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Abstract – Plastic instabilities develop during tension and compression tests on metallic plates biaxially
loaded in their plane. They limit the acceptable deformation levels during sheet forming. Carrying out a
Linear Stability Analysis, we study the onset of their development. We calculate the growth rate of small
symmetrical and antisymmetrical defects with respect to the median plane of the plate, periodic along the
loading directions, and we determine the dominant mode. This 3D model applies to dynamic tests whatever
the thickness. It retrieves classical results for thin plates statically loaded in tension. Plane tension and
compression tests are two particular 2D cases of this model. In plane strain tension on ductile non viscous
materials, we retrieve that the first instabilities, which are also long wavelength necking ones, arise very
little time before the applied force is maximum; this is consistent with the experimental observations of
Considère. As time goes by, antisymmetric modes with shorter wavelengths compete with the symmetric
ones.

Key words: Plastic instabilities / linear stability analysis / tension and compression tests / biaxial loading /
symmetric and antisymmetric defects

1 Introduction

Plastic instabilities develop during tension and com-
pression tests on metallic plates biaxially loaded in their
plane. They limit the acceptable deformation levels dur-
ing sheet forming. Many publications have dealt with the
onset and the development of necking in tension, since the
pioneering works of Considère (1885) [1]. Many of them
deal with thin plates statically loaded [2–9].

In order to study the onset of the development of
these instabilities, we carry out a Linear Stability Anal-
ysis [7, 8, 10–15]. We consider a plate dynamically loaded
with constant velocities applied at its edges (our model
applies whatever the thickness) (see Fig. 1), and we cal-
culate the growth-rate θ of small perturbations δ�x of the
material trajectories of the mean homogeneous flow of the
perfect plate (cf. [15], Chap. 7)1, that are representative of
the instabilities. We suppose that they grow exponentially

a Corresponding author: dominique.jouve@cea.fr
1 For an incompressible material, the projection on the x1-

and x2-loading directions of the velocity of each material par-
ticle remains constant with time. The velocity gradients along
these directions are uniform at each time (but they evolve with
time).
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Fig. 1. Plate biaxially loaded in tension in its plane, with
constant velocities applied at its edges.

(δ�x = eθt × −→
F (space variables)). They are supposed to

be periodic along the x1- and x2-loading directions (we
denote respectively by λ1 and λ2 the wavelength along
the x1- and x2-axes, and by γi = 2π/λi (i = 1, 2) the
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Nomenclature

Latin symbols

Cv Isochoric heat capacity J.kg−1.K−1

Dij Component of strain-rate tensor D s−1

Dp
ij Component of plastic strain-rate tensor Dp s−1

G Shear modulus Pa
Li Half-dimension of the plate m
L0i Initial half-dimension of the plate m
t Time s
T Absolute temperature K
V0α Applied velocity m.s−1

x0i Lagrangian coordinate m
Sij Component of the deviatoric part S of Cauchy stress tensor Σ Pa
Y Yield strength Pa

Greek symbols
α = D22/D11 Velocity gradient ratio
γα = 2π/λα Perturbation wavenumber along xα-loading direction m−1

γ =
√
γ2
1 + γ2

2 Norm of wave vector �γ = γ1
−→e1 + γ2

−→e2 m−1

δxi Component of the material trajectories perturbation vector δ�x m
εp Equivalent plastic strain
ε̇p Equivalent plastic strain rate s−1

θ Growth-rate s−1

λα Perturbation wavelength along xα-loading direction m
ρ Mass density kg.m−3

Σij Component of Cauchy stress tensor Σ Pa
ψ = arctan(γ2/γ1) Angle between x1-axis and wavevector �γ degree

1. subscript i = 1, 2, 3
2. subscript α = 1, 2

3. In the manuscript, superscript (d) refers to the dominant mode. For instance, λ
(d)
1 denotes the wavelength associated with

the dominant mode in x1-direction.
4. Ȧ denotes Lagrangian derivative of A, for any quantity A.

corresponding wavenumbers). They are symmetric or an-
tisymmetric with respect to the median plane of the plate
(cf. Fig. 2). We draw maps θ(γ1, γ2), and we deduce the
dominant mode, i.e. the most unstable pair of wavelengths
(λ(d)

1 , λ
(d)
2 ), and thus we identify the sites where plastic

deformation begins to localize.
The material is a metal supposed to be homoge-

neous, isotropic, incompressible, elastoviscoplastic. Its
yield strength Y depends on plastic strain εp, absolute
temperature T and plastic strain-rate ε̇p. Its shear mod-
ulus G depends on T . The material is supposed to sat-
isfy the Von Mises plasticity criterion (S : S = 2Y 2/3,
S denoting the deviatoric part of Cauchy stress tensor
Σ), and the normality flow rule (plastic strain rate tensor

Dp =
3ε̇p

2Y
S). Its evolution is supposed to be adiabatic,

and plastic work to be fully converted into heat. Damage,
thermal expansion and heat conduction are neglected.

Linear stability analysis solves the evolution equa-
tions of first order perturbations of the mean homoge-
neous ground flow of the perfect plate: volume and energy
conservation equations, lagrangian momentum equations,
flow rule, and we write that plastic strain increases with
time, so we have simultaneously: S : S = 2Y 2/3 and
S : Ṡ = 2Y Ẏ /3.

We have developed a 3D Linear Stability Analysis:
it applies to dynamic tests, whatever the thickness of the
plate. In tension, when inertial effects are negligible, and
for sufficient viscous effects, the wavelength of the most
unstable defects is large compared to thickness, and we
retrieve the growth-rate of necking plastic instabilities
calculated by Dudzinski and Molinari in their Compte
Rendu à l’Académie des Sciences in 1988 [7, 8, 16, 17], in
the framework of generalized plane stress theory [18, 19].

In this paper, first in Section 2 we search for the dom-
inant mode for different loadings; then we deal with plane
tension and compression tests in Section 3 (the dimension
of the plate is infinite along one loading direction).

2 Main results of our 3D model

2.1 Searching for plastic strain localization lines

We suppose that the perturbation δ�x of material
trajectories is periodic along the x1- and x2-loading
directions, and that the end faces normal to the loading
directions remain plane over time. Thus we have (cf. [15],
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Fig. 2. Symmetric and antisymmetric defects with respect to the median plane of the plate, periodic along the x1- and x2-loading
directions.

Chap. 18), in Lagrangian coordinates x0i (i = 1, 2, 3):⎧⎪⎪⎨
⎪⎪⎩
δx1 = eθt sin(γ1x01) cos(γ2x02)F1(x03)

δx2 = eθt cos(γ1x01) sin(γ2x02)F2(x03)

δx3 = eθt cos(γ1x01) cos(γ2x02)F3(x03)
(1)

with, setting L0i = Li(t0 = 0) (i = 1, 2, 3):{
γ1L01 = i1π (i1 ∈ N)

γ2L02 = i2π (i2 ∈ N)
(2)

In the plastic strain localization zones, perturbation δx3

is extremum (see Fig. 2) (we set: δx3,i =
∂δx3

∂x0i
(i = 1, 2)):

{
δx3,1(x01, x02, ±L03) = 0

δx3,2(x01, x02, ±L03) = 0
(3)

In view of the form given to δ�x, in the planes at x03 =
±L03, plastic strain concentrates along straight lines, de-
fined by the following equations:{

γ1x01 + γ2x02 = K+π (K+ ∈ N)

γ1x01 − γ2x02 = K−π (K− ∈ N)
(4)

The wave vector �γ = γ1
−→e1 + γ2

−→e2 is normal to the lo-
calization lines “+”. The angle between the x2-axis and
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Fig. 3. Two successive localization lines “+”: the distance
between them equals λ1 along the x1-axis, and λ2 along the
x2-axis.

these lines is equal to (see Fig. 3):

ψ = arctan
(
λ1

λ2

)
= arctan

(
γ2

γ1

)
(5)

(for localization lines “–”, this angle equals −ψ).
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Table 1. Properties of the material.

ρ A B εi n C ε̇0 m Tmelt G0 Cv

5 g.cm−3 1 GPa 1 GPa 1 0.5 0.01 1 s−1 1.2 3000 K 100 GPa 500 J.kg−1.K−1

We illustrate the search for the dominant mode and
the plastic strain localization zones for different loadings
and for a given material.

2.2 Material

Given a (fictitious) metal, whose physical properties
are:

1. constant mass density: ρ = 5000 kg.m−3;
2. its yield strength Y obeys a constitutive law in the

form proposed by Johnson and Cook [20], and, as in
the model of Steinberg-Cochran-Guinan [21], we sup-
pose that the ratio Y/G is independent of tempera-
ture. Thus we have:

Y (εp, T, ε̇p) = [A+B (εp + εi)
n]

[
1 + C ln

(
ε̇p

ε̇0

)]

×
[
1 −

(
T − T0

Tmelt − T0

)m]
(6)

G (T ) = G0

[
1 −

(
T − T0

Tmelt − T0

)m]
(7)

for:

ε̇p > ε̇0 =1 s−1 and T0 =300 K ≤ T ≤ Tmelt=3000 K.

The coefficients we have chosen in relations (6) and (7)
are given in Table 1; they are representative of the be-
haviour of usual metals (cf. [20], Table 1). In particu-
lar, with the value chosen for G0, the order of magni-
tude of the ratio Y/G for metals, i.e. one percent, is
satisfied;

3. constant isochoric heat capacity:
Cv = 500 J.kg−1.K−1.

2.3 Dominant mode and plastic strain localization
lines

We carry out tension and compression tests on plates
made with the material of Section 2.2, whose initial thick-
ness equals 2L03 = 2 cm. By convention, x1-direction
is major principal stress direction (|Σ11| ≥ |Σ22|). The
initial velocity gradient along x1-axis, D11 = V01/L01,
equals 10 s−1 in absolute value. Two tension (or com-
pression) tests along x1-axis differ only in the value of
the velocity gradient ratio α = D22/D11.

We carry out the linear stability analysis at initial time
t0 = 0: then plastic strain εp equals zero, and temperature
is supposed to be equal to 305 K.
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Fig. 4. Most unstable symmetric et antisymmetric modes, in
tension along x1-axis.
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Fig. 5. Linear stability analysis of the flow of plates, loaded in tension along major principal stress direction x1: maps θ(γ1, γ2).
(a) Tension along x1-axis, compression along x2-axis. (b) Tension simultaneously along x1- and x2-axes.

2.3.1 Tension along x1-axis

Negative or zero velocity gradient ratio

Loadings between uniaxial tension (α = −0.5) and
plane tension (α = 0).

Let us examine Figure 5a, and focus first on uniaxial
tension (α = −0.5;Σ11 = Y ;Σ22 = Σ33 = 0). The only
unstable defects are symmetric: these are local thinnings
(necks).

We draw the map θ(γ1, γ2), and we identify the domi-
nant mode, i.e. the pair of wave numbers (γ(d)

1 , γ
(d)
2 ) hav-

ing the largest growth-rate. The associated wave vector
�γ = γ

(d)
1

−→e1 + γ
(d)
2

−→e2 in the plane of the loading directions
is normal to the thinnest lines, where plastic strain con-
centrates during the linear phase of the development of
necking. These are zero rate extension lines (along these
lines, we have: Dtt = ∂vt/∂xt = 0, t denoting the tangent
direction). They are inclined at Hill’s angle with respect
to minor principal stress direction x2 [2]:

ψHill = arctan
(
γ

(d)
2 /γ

(d)
1

)
= arctan

(√
−D22/D11

)
(8)
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Fig. 5. Continued.

The dominant mode associated with these symmetric
modes is all the less unstable that the absolute value of α
increases (see Figs. 4a, 5a and 5b). Its orientation is given
by Hill’s angle (cf. Fig. 4c).

Loadings between uniaxial tension (α = −0.5) and
simple shear (α = −1).

Let us examine Figure 5a once again. From uniax-
ial tension along x1-axis (α = −0.5) to simple shear

(α = −1;Σ11 = −Σ22 = Y/
√

3), we see that unstable an-
tisymmetric modes overtake symmetric modes. The wave-
length along x1-axis of the dominant mode associated
with these antisymmetric modes is infinite (γ(d)

1 = 0 =⇒
λ

(d)
1 = ∞), and plastic strain preferably concentrates

along lines parallel to x1-axis; the wavelength λ
(d)
2 is

all the shorter (and the wave number γ
(d)
2 and the
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growth-rate θ(d) all the larger) that we get nearer to sim-
ple shear (cf. Figs. 4a and 4b).

Tension simultaneously along x1- and x2-axes
(Fig. 5b)

The most unstable defects are symmetric with respect
to the median plane of the plate: these are necks. For α <
1, the wavelength along minor principal stress direction
x2 associated with the dominant mode is infinite (γ(d)

2 =
0 =⇒ λ

(d)
2 = ∞), and plastic strain concentrates along

lines parallel to x2-axis. Plane tension (α = 0) is the most
unstable loading condition2. Getting from plane tension
(α = 0) to balanced stretching (α = 1), the (symmetric)
dominant mode becomes less and less unstable, and the
associated wavelength λ(d)

1 larger and larger (cf. Fig. 4b).
For balanced stretching, the wave vector �γ = γ1

−→e1 + γ2
−→e2

appears in the equations of the model only in its norm γ =√
γ2
1 + γ2

2 , and the iso-θ curves on the map θ(γ1, γ2) are
circle quarters centred at the origin, and all orientations
for localization lines are equiprobable.

Finally, in the neighbourhood of plane tension, there
exist also unstable antisymmetric modes (cf. Figs. 4a, 4b,
and 5a, 5b). Their wavelength is comparable to the thick-

2 More precisely, the most unstable loading condition is in
the present case such as: α ≈ 0.005.

ness of the plate, and is shorter than the one of the un-
stable symmetric modes. Due to viscous effects, they do
not dominate the symmetric modes.

2.3.2 Compression along x1-axis (Figs. 6 and 7)

The most unstable defects are antisymmetric with re-
spect to the median plane of the plate. For α < 1, plastic
strain concentrates preferably along lines parallel to mi-
nor principal stress direction x2.(

γ
(d)
2 = 0 =⇒ λ

(d)
2 = ∞

)
. The flow is all the less un-

stable (and the localization lines all the more spaced out)
that we get farther from plane strain3. For balanced com-
pression (α = 1), as for balanced stretching, the wave
vector �γ = γ1

−→e1 + γ2
−→e2 appears in the equations of the

model only in its norm
√
γ2
1 + γ2

2 , and the iso-θ curves in
the (γ1, γ2)-plane are circle quarters centred at the origin;
all orientations of localization lines are equiprobable.

3 In fact, as in tension, this assertion needs to be somewhat
tempered; more precisely, here the most unstable loading is
such as: α ≈ 0.03, but the maximum of the curve θ(d)(α) is
very flat in the neighbourhood of plane compression.
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Fig. 7. Linear stability analysis of the flow of plates, loaded in compression along major principal stress direction x1: maps
θ(γ1, γ2).

3 Plane tension and compression

3.1 Competition between symmetric
and antisymmetric modes

For plates loaded in tension (for velocity gradient ratio
between −0.5 and 1) or in compression along major prin-
cipal stress direction x1, plane strain (D22 = 0: the dimen-
sion of the plate along x2-direction is infinite) is the most

unstable loading condition. It has been widely investi-
gated in the literature [12–14,22–24]. For us, it is a partic-
ular case of our general 3D model. Then we observe a com-
petition between symmetric and antisymmetric modes.
This competition is all the more important that viscous
effects are lower. The θ(γ1) curve is made up of a succes-
sion of branches, associated with symmetric and antisym-
metric modes, alternatively. The first branch, in the field
of the longest wavelengths, is associated with symmetric
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Fig. 8. Linear stability analysis of the flow of two plates loaded
in plane strain, the first in tension, the second in compression.
The material is not viscous, and the symmetric and antisym-
metric modes are competing (stability analysis carried out at
initial time t0 = 0). Thickness: 2L03 = 2 cm – velocity gra-
dient (in absolute value): |V01| /L01 = 10 s−1 – mass density
of the material ρ = 5000 kg.m−3 – yield strength Y (εp) =
A + B (εp + εi)

n with: A = B = 1GPa; n = 0.5; εi = 1 –
shear modulus G = 100 GPa ([16], Chap. 3).

modes in tension, and with antisymmetric modes in com-
pression [25]. This competition has been revealed in the
past, notably by Hill and Hutchinson in tension [26], and
by Young in compression [27]. For very low viscous effects,
the dominant mode is not always symmetric in tension,
and antisymmetric in compression (cf. Fig. 8).

3.2 First instabilities in tension

In plane strain tension on non viscous ductile metals,
the first instabilities, which are also long wavelength neck-
ing ones, arise very little time before the applied force is
maximum: this result is consistent with the experimental
observations of Considère [1]. Then, the growth-rate as-
sociated with the dominant mode increases, whereas the
associated wavelength decreases (the number of necks in-
creases). The instability develops clearly once the ratio
θ/ε̇p has reached a certain threshold level (typically 10)
(cf. Fig. 9) [15, 28].

3.3 Shear bands

In plane strain tension and compression, in the ab-
sence of viscous effects, our linear stability analysis shows
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Fig. 9. Plane strain tension on a non viscous material. Initial
thickness: 2L03 = 2 cm – initial velocity gradient: V01/L01 =
10 s−1 with L01 = 10 m – material: idem Figure 8, except
εi = 0.1.

that, when the effect of work-hardening on the evolution
of yield strength Y (εp, T ) no longer sufficiently prevails
over the effect of thermal softening, symmetric and an-
tisymmetric defects having arbitrarily short wavelength
develop with an infinite growth-rate [15, 16]. Such insta-
bilities develop as soon as the relative variation of Y for
a plastic strain increment δεp satisfies the following in-
equality (we set: Y

′
α = ∂Y/∂α (α = εp, T )):

δY

Y δεp
=
Y

′
εp

Y
+

Y
′
T

ρCv
<

3
a
×

⎡
⎢⎢⎣ 2

1 +

√
1 − a2

3

− 1

⎤
⎥⎥⎦

≈ a

4
setting: a =

Y

G
(9)

Nevertheless, we have not been able to predict analyti-
cally the spatial dependence of such perturbations. We
simply see that this condition for the absence of a mini-
mal wavelength below which shorter wavelengths are all
stable (cutting wavelength) coincides with the condition
for the instantaneous onset of infinitely dense networks
of shear bands inclined at 45◦ with respect to the load-
ing axis, shown by the bifurcation analysis of Hill and
Hutchinson in tension [26], and the one of Young in
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Fig. 10. Onset of a shear band network during a plane ten-
sion test on a material having constant yield strength Y (then
inequality (9) is well satisfied), in lieu of a long wavelength
multimodal perturbation of the material velocity field intro-
duced at initial time t0 = 0 of the simulation, all the more
rapidly that the mesh is refined. Initial dimensions of the
plate: 2L01 = 20 cm; 2L03 = 2 cm – Stretching velocity
V01 = 1 m.s−1 – Mass density ρ = 5000 kg.m−3 – yield
strength Y = 1 GPa – shear modulus G = 100 GPa – Two
simulations of the test have been carried out, with initially
square elements, with sides 100 μm long for the finest mesh,
and 1 mm long for the coarsest one [15]. We compare the plas-
tic strain rate ε̇p in the two simulations at time t = 40 μs.

compression [27] for static tests [15, 16, 29]. When the
condition (9) is satisfied, we see the onset of these net-
works in numerical simulations, all the more rapidly and
densely that the mesh is refined. Due to the absence
of a physical length (and time) scale in the problem,
simulations are always mesh-sensitive (see Fig. 10). The
transition from an elastic perfectly plastic constitutive
law (Y = constant) to a “sufficiently” viscous Norton’s
law [30] (Y ∝ ε̇m

p , with: m ≥ 0.05) reintroduces a cutting
wavelength [10–14].

4 Conclusion and future works

In this paper, we have shown results obtained carry-
ing out a rigorous 3D linear stability analysis of the de-

velopment of plastic instabilities during tension and com-
pression tests on metallic plates biaxially loaded in their
plane. The material is supposed to satisfy the plasticity
criterion of Von Mises, and the normality flow rule.

We are undertaking to generalize our model to more
complex materials, accounting for damage [31, 32] and
anisotropy effects [33], studying the influence of the shape
of the yield surface [5, 34], and even texture [35, 36]. In
the limiting case of static tests on thin plates, in the ab-
sence of damage effects and for an orthotropic material
obeying Hill’s plasticity criterion (1948) [33], we will have
to retrieve previous analytical results published in 1991
by Dudzinski and Molinari [8].
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