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This paper is devoted to the computation of the Baer-Nunziato model, and more
precisely to the verification of a few schemes, while using analytic solutions of the one-
dimensional Riemann problem. Since classical perfect gas EOS may imply specific be-
haviours, we wish to investigate any kind of EOS, and thus we focus on and verify capa-
bilities and drawbacks of simple enough solvers such as the Rusanov scheme. For so-called
first-order (respectively second-order) Finite-Volume schemes, we check that a h1/2 (resp.
h2/3) rate of convergence is retrieved. Actually, the fractional step approach is also shown
to be more stable than the single-step approach.

Introduction

The numerical prediction of water-hammer flows may be achieved while retaining the homogeneous ap-
proach or the two-fluid approach. The latter has been investigated in the framework of the Wahaloads project
(see35 ). Another possibility suggests not to get rid of pressure-velocity-temperature relaxation time scales,
which means that one needs to recover the governing equations for seven main variables: the statistical void
fraction, together with the mean velocity, the mean pressure and the mean temperature within each phase
(the liquid phase and the vapour phase). A rather large frame of two-fluid models can be found in refer-
ences4,6, 24,25,30 among others, when restricting to gas-particle flows, and otherwise in references8,13,14,19,23

for gas-liquid or water-vapour flows. Among these models, the Baer-Nunziato model has a significant field
of applications, and focus will be given here on this model.

Actually, the computation of Baer-Nunziato type models is indeed a real challenge, due to the fact that
the convective subset of equations involves two (or three, depending on the form of the interface velocity)
distinct contact waves, which are roughly equal to mean phase field velocities (see the next section below).
Hence, based on classical results of the literature dealing with Euler equations (see10–12 among others), we
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Clamart, France, and: LATP, UMR CNRS 7353, 39 rue Joliot Curie, 13453, Marseille, France.

1



may expect that the rate of convergence of Finite Volume algorithms relying on Riemann interface solvers
would be low, typically varying as h1/2 for so-called first-order Finite-Volume schemes. Moreover, interme-
diate states arising between the two contact discontinuities are difficult to predict, since the Mach number
(Uv −Ul)/cl is small compared with 1 in almost all real-life situations, which results in the fact that the two
contact waves are close to one another, and thus slow down the increase of accuracy. These expectations were
actually confirmed quite recently in reference23 in the fluid case, and in15,16,20 when computing approximate
solutions of the two-fluid model in a porous framework.

Another point which seems worth being recalled, and which precisely emerges from the latter porous
context, is that some naive schemes (such as Rusanov scheme) may fail at providing approximate solutions
that converge towards the correct weak solutions, when focusing on two-fluid models such as Baer-Nunziato
model. Most of the time, this may be simply checked by inserting suitable ”well-balanced” data (in a sense to
be defined) in the initial conditions of the one-dimensional Riemann problem; actually, this will be discussed
in detail in the sequel (see section V).

Last but not least, almost all Riemann solvers proposed up to now in the literature rely on EOS which
have a very particular form, since these rely on the use of either perfect gas EOS (PG), or alternatively
stiffened gas EOS (SG). A straightforward consequence is that this may hide deficiencies which are tightly
linked with the non-linear expressions arising in thermodynamical functions.

These remarks have motivated the following investigation, which has a multi-fold purpose:

• We wish to investigate Rusanov scheme which may not only handle perfect gas (or stiffened gas) EOS,
but also -almost- any kind of relevant EOS, without introducing a huge increase of CPU time per cell
per time step, and we intend to give special focus on numerical rates of convergence, whenever a first
or second-order version is used;

• We aim at examining whether this simple enough Riemann solver is well-balanced with respect to the
void fraction coupling wave; otherwise, we must check whether the solver forbids convergence towards
correct solutions -or not- when the mesh is refined;

• Eventually, we will compare this basic solver with another scheme relying on the fractional step strategy.

The present paper is organised as follows. We first recall the basic set of governing equations of the
Baer-Nunziato model, together with its main properties. Next we define some basic solutions of the one-
dimensional Riemann problem associated with the latter model, while focusing on void fraction waves,
whatever the EOS of liquid and vapour are. The following section details the basic Rusanov Finite Volume
solver that is used to compute approximate solutions, and some of its associated properties; a simple alter-
native scheme will also be presented in the sequel. The last section will be devoted to numerical results that
will allow an estimation of rates of convergence. Eventually some conclusions will be drawn.

I. The Baer-Nunziato model

If indexes l, v refer to the liquid and vapour phases, we may define the statistical void fractions of vapour
and liquid αv and αl, which comply with:

αl + αv = 1 ;

Besides, Pl,v, Ul,v and ρl,v respectively denote the mean pressures, mean velocities and mean densities of the
two phases for the liquid and vapour phases. Assuming that equations of state are given, and that functions
eφ(Pφ, ρφ) are known, the total energy reads:

Eφ = ρφeφ(Pφ, ρφ) + ρφ
U2
φ

2
, φ = v, l (1)

Partial masses will be noted mφ = αφρφ. We define W as follows:

W = (αl, αlρl, αlρlUl, αlEl, αvρv, αvρvUv, αvEv)
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Hence, when focusing on liquid flows containing a small amount of vapour bubbles, the Baer-Nunziato
model may be written as follows:

∂t (αl) + Uv∂x (αl) = S1,l

∂t (αlρl) + ∂x (αlρlUl) = S2,l

∂t (αlρlUl) + ∂x
(
αlρlU

2
l + αlPl

)
− Pl∂x (αl) = S3,l

∂t (αlEl) + ∂x (αlUl(El + Pl)) + Pl∂t (αl) = S4,l

∂t (αvρv) + ∂x (αvρvUv) = −S2,l

∂t (αvρvUv) + ∂x
(
αvρvU

2
v + αvPv

)
− Pl∂x (αv) = −S3,l

∂t (αvEv) + ∂x (αvUv(Ev + Pv)) + Pl∂t (αv) = −S4,l

(2)

where right-hand side terms Sk,l(W ) represent the source terms (for k = 2, 3, 4) that account for mass
transfer, momentum and energy transfer through the interface between the two phases. The exact expressions
of terms S1,l can be found in4,6, 9, 14,18,23–25 . The celerity of acoustic waves in the pure liquid (respectively
vapour) phase is noted cl (resp. cv), and the phase entropy sφ complies with:

(cφ)2 = −∂ρφ (sφ) /∂Pφ (sφ) (3)

A. Main properties of Baer-Nunziato model

We recall the main properties of system (2). Most of them are classical and can be found in2,8, 13 , together
with proofs, comments and details.

• Property 1 (hyperbolicity):
The set of equations (2) is hyperbolic. It admits seven real eigenvalues:

λ1,2 = Uv, λ3 = Uv − cv, λ4 = Uv + cv, λ5 = Ul, λ6 = Ul − cl, λ7 = Ul + cl

and associated righteigenvectors span the whole space R7, unless |Ul − Uv|/cl = 1;

• Property 2 (entropy inequality) :
Define the entropy η(W ) = mlsl+mvsv and the entropy flux fη(W ) = mlslUl+mvsvUv ; then smooth
solutions W of (2) are such that:

0 ≤ ∂t (η(W )) + ∂x (fη(W )) . (4)

• Property 3 (structure of fields, Riemann invariants through LD waves and jump conditions) :

Fields associated with eigenvalues λ1,2,5 are linearly degenerate (LD). Other fields are genuinely non
linear (GNL). The five Riemann invariants of the 1 − 2 LD field associated with the void fraction
coupling wave are the following:

I11−2(W ) = Uv; ; I21−2(W ) = sl;

I31−2(W ) = ml(Ul − Uv); ; I41−2(W ) = αlPl + αvPv +ml(Uv − Ul)2;

I51−2(W ) = el + Pl/ρl + (Uv − Ul)2/2;

(5)

The structure of the 5 LD wave is classical, since:

I15 (W ) = Ul; ; I25 (W ) = Pl;

I35 (W ) = αl; ; I45 (W ) = Pv;

I55 (W ) = Uv; ; I65 (W ) = ρv

(6)

Within each isolated field associated with λk = 3, 4, 6, 7, unique jump conditions hold. If σ denotes
the speed of the shock wave, and L,R the left-right states on each side of this travelling discontinuity,
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these are:
[αv]

r
l = 0;

−σ[ρφ]rl + [ρφUφ]rl = 0;

−σ[ρφUφ]rl + [ρφU
2
φ + Pφ]rl = 0;

−σ[Eφ]rl + [Uφ(Eφ + Pφ)]rl = 0,

(7)

Thus, shock relations are exactly single-phase shock relations, field by field. Moreover, Riemann
invariants of the latter 3, 4 waves (and 6, 7 waves respectively) coincide with those of the pure single
vapour (respectively liquid) phase.

Remark 1:
A crucial feature of the Baer-Nunziato model is that non-conservative products are only active through the
1 − 2-wave which is LD; hence jump conditions are unique, and this implies that it makes sense computing
shock solutions (and these may be checked).

B. Specific solutions of the one-dimensional Riemann problem

This section is devoted to the construction of simple analytic solutions of the one-dimensional Riemann
problem associated with Baer-Nunziato model, which correspond to pure void fraction contact waves. For
that purpose, we start with a given left state WL, and also prescribe two values for (αl)R and (ρv)R on the
right side, and we assume that the solution of the Riemann problem contains only one -double- contact wave
associated with λ1,2. Hence we wonder whether we can find (Pv, Pl, Uv, Ul, ρl)R such that :

Ik1−2(WR) = Ik1−2(WL) for: k = 1− 5. (8)

We get at once that
(Uv)R = (Uv)L, (9)

and also, setting X = (ρl)R and QL = (ml(Ul − Uv))L:

(Ul)R = (Uv)L +QL/((αl)RX). (10)

Eventually, setting Y = (Pl)R , we can deduce (Pv)R from:

(1− (αl)R)(Pv)R = I41−2(WL)− (αl)RY − (QL)2/((αl)RX) (11)

On the whole, introducingHL = el((Pl)L, (ρl)L)+(Pl)L/(ρl)L+((Ul−Uv)L)2/2, and also SL = sl((ρl)L, (Pl)L),
we need to find (X > 0, Y ) solution of the coupled problem:

sl(X,Y ) = SL;

el(X,Y ) + Y/X + (QL)2/(2(αl)
2
RX

2) = HL.
(12)

We may define the solution Y = Φ(X) of the first equation in (12), and check that Φ′(X) > 0, whatever the
EOS of the liquid phase is. Thus we need to find X solution of:

f(X)
def
= el(X,Φ(X)) + Φ(X)/X +A2/X2 −HL = 0. (13)

where we note A2 = (QL)2/(2(αl)
2
R). Then we get:

Proposition 1:
Define X0 solution of X2Φ′(X) = 2A2; then, system (12) admits at least one solution if:

f(X0) < 0.

The proof is left to the reader.

Remark 2:
For a practical implementation, we may for instance compute X0 for a stiffened gas EOS for the liquid phase,
setting:

el(ρl, Pl) = (Pl + γlP∞)/((γl − 1)ρl)
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with γl > 1. In that case, we get a unique value:

X0 = (2A2/(γlSL))1/(γl+1)

and it may be checked that equation (13) admits two distinct solutions X1, X2 if f(X0) < 0. These may be
used to complete the right initial condition WR, defining (Pl)R = Φ(X), (Uv)R = (Uv)L and (Pv, Ul)R from
(11), (10) ; the value of (ρv)R must be prescribed independently. In the sequel, these specific initial condi-
tions (WL,WR) will be refered to as ”well-balanced initial data for the void fraction wave (VFW)”. We also
emphasize that, for given non-zero value of QL, the contribution A2/X2

0 varies as (QL/(αl)R)2(γl−1)/(γl+1),
and thus tends to +∞ when (αl)R vanishes; this means that for (αl)R small enough, equation (13) will not
admit any solution X.

Remark 3:
By the way we quote at once that the counterpart of the construction of the approximate Godunov solver
proposed in33 , where the EOS of the liquid phase is a perfect gas EOS, becomes much more difficult (and
CPU time consuming) in the case of an arbitrary liquid EOS.

Remark 4:
Following the basic ideas of 27 , we note that the above construction of ”well-balanced initial data for the
VFW” might be used to construct a modified version of Rusanov scheme, using a Euler-Lagrange formula-
tion of the scheme (see7,15 also).

II. Basic algorithm

The overall algorithm is grounded on the use of the fractional step method. An ”evolution” step computes
approximations of solutions of the convective effects, while the second step enables to account for source
terms.

• Step 1 : with given initial values Wn, compute approximate solutions of the hyperbolic homogeneous
system: 

∂t (αl) + Uv∂x (αl) = 0

∂t (αlρl) + ∂x (αlρlUl) = 0

∂t (αlρlUl) + ∂x
(
αlρlU

2
l + αlPl

)
− Pl∂x (αl) = 0

∂t (αlEl) + ∂x (αlUl(El + Pl)) + Pl∂t (αl) = 0

∂t (αvρv) + ∂x (αvρvUv) = 0

∂t (αvρvUv) + ∂x
(
αvρvU

2
v + αvPv

)
− Pl∂x (αv) = 0

∂t (αvEv) + ∂x (αvUv(Ev + Pv)) + Pl∂t (αv) = 0

(14)

through the time interval [tn, tn + ∆t]; hence, a set of approximations W̃ is obtained; then:

• Step 2: with given initial values W̃ , compute approximations of the set of ODEs:

∂t (αl) = S1,l

∂t (αlρl) = S2,l

∂t (αlρlUl) = S3,l

∂t (αlEl) + PI∂t (αl) = S4,l

∂t (αvρv + αlρl) = 0

∂t (αvρvUv + αlρlUl) = 0

∂t (αvEv + αlEl) = 0

(15)

through the time interval [t̃, t̃+ ∆t], which gives approximations of W at time tn+1.

We focus in this paper on the computation of the evolution step (14), and the reader is refered
to9,13,22,23 for details concerning the treatment of source terms in (15).
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III. An extension of Rusanov scheme for Baer-Nunziato model

Before going further on, we recall that system (14) may be rewritten as follows:

∂t (W ) + ∂x (F(W )) +H(W )∂x (αl) = 0 (16)

where:
H(W ) = (Uv, 0,−Pl,−PlUv, 0, Pl, PlUv)

We present now a classical extension of the conservative Rusanov scheme31 in order to obtain approximate
solutions of system (16).

We denote ∆t the time step and hi the size of cell Ωi. We compute Wn+1
i in terms of neighbouring cells

Wn
k (for k = i− 1, i, i+ 1) using the following three-point scheme:

hi(W
n+1
i −Wn

i ) + ∆t(fRusanovi+1/2 (Wn
i ,W

n
i+1)− fRusanovi−1/2 (Wn

i−1,W
n
i )) + ∆tT ni = 0 (17)

where the numerical flux through the interface (i+ 1/2) separating cells i and i+ 1 is:

fRusanovi+1/2 (Wn
i ,W

n
i+1) = ((F(Wn

i ) + F(Wn
i+1))− ri+1/2(Wn

i+1 −Wn
i ))/2 (18)

The scalar ri+1/2 is equal to max(Rni , R
n
i+1), where Rnk is the spectral radius of the whole convection matrix

associated with (16) and estimated at Wn
k , for k = i, i+ 1:

Rnk = max(|(Ul)nk |+ (cl)
n
k , |(Uv)nk |+ (cv)

n
k )

The term T ni is:

T ni = H(Wn
i )
(

(αl)
n
i+1/2 − (αl)

n
i−1/2

)
(19)

while setting: φ
n

k+1/2 = (φnk + φnk+1)/2. This scheme, which will refered to as SR1 in the sequel, enjoys the
following property:

Property 4:
Scheme (17), (18), (19) preserves positive values of partial masses mφ and void fractions αφ, for φ = l, v,
provided that the following CFL-like condition holds on the time step ∆t:

∆t(ri−1/2 + ri+1/2) < 2hi (20)

See23 for proof.

Remark 5:
The scheme (17), (18), (19) does not maintain ”well-balanced initial data for the VFW” on any mesh. This
means that if the initial condition Wn

j is such that for k = 1 to 5:

Ik1,2(Wn
j ) = Ik0

for all j, the updated values Wn+1
j will not comply with : Ik1,2(Wn+1

j ) = Ik0 for all j. Thus we will examine
later on whether the scheme converges towards the correct solution when the mesh is refined. We emphasize
here that available solvers in the literature do not preserve ”well-balanced initial data for the VFW” in the
above defined sense.

We present now a fractional step method in order to get other approximations of solutions of the homo-
geneous subset (14).
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IV. A fractional step method to compute Baer-Nunziato model

The fractional step method may be useful in order to get approximations of solutions of homogeneous
hyperbolic systems of conservation laws. This idea has been successfully used by Baraille and Leroux (see5)
in order to obtain approximate solutions of Euler equations, and several authors have been using the same
strategy for various purposes. Among these, we note that hybrid explicit/implicit schemes may be con-
structed that way.

The basic idea here is to construct a fractional-step scheme that would comply with the following re-
quirements:

• (i) The scheme should preserve hyperbolicity within each step;

• (ii) The scheme should preserve the pseudo-conservative form of the whole set of equations;

• (iii) The Riemann problem associated with each substep should be easier to solve.

Moreover, the fractional step method should be such that it might handle Baer-Nunziato type models such
as those introduced in reference21 .

The particular scheme we examine here is the following. Starting with an initial condition Wn
i , we

compute first some approximation of solutions of:

∂t (αl) + Uv∂x (αl) = 0

∂t (αlρl) = 0

∂t (αlρlUl) = 0

∂t (αlEl) + Pl∂t (αl) = 0

∂t (αvρv) = 0

∂t (αvρvUv) = 0

∂t (αvEv) + Pl∂t (αv) = 0

(21)

and then use final values Ŵj as an initial condition for the computation of approximate solutions of :

∂t (αl) = 0

∂t (αlρl) + ∂x (αlρlUl) = 0

∂t (αlρlUl) + ∂x
(
αlρlU

2
l + αlPl

)
− Pl∂x (αl) = 0

∂t (αlEl) + ∂x (αlUl(El + Pl)) = 0

∂t (αvρv) + ∂x (αvρvUv) = 0

∂t (αvρvUv) + ∂x
(
αvρvU

2
v + αvPv

)
− Pl∂x (αv) = 0

∂t (αvEv) + ∂x (αvUv(Ev + Pv)) = 0

(22)

Obviously, criterion (ii) is fullfilled. Moreover, the previous fractional step method has the following
properties:

Proposition 2:

• (i) System (21) is hyperbolic. It admits seven real eigenvalues:

λ1 = Uv λ2−7 = 0

and its right eigenvectors span R7. All fields are linearly degenerated. The six Riemann invariants
through the 1-field are: {ml,mv, Ul, Uv, sl,mlel + mvev} . Besides, αl is the only Riemann invariant
of the 2− 7-wave.

• (ii) System (22) is hyperbolic. It admits seven real eigenvalues:

7 of 22

American Institute of Aeronautics and Astronautics



λ1 = 0

λ2 = Uv, λ3 = Uv − cv, λ4 = Uv + cv,

λ5 = Ul, λ6 = Ul − cl, λ7 = Ul + cl

(23)

and associated right eigenvectors span R7, unless: |Ul| = cl, or: |Uv| = cv. The 1, 2, 5-fields are LD and
other fields are genuinely non linear. Riemann invariants of the steady 1-wave are: {mlUl,mvUv, Hl, Hv,
Σk=l,v(mkU

2
k +αkPk), sl}, setting as usual Hk = ek+Pk/ρk+U2

k/2. The solution of the Riemann prob-
lem associated with the liquid phase is the same as the one associated with one-dimensional compressible
Euler equations in a variable cross section A(x) = αl(x).

We refer to28 which examines in detail the solution of the Riemann problem associated with (21) and (22),
and also to32,34 and associated references for the investigation of compressible Euler equations in a variable
cross-section duct. Though it is not discussed in this paper, one additional advantage of this fractional step
method is that it enables to tackle systems such as the one arising in21 .

In order to compute approximate solutions of system (21), we use a Rusanov flux formulation applied to:

∂t (αl) + Uv∂x (αl) = 0 (24)

while keeping partial masses and velocities frozen:

(m̂k)i = (mk)ni (Ûk)i = (Uk)ni for: k = l, v

and setting :

(α̂lÊl + α̂vÊv)i = (αlEl + αvEv)
n
i

(α̂vÊv)i − (αvEv)
n
i − (Pl)

n
i (α̂li − (αl)

n
i ) = 0

(25)

This substep provides an estimate value Ŵj within each cell j that is used to initialize the second substep
corresponding with (22).

We also use the generic Rusanov formulation detailed above to compute approximations of solutions of
the second step (22) (see28 ). Positive values of statistical void fractions αl,v and partial masses ml,v are
guaranteed by the scheme if the time step is constrained by (20).

Remark 6:
Following15,27 , we know that the computation of approximate solutions of (22) should be done with great
care, since wrong solutions may be captured, due to the occurence of the steady wave. This will be examined
later on while focusing on L1 norms of the error. Moreover, the solution of the one-dimensional Riemann
problem associated with variables of the vapour phase cannot be obtained at once, unless the term Pl∂x (αl)
in the governing equation of the momentum mvUv is frozen.

V. Numerical results

As it has been mentionned before, we will give emphasis here on the numerical capabilities of schemes and
more precisely on numerical rates of convergence. The first two test cases correspond to classical Riemann
problems of the literature. The last test case aims at providing some deeper insight on pure void fraction
waves.

A. Test case 1

This Riemann problem was introduced in33 , and it involves two perfect gas EOS for the two phases. The
exact solution of the Riemann problem is recalled below by providing values of intermediate states (see table
1). Figure 1 shows the evolution of the L1 norm of the error as a function of the mesh size, when the
time step complies with the constraint CFL = 1/2. The coarser and finer meshes contain 100 and 105 cells
respectively. Figure 2 shows the approximate solutions for αl, ρl, ρv, Ul, Uv, Pl, Pv that have been obtained
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with 200 and 500 cells, either using the ”first-order” Rusanov scheme SR1, or a ”second-order” extension of
the Rusanov scheme SR1-ORDER2. The second-order scheme is grounded on a minmod reconstruction
of the symmetrizing variable Zt = (αl, Ul, Uv, Pl, Pv, sl, sv) within each cell i, setting:

Zi(x, t
n) = Zni + (x− xi)(∇Z)ni

where:

hi(∇Z)ni = sign(Zni+1 − Zni )(̇min(|Zni+1 − Zni |, |Zni−1 − Zni |)) if: (Zni+1 − Zni )(Zni − Zni−1) > 0

and (∇Z)ni = 0 otherwise. A second-order Runge-Kutta time scheme is used for time integration. Obviously,
we retrieve the expected rates of convergence : 1/2 and 2/3 for the first-order and second-order schemes
respectively. These results are in agreement with those of10,11,15 . We recall that the slow rate of convergence
is enforced by the contact discontinuities.

Perfect gas EOS with γl = γv = 7/5

Left initial
condition

Region 1 Region 0 Region 2
Right initial
condition

αv 0.8 0.8 0.8 0.3 0.3

ρv 1.0 0.9436 0.9436 1.0591 1.0

uv 0.0 0.0684 0.0684 0.0684 0.0

pv 1.0 0.9219 0.9219 1.0837 1.0

ρl 0.2 0.3266 0.6980 0.9058 1.0

ul 0.0 -0.7683 -0.7683 -0.1159 0.0

pl 0.3 0.6045 0.6045 0.8707 1.0

Table 1. Initial condition and intermediate states arising in the solution of a test case by Schwendeman-Wahle-
Kapila (see reference33 page 499).

B. Test case 2

This test case is taken from36 (pages 3854-3585). A perfect gas EOS is used for the vapour phase, while
a stiffened gas EOS is retained for the liquid phase (see table 2). Regular meshes have been used , which

Perfect gas EOS for vapour (γv = 1.35) and stiffened gas EOS for liquid γl = 3, (pl)∞ = 3400

Region L Region 1 Region 0 Region 2 Region R

αv 0.8 0.8 0.1 0.1 0.1

ρv 2.0 2.1093 1.6733 1.8554 1.0

uv 0.0 -0.0761 0.7912 0.7912 0.0

pv 3.0 3.2235 2.3580 2.3580 1.0

ρl 1900.0 2040.1092 1821.4053 1821.4053 1950.0

ul 0.0 -0.1716 -0.1716 -0.1716 0.0

pl 10.0 824.4354 185.6560 185.6560 1000.0

Table 2. Initial conditions and intermediate states for test case 2 proposed by Tokareva and Toro (see refer-
ence36).

contain 200, 500, 103, 5 × 103, 104, 5 × 104 cells. The CFL number is still 1/2, and the computation
is stopped at t = 0.15. While focusing on the first-order Rusanov and fractional-step schemes SR1 and
PFRAC32, we plot the L1 norm of the error in figure 3. We retrieve the expected h1/2 rate of convergence
for all variables. The exact solution together with approximate solutions of variables αv, ρk, uk, pk, k = l, v
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Figure 1. Convergence curves for α1, ρk, uk, pk, k = 1, 2 for test case 1 by Schwendeman-Wahle-Kapila. Results
have been obtained with first-order and second-order SR1 and SR1-ORDER2 schemes , setting: CFL = 1/2, t =
0.2. The black line is a reference Coh1/2.

obtained with 500 and 5000 cells are displayed in figure 4. We note that intermediate states are rather well
captured by both schemes on these rather coarse meshes.

The next figure 5 shows the convergence rates for first-order and second-order schemes SR1 and SR1-
ORDER2. Moreover, the exact solution together with approximate solutions of variables αv, ρk, uk, pk, k =
l, v obtained while using 200 and 500 cells, are displayed in figure 6. Once more, a h2/3 rate of convergence
is observed for the second-order scheme, for all components of the state variable. No oscillations can be
noticed around shock waves and contact discontiniuties for the second-order scheme.

C. Test case 3

This last test case is actually much more difficult. It simply corresponds to the computation of a moving
void fraction wave, or in other words to a Riemann problem with well-balanced initial data in the sense
defined above, which means that initial left and right states WL and WR comply with

Ik1−2(WR) = Ik1−2(WL) for: k = 1− 5.

Initial conditions and parameters of EOS for liquid and vapour phases are given in table 3. We recall here
that none among existing schemes enables to preserve the exact solution on coarse meshes. Actually, if the
initial data W 0

j on the computational domain is such that:

Ik1,2(W 0
j ) = Ik0
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it may be easily checked that the approximate solutions Ik1,2(W 1
j ) at the end of the first time step are not

equal to Ik0 , whatever SR1, SR1-ORDER2 or PFRAC3 is used. Hence, these schemes do not preserve
”well-balanced initial data for the VFW”. This is roughly the counterpart of the well-known problem of
”contact-discontinuity preserving schemes” for Euler equations with complex EOS , and we recall here that
some erroneous strategies have been proposed in the literature in order to cope with this problem, since they
may enforce convergence towards wrong solutions (see10 ).

Thus we must examine whether the above mentionned schemes enable to recover convergence towards the
correct solution when the mesh is refined.

Numerical results that have been computed with first or second-order schemes SR1, SR1-ORDER2 or
PFRAC3 on rather fine meshes are displayed on figures 8 and 10. We have fixed the CFL number to 1/2,
and the final time is t = 0.25. Meshes contain from 5×102 up to 105 regular cells. Besides, convergence rates
may be obtained using errors provided in figures 7 and 9. We obtain again h1/2 and h2/3 rates for first and
second-order schemes respectively. However, we may note here the rather poor behaviour of the second-order
scheme (which of course is not claimed to be the ultimate one). In particular fast left-going and right-going
ghost waves are better predicted by the first-order scheme (see figure 10). On the contrary, the void fraction
wave is smeared by the second-order scheme, whereas some oscillations arise with the first-order scheme in
the same region. On the whole both first and second-order schemes seem to yield similar error levels for a
given mesh size, which was actually not expected.

GPSG1 A4

Exact solution for the void fraction wave VFW

Left state(WL) Right state(WR)

αv 0.05 0.5

ρv 10 12

uv 15 15

pv 1× 106 989874.793590249

ρl 1000 999.987662005963

ul 10 5.49988278761049

pl 1× 106 967374.092892051

Parameters in PG and SG EOS
γv = 1.4 (Gas)

γl = 4.4, (pl)∞ = 6× 108(Liquid)

Table 3. Intial conditions for test case 3 GPSG1 A4 : (αv)L = 0.05, (αv)R = 0.5

VI. Conclusion

Part of an extensive investigation of some simple first and second-order schemes that may be used to
compute approximations of solutions of the Baer-Nunziato model has been reported here; further details and
other test cases including various EOS can be found in28 .

Eventually, we would like to emphasize the following features:

• For all test cases, and whatever the EOS is, we retrieve h1/2 and h2/3 rates of convergence in L1

norm, for first and second-order schemes respectively. This was expected (see10–12 that deal with Euler
equations), and it confirms preliminary results of;23

• None among existing schemes enables to preserve pure void fraction waves (VFW) on coarse meshes,
even when using perfect gas EOS within each phase; nonetheless, basic schemes that have been inves-
tigated here yield correct convergence when the mesh is refined; this is in agreement with results of10

for one-dimensional Euler equations with complex EOS;

• The whole suggests to go further on and benchmark all existing schemes such as those proposed and
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described in1,2, 26,33,36 . Moreover, the search for VFW preserving schemes seems to be a challenging
and useful purpose for the BN community.

Part of our current work consists in computing water-hammer flow simulations using the present model and
numerical techniques.
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pressions”, PhD thesis, Université Aix-Marseille I, Marseille, France, 2007.

19 Hérard, J.-M., ”A three-phase flow model”, Mathematical Computer Modelling, vol. 45, 2007, pp. 432-455.
20 Hérard, J.-M., ”An hyperbolic two-fluid model in a porous medium”, Comptes-rendus Mécanique, vol. 336, 2008, pp.
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22 Hérard, J.-M., and Hurisse, O., ”Schémas d’intégration du terme source de relaxation des pressions phasiques pour
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Figure 2. Approximate solutions for variables α1, ρk, uk, pk, k = 1, 2 for test case 1 by Schwendeman-Wahle-
Kapila, with first-order and second-order Rusanov schemes (SR1 and SR1-ORDER2), using meshes with 200
and 500 cells, setting CFL = 0.5, t = 0.2.
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Figure 3. L1 norm of the error for variables α1, ρk, uk, pk, k = 1, 2 for test case 2 with SR1, PFRAC32 with
CFL = 1/2, t = 0.15
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Figure 4. Approximate solutions for variables αv , ρk, uk, pk, k = l, v for test case 2 by Tokareva and Toro , using
SR1, and PFRAC32 schemes with 500 and 5000 cells. CFL = 1/2, t = 0.15
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Figure 5. L1 norm of the error for variables αv , ρk, uk, pk, k = l, v for test case 2 by Tokareva and Toro, with
schemes SR1 and SR1-ORDER2, setting: CFL = 1/2, t = 0.15
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Figure 6. Approximate solutions for variables αv , ρk, uk, pk, k = l, v for test case 2 by Tokareva and Toro, for
first and second-order schemes SR1, SR1-ORDER2, with 200, 500 cells, setting CFL = 1/2, t = 0.15
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Figure 7. L1 norm of the error for variables αv , ρk, uk, pk, k = l, v for test case 3 of a moving VFW, with schemes
SR1 and PFRAC3 (CFL = 1/2, t = 0.25).
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Figure 8. Approximate solutions for variables α1, ρk, uk, pk, k = 1, 2 for test case 3 of a moving VFW, with
first-order Rusanov schemes SR1, PFRAC3, using 500 and 5000 cells (CFL = 1/2, t = 0.25).
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Figure 9. L1 norm of the error for variables αv , ρk, uk, pk, k = l, v for test case 3 of a moving VFW, with schemes
SR1 and SR1-ORDER2 (CFL = 1/2, t = 0.25).
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Figure 10. Approximate solutions for variables αv , ρk, uk, pk, k = l, v for test case 3 of a moving VFW, using first
and second-order schemes SR1, SR1-ORDER2 with meshes containing 200 and 500 cells ( CFL = 1/2, t = 0.25)
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