, about one third of Si (32%)
comes from the glass, and two thirds from solution (68%).

Most of the Fe in the PG corresponds to the 57Fe (96%). On the
contrary, the internal i-GAL contains 49% of 56Fe, coming from
corrosion of the iron metal (discussed thereafter). The external
i-GAL is further enriched with 56Fe+ (76%) and the o-GAL is almost
entirely 56Fe (91%), close to the Fe natural abundance53. Thus, Fe
migrated from the iron metal toward the glass surface.

Iron corrosion product characterization
The ICP on the left-hand side of the metallic part (Fig. 2a) were
investigated with SEM-EDS and Raman spectroscopy (Fig. 7a, b,
and c). On this side, the ICP layer is about 5 µm thick (σ= 1 µm, 20
measurements), with a maximum value of 10 µm. Only O, Fe, and
Ca are detected in the ICP (Fig. 7b and Table 1). µRaman spectra
(Fig. 7c) obtained at this location show two typical vibration bands
at 281 and 1082 cm−1, attributed to siderite (FeCO3)

54,55. Previous
research of iron corrosion in carbonated and anoxic environments
showed that ICP are formed by precipitation of aqueous
carbonates with Fe(II), and are associated with generalized
corrosion35,37,39,43,52,56–60. ICP on the right-hand side of the metallic
zone are thicker, with an average thickness of about 100 µm (σ =
10 µm, 15 measurements), reaching a thickness of 140 µm in

Fig. 5 STXM analyses at Si K and Fe-L edges of the glass alteration layer. a Si K-edge spectra obtained in pristine glass, i-GAL and o-GAL
and superposition of i-GAL and o-GAL spectra with corresponding fitted spectra (b). Fe L-edge spectra obtained in pristine glass, i-GAL and
o-GAL (c).

Table 3. Decomposition of the STXM spectra at Si K-edge obtained in
i-GAL, in o-GAL (Fig. 5) and in ICP (Fig. 7f) containing silicon (right side,
Fig. 2a).

Spectra Decomposition (±2) R² Chi²

i-GAL 74% nontronite + 26% amorphous SiO2 0.98 0.004

o-GAL 88% nontronite + 12% amorphous SiO2 0.99 0.015

ICP 97% nontronite + 3% amorphous SiO2 0.99 0.04

Table 5. ToF-SIMS isotope content in percent (±2 for Si contents, ±0.2
for Fe contents) from the PG, i-GAL (internal and external), o-GAL
(regions identified by the white rectangles from Figs. 2b and 6), and
from ICP containing silicon (right side).

Isotope
content

PG i-GAL
(internal)

i-GAL
(external)

o-
GAL

ICP
with Si

28Si+/∑Si+ 45 46 54 78 78
29Si+/∑Si+ 52 53 45 20 19
30Si+/∑Si+ 3 1 1 2 3
57Fe+/∑Fe+ 96 50 19 3 3
56Fe+/∑Fe+ 3 49 76 91 92
54Fe+/∑Fe+ 1 1 5 6 5

Table 4. Valence of iron at nanometer scale (±2) in pristine glass,
i-GAL and o-GAL obtained with linear regression on Fe L-edge spectra.

spectra Fe(III) Fe(II)

PG 100 % 0 %

i-GAL 50 % 50 %

o-GAL 90 % 10 %

C. Carriere et al.
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some areas. Two types of corrosion products are detected at this
location. The first one seems crystalized with a needle shape
(Fig. 7d and e) and contains mainly O and Fe (63%) (Table 1), with a
small amount of Si (4%), while the second ICP contains more Si
(18%) and less Fe (47%) and few quantities of Na and Ca (1%)
(Table 1). Raman Spectroscopy identifies an iron carbonate,
chukanovite Fe2(OH)2CO3 (Supplementary Fig. S2)61, correspond-
ing to the needles. However it was not possible to identify the Si-
containing ICP with this technique due to high fluorescence.
ToF-SIMS was performed on the second ICP containing high silica

to determine the origin of the Si (Table 5). The Si isotope contents
are very similar to that observed for o-GAL, i.e., 19% and 78% for
29Si+, and 28Si+ respectively, which suggests that one third of the Si
contained in ICP comes from the glass, and two thirds from the
solution, based on GAL analysis, Eqs. 1 and 2. These ICP contain
amounts of 57Fe+ and 56Fe+ ions similar to the iron metal, (meaning

natural abundance of Fe)53 and not from the 57Fe doped PG.
Therefore, negligible Fe in the ICP came from the glass alteration.
STXM analysis at the Si K-edge was carried out on the ICP to

identify the Si-containing phases. Only one Si species was apparent in
the ICP with high Si (between the needles—in blue, Fig. 7f). Based on
the spectrum shape, it is characteristic of smectites37. Linear
combination fitting of the Si K-edge spectrum (Fig. 7f) using reference
spectra from our library indicates that the Si species is nontronite
(97%), with a small amount of SiO2 (3%) (Fig. 7, Table 3). Note that the
presence of SiO2 could be caused by the amorphization of each faces
of the FIB foil during sample preparation62,63. Contrary to the
nontronite identified in the o-GAL, this one is poorly crystallized
(diffused rings on the selected area electron diffraction pattern in
Supplementary Fig. S3). STXM at Fe L-edge is sensitive to the iron
valence49,50,64. Fig. 7g displays an Fe(II)/∑Fe nanomapping obtained
with STXM at Fe L-edge, according to the procedure described by

Fig. 6 ToF SIMS positive ion images obtained at the PG/i-GAL interface. ToF-SIMS image of 56Fe+ (a) and overlay of 56Fe+ and B+ maps (b).

Fig. 7 ICP characterizations. a SEM micrograph, b SEM-EDS elemental mapping and c μRaman analyses of ICP on the left side, without Si.
d SEM micrograph and e TEM micrograph of ICP on the right side, i.e., containing Si or needle-shaped ICP. f STXM spectra at Si K-edge on ICP
with silicon (blue) and fitted spectrum (brown). g quantitative Fe redox nanomapping obtained with STXM at Fe L-edge from micrograph in e.

C. Carriere et al.

6

npj Materials Degradation (2021)    16 Published in partnership with CSCP and USTB



Bourdelle et al.49. The needles displayed in red have an Fe(II)/∑Fe close
to 80%, while Si containing phases, identified as nontronite, features
an Fe(II)/∑Fe close to 20%. These values correspond to those expected
for chukanovite and nontronite respectively, with an obvious bias of
Fe valence as these two phases may overlap.

DISCUSSION
Our study shows that glass alteration at 50 °C, in close proximity
to iron metal, in an anoxic clayey environment forms Na-free,
Si-depleted and Fe-rich alteration layer. This GAL consists of a
stack of many sublayers parallel to the glass surface, with a total
thickness ranging from 6 to 10 µm. Authors usually interpret the
depletion of Na by ion-exchange between protons dissociated
from water molecules with alkalies acting as glass modifiers (Na,
Li…)8,34,65. Moreover, a decrease in the Si/Zr ratio by a factor of
two from the PG attests to a significant release of Si from the glass,
suggesting that hydrolysis of the silicate network drives the
alteration of the glass2,66. In general, ion-exchange, hydrolysis and
condensation reactions lead to the formation of an amorphous
hydrated layer on the glass surface, called gel, whose transport-
limiting capability depends on the density of the material16,67–69.
Highly protective gels are characterized by a high retention factor
of Si and the presence of micropores poorly connected
together45,70. However, in the present study, ordered precipitates
of an Fe(III)-rich phyllosilicate, nontronite, belonging to the
smectite group of clay minerals, forms at the glass surface, with
pore sizes ranging from 10 to 50 nm in the layer closest to the
glass (i.e., i-GAL) (Fig. 3). The nontronite constituting the porous
i-GAL takes up a majority of the silicon released by the glass
(H4SiO4), while the long-ordered nontronite (o-GAL) uses mainly
the silicon from the solution (i.e., Cox water). Even though the
solution composition was not analyzed at the end of the
experiment (i.e., 2.5 yr), the 29Si/28Si ratio in the ordered nontronite
is presumably close to the solution in equilibrium with claystone
containing also hydrolyzed silicon. Hence the observations
suggest that: i) the GAL is not or poorly protective, and ii) a
dissolution/reprecipitation mechanism controls glass alteration
under the study conditions.
In the present study, the alteration conditions (1 bar, 50 °C,

neutral pH in an anoxic and carbonated medium) correspond to
the geochemical environment favorable for nontronite precipita-
tion46,71–78. However temperature has a strong influence on iron
silicate formation. Indeed, iron/claystone or glass/iron/claystone
experiments performed at 90 °C showed that serpentine formation
occurs, whereas a temperature close to 50 °C tends to destabilize
serpentine35,48,56,57,79–84. This could explain the absence of
serpentine in our study. Moreover, saponite (belonging to the
smectite group of clay minerals) is not observed here since it
contains mainly Fe(II) and preferentially precipitates at higher pH
than nontronite76,85–87.
Despite initial reducing conditions, nontronite contains mostly

Fe(III), as already shown in this iron phyllosilicate88,89. The
literature suggests that iron oxidation from Fe(II) to Fe(III) in
reducing conditions could be explained by water reduction71,90,91,
but could also result from a charge transfer or charge compensa-
tion within the silicate structure77,92. Another explanation would
be to consider the glass as an oxidizer. Fe2+ coming from iron
corrosion, and adsorbed at the glass surface, could be oxidized in
Fe3+ by Fe2O3 (i.e., an Fe(III) oxide) of the glass, while the Fe(III) of
glass would be reduced. A redox front could form between
pristine glass, nontronite and solution, with two Fe(III)-rich ends,
i.e., pristine glass and nontronite in contact with the solution,
and a Fe2+/Fe3+ gradient between glass and nontronite. This
hypothesis requires further investigations.
As a reminder, the GAL consists of a succession of several

nontronite strata (Fig. 3 and Supplementary Fig. S1). These
observations were already modeled93, suggesting a mechanism by

cyclic locally pH modification. Indeed, glass dissolution rises the
pH by releasing sodium or boron into solution94,95, while smectite
precipitation tends to decrease the pH, by consuming hydroxyl
groups contained in solution75, and releasing protons96–98. More-
over, redox variations cannot be excluded to justify these strata.
To estimate glass alteration rates, quantification of boron in

leaching solution is commonly used9. Unfortunately, the solution
could not be periodically sampled as the reactor remained a
closed system for the whole duration of the experiment. Previous
studies have shown that the GAL thickness could be used to
estimate glass alteration rates40. This method assumes the glass
alteration to be isovolumetric. In aggressive conditions such as
used in this study (i.e., glass in contact with iron) some researchers
consider that the glass alteration is isovolumetric35,99, while others
describe it as non-isovolumetric due to the incorporation of Fe in
the GAL and to glass density modification18,100. Consequently, the
alteration rate calculated from the GAL thickness could be over or
underestimated. Nevertheless, it was established that the differ-
ence between these two calculation methods was a factor of two,
when silicon retention in a gel, named f(Si), is low (<15%)9.
Another method, based on the f(Si) in the GAL, is proposed in this
paper for a complementary estimation of the mean alteration rate.
In this study, the average rate of glass dissolution is estimated at

1.8 × 10−2 g m−2 d−1 to 3.0 × 10−2 g m−2 d−1, for a GAL thickness
of 6–10 µm, respectively, assuming a constant dissolution rate and
an isovolumetric process. This is five to three times lower than the
initial dissolution rate of SON68 glass measured in previous
experiments in synthetic Cox poral fluid at 50 °C, referred to as
r50

�C
0 Cox = 9.3 × 10−2 g m–2 d−1. However, it is several orders of
magnitude higher than the residual rate (rr) estimated at around
6 × 10−5 gm–2 d−1 at 50 °C101,102.
A second estimation of the alteration rate can be made from the

retention factor of Si, f(Si), in the GAL. As Zr is supposed to remain
undissolved according to previous studies2,9,42, silicon retention
obtained with Eq. 3 enables the estimation of the alteration
rate103.

f Sið Þ ¼ Si=Zrin GAL
Si=Zrin PG

(3)

Two empirical curves (Fig. 8) showing glass alteration rate in
pure water at 50 °C vs f(Si) (Fig. 8a) or vs [H4SiO4] in solution
(Fig. 8b) were drawn from literature data (Supplementary Table
S1)104,105. To our knowledge, these values do not exist in literature
for glass alteration in Cox water. Therefore this method is used to
approximate the alteration rate and complements the first
method. Looking in detail at the curve, from f(Si)= 0–0.6, the
glass dissolution rate is divided by 10. From 0.6 to maximal Si
retention at 0.8, the rate reaches r0/1000, due to the formation of a
protective gel at the glass surface. The Si retention factor
calculated for the GAL, i.e., 0.5 in the present study, suggests
that hydrolyzed Si is partially retained in the altered layer. The
glass alteration rate associated with these value is 1.6 × 10−2

g m−2 d−1, and is in fair agreement with the rate obtained from
GAL thickness (i.e., r50

�C
0 Cox=5).

Alteration rate calculated from this second method yields a
mean concentration of H4SiO4 in the leachate of 6.2 × 10-5 mol l−1

(Fig. 8b). This concentration is far from saturation with a protective
gel (about 10−3 mol l−1)21–26. The glass alteration rate can be
determined using Eq. (4), where kþ ¼ 1:2:108g:m�2:d�1 is the
kinetic constant in pure water, n=−0.4 the coefficient of the pH-
dependence of the reaction rate, Ea = 77 kJ mol−1 the activation
energy of the glass dissolution reaction, aH4SiO4 the H4SiO4 activity
in solution, and K the solubility constant of the protective gel
(corresponding to amorphous silica)2,66. Hence a concentration of
6.2 × 10−5 mol l−1of H4SiO4 in solution lead to a dissolution rate
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estimated at 2.3 × 10- 2 gm−2 d−1, i.e., r50
�C

0 Cox=4, with the Eq. (4).

r ¼ kþanHþe�
Ea
RT 1� aH4SiO4

K

� �
(4)

The two methods used to estimate the glass alteration rate give
consistent results. Glass alters at a high rate, releasing large amount
of Si, which then co-precipitates with Fe. It can then be proposed
that the presence of Fe in the vicinity of glass favors a mechanism
of dissolution/reprecipitation instead of the formation of a
passivating layer by in-situ reorganization of the silicate network.
The affinity between Si and Fe was evidenced with concentration

diagram calculated with the physicochemical alteration conditions,
i.e., temperature of 50 °C, atmospheric pressure, redox conditions of
−0.14 V vs.SHE, Cox water composition (Supplementary Table S2).
Phases observed experimentally in this study (mainly nontronite,
and small amounts of amorphous silica SiO2(am)) were included in
the model (see “Methods”). Figure 9 illustrates the predominance
domains of precipitate phases (in yellow) of nontronite(s) and
SiO2(am). The activities of the H4SiO4 and the ratio Fe2+/Fe3+, are the
two variables that control the formation and stability of the main
phases observed in the system. The Fe2+/Fe3+ ratio was calculated
using Nernst equation. Al is required to form nontronite. Although
its concentration in solution is not known, it was fixed at 4.6 × 10−6

mol l−1 in the simulation. This concentration corresponds to the
amount of Al in solution assuming that Al and Si are dissolved
congruently from the glass. It has been verified that the activity
diagrams are not modified for an order of magnitude smaller and
higher than our Al concentration (not shown).
At pH= 6.9, the blue and red lines in Fig. 9 indicate the initial

H4SiO4 concentration in Cox solution in equilibrium with claystone,
and the estimated concentration of 6.2 × 10−5mol l−1 deduced
from Fig. 8, respectively. It suggests that these concentrations are
high enough to form nontronite, but do not allow SiO2(am) to form.
Because the protective gel has a solubility product close to that of
SiO2(am), this result strongly suggests that, in the studied conditions,
the presence of iron in solution delays or prevents the formation of
a protective gel, reinforcing the idea that glass alters following a
dissolution/reprecipitation process. However, it must be kept in
mind that a small fraction of SiO2(am) was also evidenced in the GAL,
in addition to nontronite. This amorphous part was attributed to
nontronite in formation, but it could also result from a local iron
depletion at the vicinity of glass. Indeed, local iron concentration can
decrease as nontronite precipitates, leading to an increase of
[H4SiO4] due to glass alteration. Presumably saturation condition can
be reached locally to form SiO2(am), i.e., a gel, until iron arrival to the
glass and resumption of nontronite precipitation.

Owing to the high affinity between Si and Fe, and the low
solubility limit and high precipitation rate of nontronite in our
conditions, such porous phase forms at the expense of a
protective gel. However it cannot be excluded that gradients of
chemical species could appear near the surface of the glass,
allowing some gel to form.
In the present study, the glass was altered by the solution in

contact with steel and claystone. Owing to the high Si/Fe affinity,
both Si released by the glass and that present in the pore water,
precipitate with the aqueous Fe(II) species coming from steel
corrosion to form Fe(III)-rich smectite layer (assimilated to
nontronite), as illustrated in Fig. 10. Near the glass surface, a thin
poorly-ordered and non-protective nontronite layer starts to
precipitate mainly from species coming from glass dissolution.
This material was associated to amorphous silica in the STXM
spectrum deconvolution, but it does not relate to the protective
gel described in other studies conducted in the absence of Fe. In
the present work, we demonstrate that Fe prevents or delay the
formation of a protective gel. As a consequence of nontronite

Fig. 8 Estimated glass dissolution kinetics in function of silicon retention (f(Si)) or H4SiO4 concentration in solution. According to the
f(Si)= 0.5 in GAL and the [H4SiO4]= 0.062mol l−1 in solution, the glass alteration rates associated with these values are respectively 1.6 × 10−2

gm−2 j−1 (a) and 2.3 × 10−2 gm−2 j−1 (b).

Fig. 9 Concentration diagram indicating stability of the main
phases in the altered glass/iron/claystone system at 50 °C. Eh=
−0.14 V vs. SHE and pH= 6.86 at atmospheric pressure. In blue
dissolved species, and in yellow stability domains of nontronite and
amorphous silica (SiO2(am)). Blue lines present initial concentration of
Fe and H4SiO4 in solution. Red line shows the concentration of
H4SiO4 estimated in solution from Fig. 8b.
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formation, glass alters following a dissolution/reprecipitation
mechanism, likely limited by glass dissolution31.
It remains to be seen whether such a precipitated nontronite

layer could serve as a barrier limiting exchanges at the glass/
solution interface. A recent study evidences that both glass
alteration mechanisms, i.e., dissolution/precipitation and hydro-
lysis/condensation can lead to a pore closure, reducing water
diffusion through the GAL10. Indeed, a precipitated layer can be
protective, slowing down water transport. Hence, in their experi-
mental conditions, authors conclude that the two mechanisms are
not systematically antagonistic. It seems to depend on the
geochemical conditions, and thus of the Fe-silicate group formation
and stability in such conditions106–108. Furthermore, local and cyclic
concentrations evidenced in the present study, and pH/potential
modifications are likely to initiate a gel formation, even though Fe in
solution behaves as a silicon pump under our conditions.

METHODS
Glass/Iron/claystone system
The glass/iron/claystone system reactor consists of a cylindrical core
(Φ∼ 4 cm, L∼ 4 cm) of Cox claystone, sampled from the Underground
Research Laboratory of Bure (URL), cut into two half-cylinders and
machined in order to place in the middle two coupons of SON68 glass
(composition in Supplementary Table S3), pressed against a 1mm thick

piece of iron (Fig. 1). 400 µm separates the coupon and the piece of iron.
One of the glass coupons is initially doped with 29Si (55wt%) and 57Fe
(100wt%) to follow the migration of these two elements, while the other is
not doped. Dimensions of doped glass and nondoped glass are respectively
10mm× 10mm× 2mm and 20mm× 10mm×5mm (height ×width ×
thickness). The iron (low alloy steel mainly ferritic) piece is prepared from a
450 yr old nail recovered from corrosion products (the Glinet archeological
site, Normandy), such that pristine iron is on one face and on the opposite
face is Glinet iron corrosion products. The pristine iron face is placed adjacent
to the doped and undoped PG, butt-ended to each other. The undoped glass
is used for reproducibility, and same analyses are performed on both glass
coupons. The aim of Glinet corrosion products in contact with claystone is to
limit the reactivity and flux of iron at the iron/claystone interface since old
corrosion products are stable and less reactive than a “fresh” surface of
iron39,58. Once assembled the reactor is placed in a membrane and
resaturated with the deoxygenated synthetic Cox water (Supplementary
Table S2) under 26 bar of pressure to rehydrate the medium and eliminate
the gaseous oxygen present in the reactor38. The reactor is placed vertically
and water circulation is from bottom to top. The system is closed once it is re-
saturated, then the water circulation is stopped. The system is aged in an
oven at 50 °C for 2.5 yr, after which the system is frozen and lyophilized to
eliminate water, embedded in a bi-component epoxy resin (Epothin Epoxy
BuehlerTM) and then hot mounted in a tri-component Flucka resin at 40 °C
under vacuum. This fluidized second resin enabled impregnation to the core
of the system. The embedded system is then cut and polished down to 1 µm
roughness under a N2 atmosphere in a glove box to prevent oxidation. Cross
section obtained at the doped glass/iron interface is presented in Fig. 2a.

Fig. 10 Scheme of the glass alteration mechanism by dissolution/precipitation in the presence of iron corrosion and claystone.
a Overview of such a mechanism, and b illustration of cyclic pH modifications leading to GAL consisting of several strata. SiO2 tetrahedrons
from the glass and nontronite structure drawn respectively by Calas et al.118. and Bailey et al.119.
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Analytical techniques
Cross section, and especially the doped SON68 glass/metal iron interface is
observed and characterized at different scales (macro-micro-nano) using
different analytical techniques.
Scanning electron microscopy coupled with dispersive energy spectro-

scopy (SEM-EDS) was performed on a Jeol JSM-7001 F Field Effect at 15 kV
and a beam time current of 12 nA. A carbon-coating layer of 15 nm was
applied on the sample surface before analyses.
MicroRaman spectroscopy was carried out on an Invia Renishaw

microspectrometer equipped with a doubled Nd-YAG laser at an excitation
wavelength of 532 nm, and equipped with a CCD detector. The spatial
resolution was about 1 µm3 with the 50× lens. The laser power was filtered
down to 0.5mW and spectra were recorded for 30 sec with a resolution of
2 cm−1. Spectra obtained in ICP are acquired and processed with the Wire
3.4 software.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS), led on a

TOF.SIMS 5 spectrometer (IONTOF, Munster, Germany) provides informa-
tion on the migration of Si and Fe during glass and iron alteration
(reminder: one SON68 coupon was initially doped with 29Si and 57Fe).
Pulsed Bi+ are used as primary ions (25 kV) in burst mode, i.e., ion beam is
emitted with a series of short pulses to avoid detector saturation109,110,
enabling good mass resolution (up to 7000) and a good lateral resolution
(up to 200 nm). This technique as also a high sensitivity with a detection
threshold in the range of ppb. Positive ions ToF-SIMS images
(Supplementary Fig. S4) are recorded in the regions of interest. Then
isotopic contents are calculated from the mass spectra reconstructed
from the selected areas.
Cross sections of 100 nm and 1 µm thick are cut in the regions of interest

in the glass/iron/claystone system (i.e., mainly GAL and ICP) using a FEI
Helios Nanolab 660 scanning electron microscope/focused ion beam (SEM-
FIB). The acceleration voltage is from 0.5 to 30 kV and ion current from
1 pA to 65 nA. A “cleaning” at 5, 2, and 1 kV of the two faces of the FIB foils
punctuates the preparation to eliminate the layer of damage and
contamination.
To identify iron-silicate formed on GAL and ICP at nanometer scale, X-ray

microscopy (STXM) imaging and spectroscopy is carried out on the
spectromicroscopy (SM) beamline 10ID-1 at the Canadian Light Source
(Saskatoon, Canada). Image sequences (stacks) of Near-Edge X-ray
Absorption Fine Structure are collected on 100 nm and 1 µm thick cross
sections at the Fe L- and Si K-edges, respectively. The measured
transmitted signals (I) are converted into absorbance values using the
incident flux (I0) measured in the absence of the sample. STXM at Fe
L-edge is sensitive to the iron valence49,50,64, and Si K-edge probes atomic
environment and nanostructure around the absorber atom at a distance
greater than 5 or 6 Å111–114. The spectra derived from the stacks are
decomposed using a least squares method with standard reference
spectra, from our Si K- and Fe L-edges database37,115, normalized to an
absolute linear absorbance corresponding to a phase thickness of 1 nm
(expressed in optical density). Fe(II)/∑Fe nanomapping at Fe L-edge is
conducted according to the procedure described by Bourdelle et al.49.
Analyses and data processing are achieved with the aXis2000 software.
Transmission electron microscopy on FIB cross sections is performed for

iron-silicate identification on the GAL using a Jeol 2010 F electron gun at
200 kV, equipped with a diode EDAX X-ray microanalysis for chemical
analyses or electron diffraction. The d001-spacing of silicate sheets are
measured from the HRTEM images using ImageJ software. The error is
around 0.05 Å due to pixel resolution.

Geochemical modeling
Thermodynamic modeling is performed with the Geochemist’s Workbench
12.0 software and the thermodynamic database “Thermochimie v10a
electron” of Andra. The Cox water composition is used as input to plot the
activity diagrams, with the Act2 mode. This mode establishes the diagram
of the most thermodynamically stable phases, considering different
approaches (equilibrium dissolution, speciation, precipitation reaction)116.
The phases observed experimentally are included in the model (i.e.,
nontronite, SiO2(am)), and a small amount of aluminum is also added
([Al]= 4.6 × 10−6 mol.l-1). Precipitated phases and species in solution are
indicated in yellow and blue, respectively. The thermodynamic constants
from the database and reactions used for the geochemical modeling are
summarized in Supplementary Tables S4 and S5. Initial concentration of
iron in solution at 50 °C was deducted from Gailhanou et al.117.
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