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Abstract

Transport coefficients, the elements of the so-called Onsager matrix, are required for accurate

mesoscopic simulations of kinetics or to predict macroscopic diffusion kinetic behavior. These

coefficients can be significantly affected by strain. At the atomic scale, the effect of strain on atomic

jump frequencies can be computed using density functional theory calculations. The present work

shows how these results can be used to compute the strain-dependent Onsager matrix. Using

an analytical method—the self-consistent mean field method—we compute analytical expressions

of the Onsager matrix describing vacancy-mediated diffusion of impurities in face centered cubic

structures under elementary strains. Also, we compute the derivatives of the Onsager matrix

with respect to strain—the elasto-diffusion tensor—to investigate strain sensitivity of transport.

We show that the atomic scale symmetry breaking induced by strain changes diffusion behavior

qualitatively. This phenomenon is shown for the Ni(Si) alloy under tetragonal strain. The terms

of the Onsager matrix are found to be non-Arrhenian, as well as their derivative with respect to

strain. In this case, nonlinear effects leading to a solute drag reduction are identified.
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The properties of structural and functional materials are often optimized by control-

ling their microstructure. The required microstructure usually corresponds to an out-of-

equilibrium state of the alloy which is obtained during heat treatment. The evolution of this

microstructure is often controlled by atomic diffusion, which affects the chemical homoge-

nization of castings1,2 or the rate of precipitation of second phases during heat treatments3,4.

A stable microstructure is also required for the material to maintain its properties during

use. Diffusion is an activated process which is usually very slow at room temperature.

However, many applications subject the material to high temperature or irradiation thus

enhancing diffusion5. One effect of irradiation in crystalline alloys is the creation of Frenkel

pairs of point defects in the bulk. This supersaturation of point defects accelerates diffusion,

and their elimination at sinks such as dislocations or free surfaces induces sustained atomic

fluxes. Solute atoms can be dragged towards the vacancy sinks or away from them, depend-

ing on the kinetic correlations between solute and vacancy, leading to radiation-induced

segregation and precipitation6–9.

Defects such as dislocations or interfaces act as sinks for point defects but also generate a

strain field, which alters diffusion properties10–13. By breaking the symmetry of the crystal

structure, the strain field induces anisotropy of the diffusion properties10,11,13 The Onsager

matrix—which relates chemical potential gradients to atomic fluxes—is then a second-rank

tensor. The Onsager matrix of diverse cubic structures has been computed14–22. However,

anisotropic structures have received little attention, even if the impurity and matrix diffusion

coefficients have been computed in some cases23–26.

In a previous work, we investigated the effects of the stress field of an edge dislocation

on Si impurities fluxes in Ni27 using density functional theory (DFT) calculations to com-

pute the diffusion properties at the atomic scale, and using this data to build the Onsager

matrix. Ref. 28 details how the effect of strain on migration barriers for atomic jumps

leading to diffusion can be calculated with DFT for this alloy. Here we demonstrate how

these results can be used to compute the full Onsager matrix of an anisotropic system to

produce the strain-dependent mesoscopic diffusion properties. First, the methods used are

briefly reviewed. Next, some qualitative effects of strain on the Onsager matrix are then

demonstrated using an ideal solid solution. Finally, the calculations of the Onsager matrix

are applied to the case of the Ni(Si) alloy. For that system, the elasto-diffusion tensor that

describes the effect of strain on the diffusion properties is provided, and symmetry breaking
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and non-linear effects of strain on the Onsager matrix are discussed.

I. METHOD

At the atomic scale, diffusion is controlled by the frequency at which the exchanges

between atoms and vacancies take place. This frequency depends on the local chemical

environment. Using the notation introduced in Ref. 18, these frequencies can be written in

the case of an infinitely dilute alloy A(B) as w
(ζ)
abc , where a designates the vacancy-jumping

atom vector symmetry class, b the solute-jumping atom symmetry class and c the vacancy-

solute symmetry class, while ζ = 0 for jumps in pure A, ζ = 1 for jumps from a site in

interaction with a solute toward another one, ζ = 2 for a vacancy-solute exchange, ζ = 3 for

a jump dissociating the solute-vacancy pair and ζ = 4 for an association jump. Moreover,

within Vineyard’s harmonic transition state equation29, these frequencies are Arrhenius,

w
(ζ)
abc = ν

(ζ)
abce

−Emig,(ζ)
abc /(kBT ), (1)

where kB is the Boltzmann constant, T is the temperature, ν
(ζ)
abc is the attempt frequency,

and E
mig,(ζ)
abc is the migration enthalpy. In the following, we omit unnecessary indices in ν

and Emig when no confusion is possible (e.g., w
(2)
a ). Both ν and Emig are sensitive to the

chemical environment and to the strain field, and can be computed with DFT28.

At the mesoscopic scale, in a near equilibrium system, the atomic flux per unit area Jα of

a chemical species α (including vacancies V) is related to the gradients of chemical potential

∇(µβ/kBT ) of all atomic species β by the Onsager matrix Lαβ
30,

Jα = −
∑
β

Lαβ∇
(
µβ
kBT

)
. (2)

Hence, the Onsager matrix generalizes the diffusion coefficients to the case of non-ideal

mixtures. It also quantifies kinetic correlations: for example, in an A(B) binary alloy with

vacancies, the LBV term of the Onsager matrix describes the correlations between the dis-

placements of the solute atoms B and the vacancies V. If LBV is positive, vacancy fluxes

will drag solute atoms B so that solute will segregate in the vicinity of sinks, while if LBV is

negative, vacancy fluxes will induce solute flux in the opposite direction.

A cubic structure has an isotropic (scalar) Onsager matrix L0
αβ, where α and β designate

the different chemical species A, B, or V. The Onsager matrix is a non-linear function of the
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atomic jump frequencies, and strain-induced symmetry breaking transforms each coefficient

of the Onsager matrix into a strain-dependent second-rank tensor Lijαβ(ε). For infinitesimal

strains εkl, this dependency can be described using a fourth rank tensor L′ =
(
∂Lxyαβ
∂εkl

)
=

(L′xy,klαβ )

Lxyαβ = L0
αβδ(x,y) +

∑
ζ,a,b,c

∂Lxyαβ

∂w
(ζ)
abc

∂w
(ζ)
abc

∂εkl
εkl

= L0
αβ +

∑
k,l

∂Lxyαβ
∂εkl

εkl,

(3)

where δ is the Kronecker symbol. Considering a solid at mechanical equilibrium (no net

torque), the strain tensor ε is a symmetric tensor. The fourth rank elasto-diffusion tensor

L′ can be written more simply using the contracted Voigt notation of the elastic constants

as it possesses identical symmetry. For a cubic structure L′11αβ = L′22αβ = L′33αβ , L′12αβ = L′23αβ =

L′13αβ = L′21αβ = L′32αβ = L′31αβ and L′44αβ = L′55αβ = L′66αβ . Thus, the knowledge of the Onsager

matrix in the unstrained structure and of three of its derivatives is sufficient to describe the

effect of any infinitesimal strain on the diffusion properties. However for larger strains, non-

linearity can arise, in which case a specific calculation is necessary for each strain tensor. As a

consequence, a comprehensive determination of strain effects on the Onsager matrix requires

procedures sufficiently accurate to account for small perturbations and computationally

efficient for multiple calculations in the non-linear case.

One approach to computing the Onsager matrix is to use analytic methods such as the self-

consistent mean field (SCMF) method. This method allows quick and accurate computations

of the Onsager matrix and has been used for several cubic structures18,19, but no analytic

calculation of the Onsager matrix of anisotropic structure has yet been presented. As the

formalism introduced in Ref. 18 is able to tackle anisotropic structures, this method has

been chosen to compute the Onsager matrix of two structures derived from the fcc structure

by applying an elementary tetragonal strain ε33 and an elementary shear strain ε12. From

these two cases the whole elasto-diffusion tensor can be obtained in the linear limit using

Eqn. 3. The SCMF solution finds a steady-state solution to the master equation on a lattice

in the presence of an infinitesimal chemical potential gradient by considering thermodynamic

averages of single and pair occupancies; in the dilute limit, all higher-order averages can be

written in terms of single and pair averages, and so the expressions are exact.

In dilute alloys, a solute atom appreciably changes the energy landscape for a vacancy

4



out to a finite distance. Once this range is defined, the main approximation in SCMF

calculations is the cut-off distance of the kinetic correlations. Beyond this range, the SCMF

results converge exponentially with the number of “shells”, where each additional shell is

defined as the ensemble of sites that can be reached by one jump starting from any site

of the previous shell19. DFT calculations of the Ni(Si) system found non-negligible solute-

vacancy interactions up to a third nearest neighbor (NN) distance. As a consequence, SCMF

calculations with four shells have been performed in this work, where the first shell includes

42 sites around the solute atom, corresponding to all the sites up to the third NN sites in

the unstrained fcc structure. As the analytic expressions used in this work are cumbersome,

they are not detailed here but are made available in the supplemental materials31, as well

as a Matlab® routine that directly computes the Onsager matrix from a set of atomic jump

frequencies for each case presented.

Another approach to computing the Onsager matrix is using atomic kinetic Monte Carlo

simulations20,32,33. This method does not involve any explicit spatial cut-off of the kinetic

correlations34. As a consequence, it has been used in the current work to verify the ana-

lytic results in a few select cases. The Onsager Matrix is obtained using the Kubo-Green

formula35,36:

Lαβ =

〈
RαRβ

6Ωτ

〉
, (4)

where Ω is the volume and Rα the total displacement of all atoms of type α during the

integration time τ . We note here that the length of the Markov chains used in these simu-

lations introduces a cut-off in term of the number of atomic jumps considered. This implies

an increased computational cost of these simulations for highly-correlated systems involving

very different frequencies. In such a case, the computation time required by this method

limits in practice its accuracy and makes it unpractical for perturbative calculations.

As in Ref. 18 and 19, we chose in most cases to represent only the drag ratio LBV/LBB,

where B designates the impurity. This quantity is sensitive to kinetic correlations as LBV

becomes positive when solute drag occurs, while LBB is always positive and is used as a nor-

malization constant. In the dilute limit, both LBV and LBB are proportional to the vacancy

and the solute concentration. Hence, their ratio is independent from these concentrations.

Similarly, their derivatives with respect to strain are also proportional to the vacancy and the

solute concentration and are also represented normalized by LBB. However, LAV, LAA and

LVV are proportional to the vacancy concentration but not the solute concentration. Thus,

5



for the sake of clarity, their derivatives with respect to strain are represented normalized by

LBB

cB
.

II. EFFECT OF STRAIN ON A MODEL FCC ALLOY WITH FIRST NN INTER-

ACTIONS

Vacancy-mediated diffusion of impurities in a fcc structure can be described using the

five-frequency model37. This model describes diffusion when solute-vacancy interactions

only affect jumps involving the nearest-neighbor sites of the solute atoms. This simple

model exhibits several possible kinetic behaviors, including solute drag by vacancies19. The

effect of strain on diffusion is first studied by considering the effect of elementary strains on

this model and their potential effect on the Onsager matrix.

A. Geometry and atomic jumps

Under an elementary strain ε33 our cubic crystal becomes face centered tetragonal with

a ratio c/a 6= 1. The twelve first NN sites of the fcc structure are split into two symmetry

classes: a group of four sites a
2
〈110〉 written 1a and a group of eight sites a

2
〈011〉 and

a
2
〈101〉 written 1b. Thus, two different jump types are considered to model diffusion under

a ε33 strain. Similarly, the solute-vacancy interactions are split into two groups. Hence,

the five frequencies describing the migration of a vacancy in a dilute fcc alloy are split

into fifteen different frequencies. These frequencies are conveniently designated using the

nomenclature introduced in section I and are illustrated in Fig. 1. Three different frequencies,

w
(1)
1a1b1b, w

(1)
1b1b1a, w

(1)
1b1a1b, describe the displacement of the vacancy around the solute; two

jumps, w
(2)
1a and w

(2)
1b , the solute-vacancy exchanges; four frequencies describe the dissociation

of the solute-vacancy pair: w
(3)
1a∞1a, w

(3)
1a∞1b, w

(3)
1b∞1a and w

(3)
1b∞1b while four others describe their

association: w
(4)
1a1a∞, w

(4)
1a1b∞, w

(4)
1b1a∞ and w

(4)
1b1b∞. Finally, two frequencies are now necessary

to describe the displacement of the vacancy in the bulk: w
(0)
1a and w

(0)
1b .

Similarly, a shear stress ε12 lower the cubic symmetry to a monoclinic structure with an

angle γ 6= π/2, and splits the NN sites into three groups: a group 1a of two sites along the

a
2
[110] direction, a group 1c of two sites along the a

2
[110] direction and a group 1b of the

remaining eight sites a
2
〈101〉 and a

2
〈011〉 . Then, the five frequencies of the fcc structures
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FIG. 1. Vacancy jump frequencies in a dilute FCC binary alloy with first NN interactions under a

ε33 strain. Arrows indicate the direction of the vacancy jumps. The solute atom is represented by

a filled circle, and on the other sites of the lattice, numbers describe the distance from the solute

atom site with ∞ for sites beyond the range of the interactions. The w
(3)
i∞j corresponding to the

return jumps of the w
(4)
ij∞ jumps have been omitted for clarity.

are split into twenty eight frequencies: w
(0)
1a , w

(0)
1b , w

(0)
1c , w

(1)
1b 1b 1a, w

(1)
1b 1a 1b, w

(1)
1b 1b 1c, w

(1)
1b 1c 1b, w

(2)
1a ,

w
(2)
1b , w

(2)
1c , w

(3)
1a∞ 1a, w

(3)
1a∞ 1b, w

(3)
1a∞ 1c, w

(3)
1b∞ 1a, w

(3)
1b∞ 1c, w

(3)
1c∞ 1a, w

(3)
1c∞ 1b, w

(3)
1c∞ 1c, w

(4)
1b 1b∞, w

(4)
1a 1b∞, w

(4)
1a 1c∞,

w
(4)
1b 1a∞, w

(4)
1b 1b∞, w

(4)
1b 1c∞, w

(4)
1c 1a∞, w

(4)
1c 1b∞ and w

(4)
1c 1c∞. Fig. 2 shows the specific exchanges

corresponding to these frequencies. Note that all 1a jumps are parallel, as well as 1c jumps.

B. Solute drag in a model alloy under tetragonal strain

We consider here the case of a fcc lattice under an elementary strain ε33. In an approach

similar to the one used in Ref. 18, the effect of each frequency on the drag ratio of an model

system with no heat of solution has first been studied. Due to detailed balance, all the

frequencies corresponding to solute-vacancy pair dissociation are equal to the corresponding

association frequencies. Similarly, for jumps of the vacancy around the solute, the equality

w
(1)
1b 1b 1a = w

(1)
1b 1a 1b holds. The results of SCMF calculations for the different remaining

independent frequencies are shown on Fig. 3 with the drag ratio both in the [001] and in

the [010] directions.

The frequencies w
(2)
1a and w

(2)
1b have no effect on the drag ratio, and the effect of each of

the association or rotation frequencies are presented on Fig. 3 both along the [001] direction

7



FIG. 2. Vacancy jump frequencies in a dilute FCC binary alloy with first NN interactions under

a ε12 strain. Arrows indicate the direction of the vacancy jumps. The solute atom is represented

by a filled circle, and on the other sites of the lattice, numbers describe the distance from the

solute atom site with an ∞ signs for the sites beyond the range of the interactions. The w
(3)
i∞j

corresponding to the return jumps of the w
(4)
ij∞ jumps have been omitted for clarity.

and the [010] direction. First, the symmetry breaking at the atomic scale due to strain is

reflected at the mesoscopic scale, as the drag ratio in the [001] direction differs from the

drag ratio in the [010] direction. We observe that some of the different frequencies of the

strained structure taken independently can cause solute drag when they are much larger

than the jump frequency in the bulk. In comparison, both small and large values of the

association/dissociation frequency w
(4)
11∞ of the unstrained fcc structure can cause solute

drag. In this last case, solute drag is due to a trapping effect; such trapping occurs in

the strained case by a combination of lowering and raising the strain-split association and

dissociation frequencies.

To further investigate the potential effect of strain-induced splitting, we scale all of these
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FIG. 3. (color online) Drag ratio LBV/LBB of a model alloy under an elementary strain ε33 as a

function of (a) the different frequencies corresponding to w
(1)
111 in the fcc structure, (b) the different

frequencies corresponding to w
(4)
11∞ in the fcc structure. Filled symbols correspond to fluxes along

the [001] direction, empty symbols to fluxes along the [100] or [010] direction. The corresponding

ratio in the fcc structure is indicated by a dashed line.

jumps along the 1b direction by a common factor ϕ and compute the drag ratio. As the

w
(1)
111 frequency of the fcc structure plays an important role in the onset of solute drag by

controlling the 1-orbit19, the effect of a simultaneous variation by a factor ψ of all the

split frequencies originating from w
(1)
111 has been also studied. Fig. 4 shows contour plots

for variations of these two parameters ϕ and ψ. A large splitting coefficient ϕ reduces

solute drag in the [001] direction, while leaving the limit of solute drag in the (001) plane

unchanged. Thus, from both the single frequency parametric study and the (ϕ, ψ) study,

strain-induced frequency splitting appears to be likely to reduce solute drag.

C. Solute drag in a model alloy under shear strain

An elementary shear strain ε12 splits the five frequencies of the fcc lattice into 28 dif-

ferent frequencies, which can be organized in three groups according to the jump distance.

These groups are illustrated on Fig. 2. However, the potential effect of shear strain can

be understood with a splitting parameter χ such that for all ζ, i, j, w
(ζ)
1a ij = χ,w

(ζ)
1b ij = 1

and w
(ζ)
1c ij = χ−1. This model describes the effect of a linear variation with ε12 of all the

migration barrier by a same amount. Drag ratios for different values of χ have been obtained
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FIG. 4. (color online) Contour map of the drag ratio LBV/LBB of a model alloy under an elementary

strain ε33 in (a) the [001] direction and (b) the [100] direction as a function of the splitting parameter

ϕ and the 1-orbit parameter ψ (for all i, j, k, w
(1)
ijk/w

(0)
i = ψ, and for all j, k, ζ, w

(ζ)
1bjk/w

(ζ)
1ajk = ϕ).

The solid line indicates the onset of solute drag, while the dashed line for LBV = −LBB is a guide

to the eye.

using SCMF calculations and compared with AKMC simulations. In these simulations, a

simple-cubic supercell of the fcc cell containing 4 × 6 × 6 × 6 sites, including one occupied

by a B atom and one by a vacancy, is first equilibrated for 100 Monte Carlo steps (where

each step corresponds to 4× 6× 6× 6 transitions). Then kinetic correlations are computed

over 100 Monte Carlo steps, and averaged over 106 trajectories.

Fig. 5 shows the drag ratios in the [001] and the (001) plane. A very good agreement is

obtained between AKMC simulations and SCMF calculation for values of χ covering two

decades in the [001] direction, but in the (001) plane the agreement becomes poorer for

χ > 20 . Moreover, in that direction, the drag ratio drops abruptly for very large values of

χ. This behavior can be understood by observing that in that case, diffusion occurs primarily

only along parallel lines (cf. Fig. 2). Thus, we expect a behavior similar to a one-dimensional

chain, where the LBB term vanishes as the chain length increases38–40. Indeed, in the case

of χ� 1, LBB → 0, which induces the divergence of the drag ratio. The slight discrepancy

observed for χ > 20 is due to a too small integration time of the AKMC simulations, as well

as to the truncation of kinetic correlations in SCMF calculations.
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FIG. 5. Drag ratio LBV/LBB in the [001] direction and in the (001) plane of a model alloy under

an elementary strain ε12 as a function of χ (for allζ, i, j, w
(ζ)
1a ij = χ,w

(ζ)
1b ij = 1 and w

(ζ)
1c ij = χ−1).

Symbols indicate results of AKMC simulations, with error bars computed from their statistical

standard deviation, and the solid line is the SCMF result.

III. DIFFUSION OF SI IMPURITIES IN NI UNDER STRAIN

Previously, atomic-scale migration properties of Si impurities in Ni were computed using

DFT28. In this fcc alloy, non-negligible solute-vacancy interactions are found up to the third

NN sites thus requiring the calculation of sixteen frequencies to describe diffusion. Moreover,

the effect of infinitesimal strains on each of the sixteen migration barrier has been computed,

providing all the information required to study strain effects on diffusion in this alloy. This

work showed that migration barriers depends linearly on strain up to ε = 0.01.

Under a tetragonal strain ε33, the first, second and third NN distances of a fcc structure

are split into six different distances, and the sixteen frequencies are split into forty-four

different frequencies. These forty-four frequencies are represented on Fig. 6 and listed in

the App. A. The values of these forty-four frequencies can be deduced from the migration

barriers Emig
i of the 16 jumps of the unstrained case and the elastic dipole P of each jump

using relationships of the type Emig
j (ε) = Emig

i +
∑

p,q,k,l Θj(Ppq)εkl, where Θj is a rotation

operator. In the present case, using data from Ref. 28, the migration barrier is Em,ζ
1a i j(ε) =

Em,ζ
1ij + (8.09 eV)ε33 for a jump in the 1a direction, and Em,ζ

1bij(ε) = Em,ζ
1ij − (14.88 eV)ε33 in

the 1b direction. A similar approach can be used to describe the effect of a shear strain
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FIG. 6. Vacancy jump frequencies in a dilute FCC binary alloy with first, second and third NN

interactions under a ε33 strain. Arrows indicate the direction of the vacancy jumps. The solute

atom is represented by a filled circle, and on the other sites of the lattice the numbers describe the

distance from the solute atom site with an∞ sign for the sites beyond the range of the interactions.

ε12. In that case, nine different types of sites are within interaction range of the solute,

and the sixteen frequencies are split into eighty-four frequencies. SCMF calculations have

been performed for both tetragonal (ε33 6= 0) and monoclinic (ε12 6= 0)cases to determine

the elasto-diffusion tensor. Effects of strain beyond the linear regime were also investigated

using SCMF calculations in the tetragonal case.

A. Linear regime

Using data from Ref. 28, the Onsager matrix in the absence of strain has first been

computed using the SCMF method. The diagonal terms for the two atomic species are

represented in a logarithmic plot in Fig. 7 for a calculation with a solute concentration cSi =

10−4. While the impurity coefficients display approximately Arrhenian behavior, the Ni term

is non-Arrhenian beyond room temperature. For the linear limit in cSi, LNiNi = 1
2a
cvw

(0)
1 (1 +

cSib) where a is the lattice parameter and b is the “solute enhancement factor,”17 which is

a function of the sixteen different frequencies. At high temperatures LNiNi is dominated

by w
(0)
1 , as expected. Considering the solute-vacancy complex at distance z with binding
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energy Eb
z, if it has jumps such that Emig,ζ

xyz + Eb
z < Emig,0

1 , the solute enhancement term

dominates at low temperature, unless the solute concentration is strictly null. This is the

case for the Ni(Si) alloy as shown in Fig. 7, where the two asymptotic regimes associated

with frequencies w
(0)
1 and w

(1)
111 are represented as obtained from the bare mobility1941. The

crossover between the two regimes depends strongly on the difference of migration barriers

and to a lesser extent on the solute concentration. As the non-diagonal term LBV changes

sign at T ≈ 1060K, this term does not follow an Arrhenius relation either and cannot be

represented on a logarithmic plot. Thus, it is represented normalized by LSiSi in Fig. 8.

FIG. 7. (color online) Diagonal terms of the Onsager matrix as a function of the temperature for

the Ni(Si) alloy. The Ni term is green and the impurity term is red. The two asymptotic regimes

associated to the frequencies w
(0)
1 and w

(1)
111 are represented as extracted from the bare mobility19,

where y1 = exp(−Eb1/(kBT )) is the exponential of the first NN binding energy.

We compute the elasto-diffusion tensor using the SCMF method. In the Ni(Si) alloy, the

cross terms of the elastic dipole—which quantifies the effect of ε12 shear strain on diffusion—

are all an order of magnitude smaller than the diagonal terms28. It was assumed in Ref. 27

that the effects of a shear strain on diffusion could be neglected for this alloy. This assump-

tion has been assessed by computing the L′66αβ terms of the elasto-diffusion tensor, which

describes the effect of shear strain. A value L′66αβ/Lαβ = 1 ± 0.02 was found for all tem-

perature and chemical species, expressing the fact that shear strain affects diffusion only

through the geometrical deformation of the lattice and that its effect on the diffusion barrier

is negligible. Fig. 9 shows values of the other derivatives. At low temperature, these deriva-
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tives are inversely proportional to the temperature, in agreement with an Arrhenian relation

for the Onsager matrix and a linear dependency of the activation energy with strain, with

L′11SiSi = L′11SiV and L′12SiSi = L′12SiV as in the low temperature limit LSiV = LSiSi. Beyond room

temperature, this linear behavior disappears at a temperature similar to the one observed

for the terms of the Onsager matrix. Moreover L′12SiV and L′11SiV change sign and become

negative.

FIG. 8. (color online) LBV/LBB ratio for the Ni(Si) alloy in the absence of strain (solid line for

SCMF results, circles for AKMC results) and under a tetragonal tensile strain ε33 = −2ε11 =

−2ε22 = ε = 0.01 as a function of the temperature in the [100] direction (dashed line) and in the

[010] direction (dotted line). The error bars represent the statistical variance of AKMC simulations.

B. Effect of finite strains on Si diffusion

In order to study the effect of a finite strain on diffusion properties, a constant-volume

tetragonal strain has been applied to the fcc structure: ε = ε33 = −2ε11 = −2ε22 and

ε13 = ε12 = ε23 = 0. In this case the structure becomes tetragonal as in the case of the

simple ε33 strain. Fig. 8 shows the effect of this strain tensor on drag ratios. In the unstrained

case, solute drag occurs at low temperature and disappears at a temperature Tc ≈ 1060K.

This behavior is expected for fcc alloys with attractive solute-vacancy interactions19, with

Tc scaling approximately with the strength of this interaction. The symmetry breaking

induced at the atomic scale by the strain tensor is reflected in the mesoscale transport
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FIG. 9. (color online) Derivatives of the Onsager matrix of the Ni(Si) alloy with respect to strain.

The L′11 are dashed lines and the L′12 terms are solid, with black for the matrix term, red for the

impurity term and blue for the vacancy-impurity correlation.

coefficients. Moreover, Fig. 8 shows that strain can change even the nature of solute drag:

for a strain-dependent range of temperatures ∆T (ε) around the transition temperature Tc,

the drag ratio is negative in the [100] direction and positive in its normal plane. Thus, in

this range of temperature, solute atoms follow the vacancies in the (100) plane, but diffuse in

the opposite direction in the [100] direction, which can lead to non-trivial diffusion patterns

around defects that generate stress fields27.

In order to verify the accuracy of these calculations, the Onsager matrix of the Ni(Si) alloy

was been computed using SCMF calculations and AKMC simulations. AKMC simulations

were performed using a 4 × 6 × 6 × 6 site supercell as before, integrating trajectories over

10 Monte Carlo and averaging the results over 105 trajectories. An excellent agreement is

achieved at all temperatures between AKMC and SCMF results.

The Onsager matrix is a highly non-linear function of the jump frequencies. Thus, the

linearity of the migration barriers with respect to strain does not ensure the linearity of the

Onsager matrix with respect to strain. This non-linearity is striking in the case of the Ni(Si)

system under tetragonal compression ε33 = −2ε11 = −2ε22 = ε < 0. In the linear limit,

L33
αβ = −2L11

αβ = −2L22
αβ. However, non-linear effects arise at low strain, as shown on Fig. 10.

For ε < −0.005, the drag ratio suddenly drops at low temperatures, leading to the complete

elimination of solute drag. This phenomenon can be understood by observing the effect of
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FIG. 10. (color online) LBV/LBB ratio for the Ni(Si) alloy under a tetragonal compressive strain

ε33 = −2ε11 = −2ε22 = ε < 0 as a function of the temperature and ε along the [100] direction

(left) and the [010] directions (right).

strain on each frequency. As shown in Ref. 28, the main effect of this strain is to increase the

migration barrier along the strain axis, and to decrease the migration barrier in the normal

plane. This decrease facilitates the escape of the vacancy from the neighborhood of the solute

without contributing to solute drag along the strain axis: w
(1)
1b1a1b is responsible for solute

drag in the [001] direction, and while at low temperature for ε = −0.008, w
(1)
1a2a1a < w

(1)
1b1a1b,

for ε = −0.009, w
(1)
1a2a1a > w

(1)
1b1a1b; the vacancy can then move from the first to the second NN

sites and from there escape to the bulk. Hence, this splitting of the frequencies contributes

to the reduction of solute drag along the strain axis. Similarly, while this strain tensor

increases the drag ratio for small |ε|, nonlinear effects induce its decrease for −ε > 0.002.

Thus, a compressive tetragonal strain can suppress solute drag in all directions.

IV. CONCLUSION

The sensitivity of solute drag to stress depends on the strength of solute drag in the

underlying material system, and furthermore on the underlying crystal structure. For ex-

ample, we expect that closed-packed structures, like FCC and HCP, would have stronger

solute-drag stress-sensitivity than more open structures, like BCC. A first result of this work

is to provide analytic expressions of the Onsager matrix obtained using the SCMF method

in the case of a FCC structure. They are now available for quick and accurate calculation
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of vacancy-mediated diffusion in crystal structures derived from the fcc structure, for va-

cancy solute interactions up to the third NN sites. They have been assessed on select cases

using AKMC simulations, illustrating the ability of SCMF calculations to treat anisotropic

systems.

These expressions have been used to evaluate the effect of strain on diffusion in fcc

structures. The splitting of the atomic jump frequencies by strain leads to a symmetry

breaking of the Onsager matrix. A rich anisotropic behavior of the Onsager matrix has

been observed for the model case of an alloy with no heat of mixing on an fcc structure

with first NN solute-vacancy interactions under strain, where in most studied cases strain

reduces solute drag.

The effect of a tetragonal strain on the Onsager matrix of the Ni(Si) alloy has been

studied. The elasto-diffusion tensor has been computed, providing access to the whole linear

regime. We show that the different components of the elasto-diffusion tensors have a non-

Arrhenian behavior and can change sign at a temperature equivalent to the temperature Tc

at which solute drag disappears. Furthermore, the effects of a volume-conserving tetragonal

strain have been computed beyond the linear regime. It shows that a tensile strain can create

a temperature range in which qualitatively different behaviors take place along the strain

axis and perpendicular. Under a compressive strain, the strong non-linear behavior induces

a reduction of solute drag in all directions. It should be underlined that, as illustrated in

the case of the Ni(Si) alloy, the linearity of the effect of strain on the migration barrier does

not imply a linear behavior of diffusion properties. Thus, in applications where solute drag

would appear to be a hindrance, the non-linear behavior of the Onsager matrix could be

used to suppress solute drag by applying a controlled strain to the material.
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Appendix A: Frequencies involved in the case of a fcc structure with third NN

interactions under a ε33 strain

List of the 44 frequencies involved in diffusion in a fcc structure under a ε33 strain:

w
(0)
1a , w

(0)
1b , w

(1)
1a 1a 2a, w

(1)
1a 1a 1b, w

(1)
1a 2a 1a, w

(1)
1b 1a 1b, w

(1)
1b 1b 1a, w

(1)
1b 1b 2a, w

(1)
1b 2a 1b, w

(1)
1b 3b 1b, w

(1)
1a 2b 3b, w

(1)
1a 3a 3a , w

(1)
1a 3b 2b, w

(1)
1b 3a 3b,

w
(1)
1b 3b 3a, w

(1)
1a 1b 3a, w

(1)
1a 3a 1b, w

(1)
1b 1a 3a, w

(1)
1b 1b 2b, w

(1)
1b 2b 1b, w

(1)
1b 3a 1a, w

(1)
1b 1b 3b, w

(1)
1b 2a 3a, w

(1)
1b 3a 2a, w

(2)
1a , w

(2)
1b ,

w
(3)
1a∞ 1a, w

(3)
1a∞ 2a, w

(3)
1b∞ 1b, w

(3)
1b∞ 2a, w

(3)
1a∞ 3a, w

(3)
1b∞ 2b,

w
(3)
1a∞3b , w

(3)
1b∞3a, w

(3)
1b∞3b , w

(4)
1a 1∞, w

(4)
1a 2a∞, w

(4)
1b 1b∞,

w
(4)
1b 2a∞, w

(4)
1a 3a∞, w

(4)
1b 2b∞, w

(4)
1a 3b∞, w

(4)
1b 3a∞, w

(4)
1b 3b∞.

Appendix B: Frequencies involved in the case of a fcc structure with third NN

interactions under a ε12 strain

List of the 84 frequencies involved in diffusion in a fcc structure under a ε12 strain:

w
(0)
1a , w

(0)
1b , w

(0)
1c , w

(2)
1a , w

(2)
1b , w

(2)
1c , w

(1)
1a 1b 1b, w

(1)
1a 1b 3a, w

(1)
1a 1c 2b, w

(1)
1a 2a 2c, w

(1)
1a 2b 1c, w

(1)
1a 2c 2a, w

(1)
1a 3a 1b,

w
(1)
1a 3c 3c, w

(1)
1b 1a 1b, w

(1)
1b 1a 3a, w

(1)
1b 1b 1a, w

(1)
1b 1b 1c, w

(1)
1b 1b 2a, w

(1)
1b 1b 2b, w

(1)
1b 1b 2c, w

(1)
1b 1b 3b, w

(1)
1b 1c 1b, w

(1)
1b 1c 3c,

w
(1)
1b 2a 1b, w

(1)
1b 2b 1b, w

(1)
1b 2b 3a, w

(1)
1b 2b 3c, w

(1)
1b 2c 1b, w

(1)
1b 2c 3a, w

(1)
1b 3a 1a, w

(1)
1b 3a 2b, w

(1)
1b 3a 2c, w

(1)
1b 3b 1b, w

(1)
1b 3b 3c,

w
(1)
1b 3c 1c, w

(1)
1b 3c 2b, w

(1)
1b 3c 3b, w

(1)
1c 1a 2b, w

(1)
1c 1b 1b, w

(1)
1c 1b 3c, w

(1)
1c 2a 3b, w

(1)
1c 2b 1a, w

(1)
1c 3a 3a, w

(1)
1c 3b 2a, w

(1)
1c 3c 1b,

w
(3)
1a∞ 1a, w

(3)
1a∞ 2b, w

(3)
1a∞ 2c, w

(3)
1a∞ 3a, w

(3)
1a∞ 3b, w

(3)
1a∞ 3c, w

(3)
1b∞ 1b, w

(3)
1b∞ 2a, w

(3)
1b∞ 2b, w

(3)
1b∞ 2c,

w
(3)
1b∞ 3a, w

(3)
1b∞ 3b, w

(3)
1b∞ 3c, w

(3)
1c∞ 1c, w

(3)
1c∞ 2b, w

(3)
1c∞ 2c, w

(3)
1c∞ 3a, w

(3)
1c∞ 3b, w

(3)
1c∞ 3c, w

(4)
1a 1a∞, w

(4)
1a 2b∞,

w
(4)
1a 2c∞, w

(4)
1a 3a∞, w

(4)
1a 3b∞, w

(4)
1a 3c∞, w

(4)
1b 1b∞, w

(4)
1b 2a∞, w

(4)
1b 2b∞, w

(4)
1b 2c∞, w

(4)
1b 3a∞, w

(4)
1b 3b∞, w

(4)
1b 3c∞,

w
(4)
1c 1c∞, w

(4)
1c 2b∞, w

(4)
1c 2c∞, w

(4)
1c 3a∞, w

(4)
1c 3b∞, w

(4)
1c 3c∞.
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