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Author: Amélie Leclercq Anthony Nonell José Luis Todolı́
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Abstract 

Due to their outstanding analytical performances, inductively coupled plasma optical 

emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-

elemental measurements andalso for isotopic characterization in the case of ICP-MS. While 

most studies are carried out in aqueous matrices, applications involvingorganic/hydro-

organic matricesbecome increasingly widespread. This kind of matrices is introduced in ICP 

based instruments when classical “matrix removal” approaches such as acid digestion or 

extraction procedures cannot be implemented. Due to the physico-chemical properties of 

organic/hydro-organic matrices and their associated effects on instrumentation and 

analytical performances, their introduction into ICP sources is particularly challengingandhas 

become a full topic. In this framework, numerous theoretical and phenomenological studies 

of these effects have been performed in the past, mainly by ICP-OES, while recent literature 
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is more focused on applications and associated instrumental developments. This tutorial 

review, divided in two parts, exploresthe rich literature related to the introduction of 

organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides 

theoretical considerations in connection with the physico-chemical properties of 

organic/hydro-organic matrices, in order to better understand the induced phenomena. This 

focal point is divided in four chapters highlighting: (i) theimpact of organic/hydro-organic 

matricesfrom aerosol generation to atomization/excitation/ionization processes; (ii)the 

production of carbon molecular constituents and their spatial distribution in the plasma with 

respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental 

properties; and,(iv)the resulting spectroscopic and non spectroscopic interferences.This first 

part of this tutorial review is addressed either to beginners or to more experiencedscientists 

who are interested in the analysis of organic/hydro-organic matrices by ICP sources and 

would like to consider the theoretical background of effects induced by such matrices. 

The second part of this tutorial review will be dedicated to more pratical consideration on 

instrumentation, such as adapted introductions devices, as well as instrumental and 

operating parameters optimization. The analytical strategies for elemental quantification in 

such matrices will also be addressed. 
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Glossary of terms 

D3,2 Sauter mean diameter (µm) 

ICP inductively coupled plasma 

ICP-AES inductively coupled plasma atomic emission spectroscopy 

ICP-MS inductively coupled plasma mass spectrometry 

ICP-OES inductively coupled plasma optical emission spectrometry 

RF radio frequency (MHz) 

Stot total mass solvent transport rate (mg min-1 or µg s-1) 

Wtot total mass analyte transport rate (µg min-1 orµg s-1 ) 
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1. Introduction 

Inductively coupled plasma (ICP) techniques, particularly renowned for their sensitivity 

and selectivity [1], are the most widely used for trace-element measurements [2]. Three ICP 

technologies have been developed: optical emission spectrometry (ICP-OES, also called 

atomic emission spectroscopy, ICP-AES), mass spectrometry (ICP-MS) [1, 3] and to a lesser 

extent atomic fluorescence spectrometry (ICP-AFS).ICP sources allow the atomization and 

the almost complete ionization of all elements in a wide range of samples[4]. Therefore, ICP-

OES and ICP-MS techniques have been widely used over the years in various fields of 

applications,to carry out multi-elemental analyses and also isotopic characterizations in the 

case of ICP-MS(Figure 1)[1, 5].  

Most of the ICP studies are performed in aqueous mode. However, applications involving 

organic/hydro-organic matrices have considerably grown over the past years in many fields, 

including petroleum industry, biology, environment, etc.(Figure 2).Therefore, the 

introduction of this kind of matrices into ICP sources, via direct introduction or following a 

separation step, has become a full topic that deserves going further into consideration. Pure 

organic or hydro-organic matrices can be distributed following the classification proposed by 

Todolí and Mermet, according to[6]:(i)samples of organic nature, e.g.petroleum products 

(e.g.[7-11]); (ii)samples treated with organic solvents such as dissolution or analyte 

extractions (e.g.[12-15]); (iii)high-viscosity samples requiring dilution in organic solvents or 

micro-emulsion (e.g.[15-18]); and(iv)samples in mobile phases coming from separation 

techniques (e.g.[19-32]). 

Organic/hydro-organic matrices introduction into ICP sourcesremains challenging, due to 

theirvariable impactsat each stage of the instrumentation: sample introduction, 
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nebulization, aerosol transport, atomization/excitation/ionization steps, ions extraction, 

etc.The multiplicity of samples/matrices with different associated physico-chemical 

propertiesrenders the task much more difficult. 

Although ICP has been the subject of many books and reviews (e.g.[4, 5, 10, 11, 33-

56]),only few of these, principally focused on petroleum applications, deal with the 

introduction of organic/hydro-organic matrices[10, 11, 55, 56]. In addition, diverse liquid 

samples introduction devices have been recently reviewed, including some considerations 

inorganic/hydro-organic matrices properties[6].  

The first part of this tutorial review is addressed either to beginners or to more 

experienced scientists who are interested in the analysis of organic/hydro-organic matrices 

with ICP sources and would like to consider the theoretical background about the effects 

induced by such matrices. The aimof this partis to comprehensively explore the literature 

concerning theoretical considerations on(i) the impact of organic/hydro-organic matrices 

from aerosol generation to atomization/excitation/ionization processes; (ii) the production 

of carbon molecular constituents and their spatial distribution in the plasma with respect to 

analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; 

and, (iv) the resulting spectroscopic and non spectroscopic interferences. 

The second part of this tutorial review will be dedicated to more pratical 

considerationson instrumentation, such as adapted introductions devices, as well as 

instrumental and operating parameters optimization. The analytical strategies for elemental 

quantification in such matrices will also be addressed. 
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2. Physico-chemical properties of organic solvents and 

associated effects on ICP-OES and ICP-MS stages 

Organic solventscan be characterized by specific physico-chemical properties i.e. 

volatility, viscosity, surface tension, density, dissociation energy. They are reported in Table 

1 for the most common organic solvents encountered in ICPrelated applications.The nature 

of the solvent will induce variableimpacts on the ICP instruments and analytical 

performances. Depending on the application, different solvents are used. For example, the 

four most popular organic solvents used in petroleum fields are xylene, kerosene, toluene 

and hexane [6]. Considering liquid chromatography coupled to ICP, acetonitrile andmethanol 

are the major solvents used in mobile phases.Other solvents such asethanol, isopropanol, 

hexane, methylene chloride and tetrahydrofuran can also be encountered[57].  

 

2.1. Definitions and classifications 

According to Cohr [58], “the term [organic solvents] is a generic name for a group of 

organic chemicals or mixtures thereof which typically are liquid in the temperature range of 

0-250 °C”. These solvents are also relatively chemically inert [58].  

Organic solvents, containing at least one carbon atom,can be classified according to 

various criteria. For example, eight categories can be defined according to their functional 

groups: hydrocarbons, alcohols, glycol ethers, chlorinated solvents, ketones, ethers, esters 

and miscellaneous solvents [59]. Many physico-chemicalproperties can also be used to 

classify solvents such as melting and boiling points, vapor pressure, heat of vaporization, 

dissociation energy, volatility, refraction index, density, viscosity, surface tension, dipole 

moment, relative permittivity, polarizability, specific conductivity, etc.Among all these 
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properties, surface tension, viscosity, density, volatility and dissociation energy are of major 

importance regarding the introduction of organic/hydro-organic matrices into ICP sources 

and plasma stability [10]. However, some properties, such as volatility and dissociation 

energies, are not tabulated[10]but can be either determined by empirical methods (for 

example for volatile motor fuels [60]) or approximated from other properties.  

Volatility can be considered as an equivalent of the evaporation rate,i.e. the amount of 

evaporated solvent during a given period of time under controlled conditions. This property 

is linked to other physico-chemical properties such as boiling point, specific heat, vapor 

pressure, heat of vaporization, etc. Volatility can be approximated using only the boiling 

point or the specific heat[61]. Dissociation energies are not extensively tabulated either, but 

can be  roughly approximatedby summing the dissociation energy of the chemical bonds of 

the molecule. Consequently, the higher the number of chemical bonds, the higher the 

dissociation energy. Thus, dissociation energies for organic solvents are expected to be 

higher than for water.  

Overall, organic solvents exhibit lower surface tension values than water and wide ranges 

of viscosity, density and volatility[62].From Table 1, it is obvious that pure aqueous and 

organic/hydro-organic matrices will induce variable effects on the ICP instrumentation, 

which are discussed in the following sections. 
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2.2. Impacts of organic/hydro-organic matriceson ICP-OES and ICP-MS 

stages: from aerosol generation to atomization/excitation/ionization 

processes 

Analyses by ICP techniquesinvolvethree main steps before the detection by optical 

emission or mass spectrometry (Figure 3):  

(i)aerosol generationvia the nebulizer. In this case the liquid sample is transformed into 

an aerosol consisting of a mixture of droplets and vapor. Generally speaking, the aerosols 

generated by the nebulizer(i.e., primary aerosols) are too coarse, with around 100 m 

maximum drop diameters, to be directly introduced into the plasma. Futhermore, primary 

aerosols are highly polydispersed in terms of drop diameters and turbulent, with droplets 

traveling at velocities as high as 80 m s-1. Therefore, an additional step is required. 

(ii) aerosol transport through the spray chamber or desolvation system. This step is 

ofcrucial importance and its main role is to remove the aerosol coarsest droplets and to 

reduce the mass of solvent reaching the plasma. Additionally, the turbulences associated to 

the production of the primary aerosol are reduced and an electrical charge equilibrium is 

achieved. At the exit of the spray chamber, a finer, less dispersed in terms of drop size 

diameters and less turbulent aerosol than the primary one is obtained. This is the so-called 

tertiary aerosol that will be finally introduced into the plasma[63, 64]. 

(iii) atomization/excitation/ionization in the plasma. Volatilized analytes are converted 

into free atoms during the atomization, which are then excited (excitation step) and ionized 

(ionization step) and ions can be further excited.  

More details and references on these topics can be found in[6]. 
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To be effectively completed all these processes require adapted introduction systems as 

well as optimized operating conditions.Details on these two topics are provided in the Part II 

of this tutorial review. The signal finally obtained depends on the characteristics of the 

aerosol reaching the plasma both in terms of fineness and mass. The notion of “ideal 

aerosol” refers to the tertiary aerosol. Ideally, compared to conditions without aerosol, the 

aerosol reaching the plasma should modify neither excitation temperature and electron 

number density1 nor the ions extraction conditions in the case of ICP-MS [67]. Various 

features have been described to define an ideal aerosol: (i) tertiary aerosol drop size 

distribution: the drop diameter should be lower than the maximum acceptable by the 

plasma (i.e., d ≤ 10 µm); (ii) solvent load: this parameter should span 20 to 40 mg min-1 for 

aqueous matrices, whereas it is solvent dependent in the case of organic/hydro-

organicmatrices[68]; (iii) dissociation energy: solvents with low dissociation energies will 

                                                             
1Five fundamental properties of ICP discharges were claimed by Hasegawa and Haraguchi for 

ICP-OES [65]: plasma temperatures, electron number densities, atom and ion emission lines 

intensities, number densities of analyte and argon species, and spectral line widths. Two out 

of the five properties have been particularly studied, namely the plasma excitation 

temperature and electron number density [65]. Excitation temperature can be defined as 

the temperature governing the “population density of atomic level p which follows a 

Boltzmann distribution”. The electron number density is a simpler concept and can be 

described as “the number of free electrons in a unit volume”. The spatial distribution of 

excitation temperature and electron number density, in pure aqueous matrices, is well 

known and has been already discussed in the literature [65, 66]. 
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easily givean “ideal aerosol”; and, (iv) analyte transport rate: this parameter should be 

maximum [6, 69, 70]. 

Considering all these features, two are generally reported to characterize the tertiary 

aerosol: its amount (solvent loadand analyte transport) and fineness (drop size distribution), 

described by various parameters (Table 2) [6]. However, when organic solvents are present, 

the dissociation energy should also be evaluated for a relevant description of the tertiary 

aerosol. 

The term “solvent load” was introduced by Maessen et al. and defined as “the amount 

(mass) of solvent that enters the plasma in unit time” [68]. The solvent load must be lower 

than the maximum acceptable so as to minimize the plasma energy consumed by the solvent 

molecules. Meanwhile, the analyte transport rate must be maximized [6, 69, 70].  

 

The nebulization of organic/hydro-organic matrices generally affects both ICP-OES and 

ICP-MS at each stage, i.e. aerosol generation, aerosol transport, atomization, excitation and 

ionization steps and for ICP-MS, ion extraction (Figure 3) [10]. 

 

Aerosol generation 

Usually, a pneumatic nebulizer is employed to produce the primary aerosol. In this case, 

the solution is exposed to a high velocity gas stream. The gas transfers a fraction of the 

energy to the liquid stream thus yielding the aerosol. In the case of pneumatically generated 

aerosols, their properties are mainly affected by the surface tension, the viscosity and the 

volatility. A surface tension decrease requires less energy to dissociate the liquid and thus 

induces the production of finer aerosols [71]. A viscosity decrease also leads to the 

generation of finer aerosols, because it promotes the growing of instabilities on the 
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liquidsurface during the nebulization event[6, 10]. The volatility acts once the aerosol is 

produced and may significantly modify its fineness at locations close to the nebulizer tip. As 

a consequence, finer aerosols are generated in presence of organic/hydro-organic 

matricesas compared to pure aqueous solutions [10, 72]. Many studies have been conducted 

to describe the aerosol drop size distribution [73]. Two parameters can help describing the 

distribution of the primary aerosol: the mean diameter and the span, i.e. width of the drop 

size distribution. Predominantly, empirical expressions have been proposed to model the 

aerosol mean diameter, among them the D3,2, namely the Sauter mean Diameter, has been 

extensively used.A sample of these models is shown in Table 3. Some models (e.g., 

Nukiyama-Tanasawa[74, 75]) do not accurately predict the values of D3,2, whereas 

othershave been developed for particular operating conditions (i.e., nebulizer design, liquid 

and gas flow rates). Nonetheless, all of the shown equations recognize the important role 

played by the solution surface tension, viscosity and density on the primary aerosol 

characteristics.  

 

A summary of the impact of each physico-chemical property on the ICP steps is proposed 

in Table 4. Only few studies have been dedicated in the past to measure the drop size 

distribution in organic/hydro-organic conditions. However, as seen in Table 4, the main 

consequence of the presence of organic/hydro-organic matrices is the generation of finer 

primary aerosolwith respect to pure aqueous media[72, 76, 77].D3,2 was first correlatedwith 

the surface tension: water and formic acid solutions, with higher surface tension, generated 

aerosols with higher D3,2than organic solvents (in particular methanol, ethanol, butanol, 

methyl isobutyl ketone and hexane). Comparing organic solvents with similar surface 

tension, it was found that the higher the volatility, the lower the D3,2[63]. Besides, organic 
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solvents lead to a narrower drop size distribution [76, 77].However, both mean dropsize and 

span also change with the instrumental and operating conditions [63]. For example, in 

correlation with the surface tension, two solvent categories were distinguished depending 

on the shape of the span vs nebulizer gas flow rate: (i) the span reached a maximum and 

then decreased for organic solvents; while, (ii) it only reached a minimum for water and 

formic acid solutions. Thus, span slightly varied with the sample uptake rate but significantly 

with the nebulizer gas flow rate. For D3,2, empirical equations have been introduced taking 

into account the nebulizer gas flow rate [63, 74-76, 78, 79]. 

 

Aerosol transport 

Normally, the primary aerosol is generated inside a spray chamber, although a 

desolvation system can be also employed. This aerosol undergoes different processes, called 

transport phenomena that are responsible for the modification of its fineness and drop 

number concentration (Figure 4). These events are predominantly solvent evaporation, 

droplet coalescence and inertial impact losses. In the particular case of organic solvents, the 

aerosol transport through a spray chamber or a desolvation device, is mainly affected by the 

solution density and volatility [10]. Higher volatility promotes the solvent evaporation inside 

the sample introduction devices. This can lead to an increase of the solvent plasma load, 

Stot[80]. A rise of the solvent volatility also results in an enhancement of the analyte mass 

reaching the plasma, Wtot[6]. A lower densityyields coarser tertiary aerosols, higher solvent 

plasma loads and analyte transport efficiencies [6]. This is due to the fact that an increase in 

the density gives rise to a growth in the droplets inertia which are therefore more easily 

removed from the aerosol stream through impacts against the inner chamber 

walls.Asmentioned before, the solvent evaporation plays a very important role in terms of 
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tertiary aerosol characteristics, analyte and solvent mass delivered to the plasma. Therefore, 

a deeper consideration of this phenomenon is necessary. Evaporation causes a decrease in 

the drop diameter (D) at a rate (dD/dt) which is given by[81]: 

 

ܦ݀
ݐ݀ =

ܯ௩ܦ4
ܦߩܴ ൬ ஶܲ

ஶܶ
− ௗܲ

ௗܶ
൰ (1) 

where Dv is the solvent diffusion coefficient, M is its molecular weight, R is the gas constant, 

 is the solvent density, P and Pd are the partial pressure of the solvent in the carrier gas 

and the droplet surface, respectively, and T and Td are the temperatures in the carrier gas 

and droplet surface, respectively. 

 

By integrating the previous equation, a relationship between the drop diameter and the 

time can be found. By considering the change in drop area (dA/dt) caused by evaporation 

instead of the variation in drop diameter (i.e.,ௗ஺
ௗ௧

=  :the previous equation becomes ,(ܦߨ2

 

ܣ݀
ݐ݀ =

௩ܦܯߨ8
ߩܴ ൬ ஶܲ

ஶܶ
− ௗܲ

ௗܶ
൰ (2) 

 

As is may be seen dA/dt is independent of the drop diameter, therefore, the mass of 

solvent evaporated is proportionally higher for small than for big droplets. This is the so-

called Kelvin effect. In fact it has been indicated that only the aerosol finest droplets 

contribute to the solvent evaporation inside the spray chamber[46]. By considering that 

some aerosol droplets will not evaporate completely, the Thompson-Gibbs or Kelvin 

equation should be applied: 
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ܲ
௦ܲ

= ݌ݔ݁ ൤
ܯߪ4
 ൨ (3)ܦܴܶߩ

where P is the ambient pressure, Ps is the vapour pressure at the temperature T and σ the 

surface tension.  

 

Therefore, the former equation is transformed into [82]:  

 

௧ଷ(ܦ) = ଴ଷ(ܦ) − ଶܯ௩ܦ48]
௦ܲ(ܴܶߩ)ߪିଶ](4) ݐ 

 

or: 

 

௧ଷ(ܦ) = ଴ଷ(ܦ) −  (5) ݐܧ

where E is the so-called evaporation factor.  

 

The most important assumptions are that the aerosol is under isothermal conditions and 

that the aerosol flow regime is laminar[83]. The solvent nature plays a very important role 

from the point of view of aerosol transport, because it affects the evaporation factor. Thus, 

for instance, this parameter is three times higher for ethanol as compared to water [84]. 

 

Analyte atomization/excitation/ionization 

The atomization, excitation and ionization processes are influenced by both volatility and 

dissociation energy [10]. High volatility induces turbulences in the plasma because of the 

higher amount of solvent mass introduced per time unit. Besides, high dissociation energy 

involves an increase of the plasma energy required to reach fullmatrix dissociation.  
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In ICP-MS, these phenomena can induce perturbations during the ion extraction step and 

generate spectroscopic and/or non-spectroscopic interferences (Chapter 5). In general, 

efficiency of ion extraction is also affected by the matrix composition [44]. Furthermore, 

carbon deposition on injector, cones and/or lenses may occur (Section 4.3) [10]. 

 

Thus, to summarize, organic/hydro-organic matricesinduce antagonistic effects on the 

aerosol characteristics: beneficial due to the reduction of the mean drop size but 

detrimental because of the high solvent load and high associated dissociation energy.  

 

2.3. Plasma tolerance and robustness 

The organic solvents impact on plasma can be assessed considering plasma toleranceand 

robustness. Plasma tolerance can be defined as the maximum amount of a substance 

(solvent load, Stot) that can reach the plasma per time unit without any major instrumental 

and analytical consequences, such as carbon deposition, plasma extinction, poor stability, 

low sensitivity.Over time, various criteria and parameters have been considered to describe 

the notion of tolerance [14, 84-86].  

Plasma robustness can be defined as the plasma ability to accept matrix modifications 

without changes of its fundamental properties, i.e. temperature, electron number density, 

and of the spatial distributions of the species [87].  

For both tolerance and robustness, the importance of plasma radio frequency (RF) power 

and the matching network of the plasma coupling box was particularly stressed. 

 

The following sections review the development of generators and the notions of plasma 

tolerance and robustness toward organic/hydro-organic matrices in order to point out the 
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physico-chemical effects behind. Nowadays, the use of lower sample uptake rates makes it 

easier to increase plasma tolerance and robustness.  

 

Technological developments of RF generators  

RF generators and their associating matching boxes are key parts of ICP-OES and ICP-MS 

spectrometers to obtain both high plasma tolerance and robustness. Over the years, the 

main modifications of the RF generators have been linked to the need toreduce both 

theircost and size as well as to improve analytical performances. Various authors have 

summarized the technical characteristics of commercialized RF generators over time[6, 88-

90], Figure 5.  

The first studies byICP-OES were conducted with 5.4 or 7 MHz frequency generators 

working at 6.6 or 15 kW RF power. More recently, instruments have been equipped with 

generators working either at 27.12 or 40.68 MHz for ICP-OES or at 27.12, 32 or 40.68 MHz 

for ICP-MS with RF power in the 1.4-2.0 kW range [6]. Working with a higher frequency (c.a., 

40 MHz) offers an improvedgenerator-plasmacoupling efficiency which allows improved 

atomization/excitation/ionization processes and a reduced background continuum intensity 

in ICP-OES. The former point increases the plasma robustness making it more suitable forthe 

introduction of organic/hydro-organic matrices[6, 91]. 

The decrease of RF power induces a decrease of electron number density and 

temperatures in the plasma central channel [92].As higher solvent load and dissociation 

energies are involved in presence of organic components, plasma tolerance and robustness 

towards organic/hydro-organic matrices are expected to be lower than for aqueous 

matrices.  
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Notion of tolerance  

The notion of tolerance has been investigated through different concepts such as 

“maximum tolerable aspiration rate”, “limiting aspiration rate”, “ease of introduction”, 

based on variable instrumental criteria such as evolution of carbon deposition, feasibility of 

plasma ignition, plasma stability, minimum reflected power values, etc. [14, 68, 84-86].The 

experimental studies carried out on a wide range of organic solvents allowed evaluating the 

degree of plasma tolerance towards these matrices despite the variability of concepts and 

criteria employed (Table 5).For example, for particularly studied solvents such as 

nitrobenzene, acetone, hexane, clear common trends can be found. 

Several studies have linked the plasma tolerance with physico-chemical properties such 

as evaporation rate, vapor pressure, etc.[14, 84, 85, 93]. Plasma tolerancetowards 

solventswas shown to be governed firstly by their heat of vaporization, then by parameters 

impacting the aerosol formation,i.e. density, surface tension and viscosity,and also by heat 

capacity and heat atomization [93].A rather good correlation was also found between the 

measured evaporation rates and the “limiting aspiration rates”, i.e. plasma showing less 

tolerance for solvents with high evaporation rates, except for chlorinated hydrocarbons and 

alcohols [84].  

Various empirical relationshipsbetween plasma tolerance and physico-chemical 

properties have also been proposed [84, 93, 94].Another way to monitor the plasma 

tolerance is to consider signal intensities dependency with physico-chemical properties (i.e. 

density, viscosity and surface tension) through empirical equations[95, 96].  
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Plasma tolerance was also linked to solvent chemical structure mainly following: (i) the 

number of carbon atoms: the higher the number, the lower the plasma tolerance [7]; (ii) the 

oxygen to carbon ratio: the higher this ratio, the higher the tolerance [85, 97]. 

 

In order to help readers to have a rough idea of the plasma tolerance towardsa particular 

solvent, the tolerance(mL min-1)has been plotted as a function of volatility-related 

properties, i.e.evaporation rate, boiling point and specific heat, and also of surface tension, 

viscosity and density(Figure 6).In this Figure, organic solvents have been classified under 

three categories according to the plasma tolerance: (i) easy solvents; (ii) intermediate 

solvents; and, (iii) difficult solvents.  

Although no clear trends can be drawn for the so-called “intermediate solvents”, an 

approximate limit value of each property is proposed to classify high and low 

tolerancesolvents:(i)for most solvents with evaporation rates lower than around 100 µm3 s-1, 

the plasma exhibitsa high tolerance; (ii)for boiling points, the limit value shall be set around 

100 °C with high tolerance above this value; (iii)a surface tension higher than 30mN m-

1generally corresponds to a high tolerance; (iv)for viscosity, the limit shall be fixed at around 

1 mPa s with high tolerance above this limit; and, (v) a density higher than 0.85 g mL-1 is 

generally associated with a plasma high tolerance. 

 

The whole considerations discussed above allow to provide indications on plasma 

tolerance towards organic/hydro-organic matrices. However, experiments have still to be 

conducted in order to confirm the compatibility of a particular matrix with a given 

instrumental setup and associated operating parameters. 
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Notion of robustness  

Robustness has beenless studied than the tolerance for organic/hydro-organic 

matrices[98, 99].As specified above, robustness is characterized by the plasma ability to 

accept matrix modifications without changes on analyte signals that is to say without 

changes of plasma fundamental properties i.e. temperature, electron number density, and 

also by keeping a similar spatial distributions of species [87]. A robust plasma is also 

characterized by the dissociation of the matrix at low plasma height above the load 

coil(Section 3.2)[100]. Robust conditions are generally achieved at high RF powers, low 

nebulizer gas flow rates and large inner diameter injectors [6, 87, 101-105], even if, as it will 

be described in Part II, small inner diameter injectors are often used for organic/hydro-

organic matrices analyses.  

A common way to assess the matrix dissociation (i.e. robustness) by ICP-OES, is to 

measure ionic (II) -to-atomic (I) line intensities ratio of appropriate elements. Indeed, ionic 

lines, compared to atomic ones, are more sensitive to plasma conditions modifications. 

Typically Mg II 280 nm/Mg I 285 nm ratio was considered due to its high sensitivity to plasma 

conditions modifications and closeness of atomic and ionic lines excitation energies and 

wavelengths[87, 101, 104].  
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3. Molecular constituents in the plasma and their spatial 

distribution 

To better understand the impact of organic/hydro-organic matrices on the plasma 

fundamental properties, a study of the molecular species generated by organic/hydro-

organic matrices and their spatial distribution in the plasma with respect to the spatial 

analytes distributionis of major interest. Thepyrolysis products formed in the plasma with 

pure organic matriceshave been addressed by many authors. As seen thereafter, studies 

were only conducted by ICP-OES. 

 

3.1. Main constituents 

For aqueous aerosol, the main molecular constituent in the plasma, OH,is located on the 

plasma axis between 0 and 10 mm above the load coil (Section3.2)[106]. In early studies of 

carbon graphite vapors by mass spectrometry, Drowart et al. distinguished five ions: C+ 

(11.26 eV), C2+ (24.38 eV), C3+ (47.89 eV), C4+(64.49 eV) and C5+ (392.09 eV). Among them, C2+ 

and C3+ were the most abundant [107].  

Now considering pure organic matrices and ICP-OES, many species were reported:  

- atomic C, C2, CH, CN, NH and OH for benzene, carbon tetrachloride and dimethyl 

sulfoxide, and CS for sulphur-containing solvents[108], 

- in decreasing intensities order CN ≥ C2>> CS > OH > NO > CH > NH ≥ CCl and also atomic 

C and H in the case of 30 organic solvents[84]. 

Among these, three main carbon speciesare considered to be formed in the plasma with 

nitrogen-containing or nitrogen-free solvents: atomic C, C2 and CN [84, 109-111].In the 

particular case of xylene,mainly atomic C, atomic H and C2have been reported [112]. Overall, 
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organic solvents contribute to the reduction of OH [84], atomic Ar and H [113] band 

intensities while carbon species intensities increased [84, 113]. 

Within this frame, two ways were described to monitor the plasma tolerance and 

robustness during the introduction of organic/hydro-organic matrices using species 

distribution:(i)visual control of the C2lines characterized by an intense green visible emission 

[84] or of the cyanogen bands (CN) with purple color [96, 114]; and, (ii)monitoring of band 

intensities, for example atomic Ar, H andC or C2[113]. 

 

3.2. Spatial distribution of carbon species 

The knowledge of spatial distribution of carbon and non-carbonspeciesis of 

primeinterest[6, 100]in order to:(i)better characterize the background that can induce 

spectral interferences [100]; (ii)determine the plasma robustness [100] or tolerance; and, 

(iii)better evaluate the measurement area for an analyte [6]. 

Considering an axial symmetry of the plasma, spatial distribution of species can be 

described according to the radial coordinates and the axial coordinates (Figure 7). The latter 

can be called “observation height”, “viewing height”, “distance above the load coil” or 

“heightabove the load coil” considering ICP-OES and “sampling depth” for ICP-MS [115].  

Spatial distribution studies of the main carbon species in the plasma were mainly focused 

on axial coordinates while only few data are available dealing with radial distributions. Axial 

distributions are generally similar for atomic C and C2 according to the literature data, with 

few contradictions for CN[84, 97, 100, 108, 110-112, 116]. However, their respective 

bandintensities varied depending on the solvents, their concentrations and operating 

parameters (temperature, RFpower, gas flow rates, etc.)[84, 97, 100, 110, 111, 116]. 
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C2 

Overall, C2 species intensities are centered in the plasma axis and maximum was found 

around 2 to 10 mm above the load coil [84, 100, 108, 110-112, 116].  

Axial distributions were reported depending on the heights above the load coil with: (i) 

only a maximum at 9 mm above the load coil [108]; (ii) a slow and steady decrease from 5 to 

30 mm above the load coil [84]; or, (iii) a quite regular Gaussian-shape, centered between 2 

and 7 mm or even higher in the plasma, and intensities still detectable at around 12 mm 

[100, 110-112, 116].  

Considering the radial distribution, C2 was mainly confined in the central channel of the 

plasma [97] and around 2-3 mm on each side from the axis [111, 112]. 

 

Atomic C  

Generally, in ICP-OES, atomic C peaks around 3.5 mm from the plasma center (radial 

coordinates) and between 5 and 10 mm above the load coil[84, 100, 110, 111], see Figure 8.  

For various solvents, considering the axial distribution, atomic C intensities increased 

drastically from around 2 mm above the load coil to a maximum between 5 and 12 mm 

(mainly around 5-7 mm), followed by a slow decrease until 30 mm [84, 100, 110, 111].  

For the radial distribution measured at 5 mm above the load coil, maximum intensities of 

atomic C:(i)were steady or increased from the plasma axis to 3.5 mm; (ii)peaked at around 

3.5 mm from the plasma axis; and then, (iii)decreased from 3.5 mm to around 7-10 mm from 

the plasma center [111]. 

 

CN  
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For CN, the spatial distribution varies significantly with the solvent. In general, CN peaks 

(i) in plasma center around 5 to 10 mm above the load coil and/or(ii) at the edge of the 

plasmabetween 20 and 30 mm above the load coil [84, 100, 108, 110, 111]. 

The axial distribution was linked to the chemical composition of the solvents: nitrogen-

containing solvents exhibited two peaks, while only one peak, around15 to 20 mm height 

above the load coil, was reported for nitrogen-free solvents [84]. However, forthis latter kind 

of solvents, only one peak at 9 mm above the load coil (benzene, carbon tetrachloride and 

dimethyl sulfoxide) [108], or two peaks (amyl alcohol, carbon tetrachloride, chloroform, 

toluene, xylene, etc.) [100, 110, 111] were found.  

 

To summarize, Kreuning and Maessen proposed a qualitative picture describing the 

distribution of the “C2-tongue”, atomic Cand CN in the plasma (Figure 8) [111].According to 

this figure, C2 species, located in the plasma center,are firstly dissociated to form atomic C 

and moved away from the plasma axis. Then, atomic C reacted with nitrogen and/or oxygen 

coming from the surrounding air to form the CN- and/or CO-species at the outer edges of 

the plasma[84, 100, 106, 110, 111].The central CN peak,located at around 5 mm above the 

load coil,can originate from Ar gas contaminations or analysis of nitrogen-containing 

solvents[84, 100, 110, 111]. 

 

3.3. Spatial distribution of analytes 

The spatial distribution of analytes has also been widely studied by ICP-OES. The main 

trends indicate that the optimum height above the load coil in terms of analytes sensitivities 

(Cu, P, Mn, Mo, Sr, etc.) is solvent dependent [14, 68, 80, 100, 110, 111, 116-118](see a 

selection of studies in Table 6). 
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Almost all studies were conducted with pure organic matrices[14, 68, 80, 100, 110, 111, 

116-118]. Even if the impact of the solvent nature on analyte axial distribution is sometimes 

difficult to understand[14, 68, 80, 100, 110, 111, 113, 116-119], some studies have shown 

that analytes and C2 spatial distributions in the plasma are linked.Some authors have also 

reported a constant interval in axial coordinates between C2and analyte ionic lines maximum 

emission zonefor various solvents and plasma loads [111]. 

Lower optimum heights above the load coil have been reported for various analytes in 

pure organic or low organic contents (lower than 2 % v/v) (see Table 6)[14, 80, 113, 117, 

118]. This trend was explained by smaller droplets entering the plasma and/or higher 

desolvation rate due to organic matrices[113]. The situation becomes complex, because in 

other studies higher optimum heights above the load coil have been obtained for pure 

organic matrices as compared for water[68, 100, 110, 111, 116]. In this case, an increase in 

the carbon population, reducing the plasma effective power (see Part II) and delaying the 

analyte excitation processes has been claimed[110, 116]. 

Concerning radial distribution, it has been shown that the addition of 2 % (v/v) methanol 

is able to induce a widening of the analyte distribution which was inversely dependent on 

the m/z. This modified distribution was correlated with the methanol volatility and 

background ions C+, CO+ and ArC+distribution [120]. 
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4. Impact of organic/hydro-organicmatrices on plasma 

fundamental properties 

The carbon species have a direct impact on the plasma fundamental properties, i.e. 

thermal conductivity (transport of dissociation energy) and ionization energy. In order to 

evaluate this impact, experiments have been conducted to measure the excitation 

temperatureand electron number density with respect to variable organic/hydro-organic 

matrices. For excitation temperature, authors have used various iron[106, 110, 111, 116, 

121, 122],hydrogen [123] or vanadium lines [124] by ICP-OES.In this case, the most 

commonly employed element is neutral iron, because the atomic lines are located at closely 

spaced wavelengths over a wide range of energies[125]. The electron number densityis 

generally determined by using hydrogen (Hβ)line [106, 126].In this case, the 486.1 

nmhydrogen emission line width is significantly affected by the Stark broadening caused by 

the electric field generated by the plasma electrons and ions[125]. 

 

4.1. Excitation temperature 

The excitation temperaturehas been shown to be solvent dependent. Overall, increasing 

the amount of organic matrices up to a given level induces an increase of theexcitation 

temperature. Above that level the excitation temperature decreases [111, 123, 124]. For 

example, elevations of the excitation temperature up to 1000 K were reported in ethanol-

containing solutions at 15 % [123] and 30 % (v/v) with respect to aqueous media [124], while 

plasma excitation temperature decreases for higher organic contents.In another study at low 

RF power values (e.g., 0.75 kW),higher excitation temperatureshave been obtained with 

diluted acetic acid compared to water [122]. 
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However, some studies have reported a systematic 15-25 % excitation temperature 

decrease in both hydro-organic matrices (20 % (v/v) ethanol) and pure organic (xylene, 

carbon tetrachloride) [106, 116, 121]whatever the RF power or height above the load coil 

[106]. 

To understand the evolution of the excitation temperature in the plasma at various 

organic contents,temperature spatial distribution studies have been conducted both in 

radial [106, 121]and axialcoordinates (Figure 7) with respect to aqueous conditions [106, 

111, 116]. Considering the excitation temperature radial distribution,only a slight 

distribution broadening and maximum temperature areas modification were noticed at 

various heights above the load coil [106, 121].For the axial distribution,maximum excitation 

temperaturewas observed at 15 mm above the load coil in aqueous media [106, 116] and 

shifted at around 20 mm in various organic solvents[106, 111, 116]. In these cases, the 

maximum excitation temperatures in aqueous media were higher than in organic 

medium.Due to the dissociation of C2 species, organic matricescaused a decrease in the 

available energy on the plasma axis at low heights above the load coil.The maximum 

excitation temperature is therefore observed at higher heights following the dissociation of 

all carbon species[106, 111]. Thisinitial excitation temperature decrease can be linked to the 

different dissociation energies of the main species formed in the plasma: 4.3 eV for OH in 

aqueous conditions and 6.5 eV for C2 in organic media. Since the thermal conductivity 

increases with the dissociation energy of species [127], the thermal conductivity should be 

higher in organic conditions, leading to a decrease of the excitation temperature in the 

central channel [106, 128]. 
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In conclusion, it seems that increasing the amount of organic matrices up to a determined 

level has a positive impact on the plasma excitation temperature. Above that level, 

increasing further the organic content will lower the plasma excitation temperature.  

 

A way to compensate this effect is to increase the RF power, leading to higher plasma 

excitation temperature in the central channel associated to an increase of the C/C2 ratio as 

shown for example with methyl isobutyl ketone [109, 110, 128]. A RF power increase of 

about 500 W has also been advocated to optimize ICPs in organic media,leading to similar 

temperature conditions with respect to aqueous media [106]. 

 

4.2. Electron number density 

Few studies were conducted to measure the electron number densityin organic/hydro-

organicmatrices. Same trendsas those of excitation temperature have been observedwith an 

increase of electron number densityfrom low organic contents up to a determined level 

followed by a decrease at higher contents [99, 106, 126]. 

With pure xylene, at 15 mm above the load coil and 2.0 kW power, electron number 

density was two times lower compared to aqueous media [106]. Electron number density 

was around 20 % lower with pure ethanol [99] and even lower with ethanol-xylene 

mixtures[99], with respect to pure aqueous conditions. With pure organic matrices, less 

energy is available for ionization of the surrounding gas [106], due to the increased solvent 

load [99]. 

For hydro-organic samples,up to 25 % ethanol (v/v), the electron number density 

increased by 1.4-1.7 factor [99, 126]. This rise was, again, followed by a decrease up to 

100 %ethanol [99].Electron number density enhancement was correlated with the increase 
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of the hydrogen amount, explainedby two mechanisms:the lower ionization energy of H 

compared to Ar, and the production of atomic H from the thermal decomposition of 

ethanol[126]. 

In addition, radial distribution of the maximum electron density area was measured at 5, 

10 or 15 mm above the load coil[126]. Electron density maximum was observed in the 

plasma axis with 25 % ethanol whereas it was shiftedat 5 mm off axis in aqueous conditions. 

 

4.3. Carbon deposition 

Another well-known effect associated to carbon species is the deposition of soot all along 

the sample path: sample injector, cones and/or lenses due to the incomplete combustion of 

carbon [6, 10, 43, 44, 53, 129]. In some cases, carbon deposition can induce orifices clogging 

leading to sensitivity losses, instabilities, interferences and in the extreme case obstruction 

of the injector or the cones in ICP-MS. The most employed method to reduce carbon 

deposition is oxygen addition through the use of adapted introduction devices, in the 

nebulizer, the auxiliary gas flow, etc. For further information on these topics, readers can 

refer to the Part II of this tutorial review.  
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5. Spectroscopic and non-spectroscopic interferences 

Interferences are commonly divided in two categories:  

- spectroscopicor spectral interferences, occuring when atomic or polyatomic ions 

interfere with the m/z of interestusing ICP-MS or when a spectral line interferes with the 

line of interest using ICP-OES, 

- non-spectroscopicor non-spectral interferences, also called matrix effects, observed 

during the transport and generation of the aerosol or during the atomization, excitation, 

ionization or ion extraction steps (Figure 3)[43-45].  

Both type of interferences need to be eliminated, or at least reduced, for accurate 

measurements. An overview of spectroscopic and non-spectroscopic interferences 

associated with organic/hydro-organic matrices is presented hereafter and summarized in 

Figure 9. Some indications to counteract them are provided while more detailed analytical 

strategies will be described in the second part of this tutorial review.  

 

5.1. Spectroscopic interferences 

Spectroscopic interferences are defined for each type of instrument used (ICP-OES or ICP-

MS) and can be very difficult to predict in both cases because they depend on the sample 

matrix, analytes and analytical conditions. As previously discussed, organic/hydro-organic 

matrices generate pyrolysis products in the plasma such as atomic C, C2, CN, CS, CH, CN, etc. 

which can be considered as the main additional contributors to classical spectroscopic 

interferences encountered in aqueous conditions. 

 

ICP-OES 
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Spectral interferences encountered in ICP-OES originate from inherent argon spectrum 

and additional spectral lines coming from the matrix or the molecular/atomic species. These 

interferences can be divided in two types:(i)overlap with spectral lines from molecular and 

atomic species; and, (ii)background continuum variations from matrix. 

In order to help analysts to choose the relevantspectral line(s), interferences databases 

were published (e.g.[130, 131]).For example, the main carbon spectral interferences 

encountered in ICP-OES are given in Table 7. Preliminary analysis should also help to better 

anticipate the spectral interferences but in general, solvent-induced spectroscopic 

interferences are not a limiting factor for trace element analysis in organic/hydro-organic 

matrices.  

 

ICP-MS 

ICP-MS spectroscopic interferences induce intensities increase at the m/z of interest 

coming from the simultaneousmeasurement of both the considered isotope and the 

interfering species, such as M+, M2+, MO+, MOH+, etc. These spectral interferences can be 

divided into two categories:isobaric interferences, due to overlappings with isotopes of 

various elements, including doubly charged ions; and polyatomic interferences induced by 

the presence of atmospheric and plasma gases, solvents, sample matrices, etc.[44, 45]. 

In order to better anticipate them, extensive compilations of spectroscopic interferences 

have been published, mainly focused on polyatomic species[132-135]. While isobaric 

interferences are well known, polyatomic ones are still difficult to predict [136]. 

Examples of spectroscopic interferences induced by the presence of carbon species in 

ICP-MS are presented in Table 8,with the indicativerequired resolving power to 

overcomethem.A convenient way to overcome these induced C spectral interferences can 
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be the useof double focusing sector field instruments due to their high resolution 

capabilities [137, 138]. 

 

5.2. Non-spectroscopic interferences 

Non-spectroscopic interferences have been extensively reviewed (e.g. [43-45, 139]). They 

are related to the nature and concentration of the matrix, influencing all stages of 

instrumentation, from the sample introduction to the detection.  

High level of organic/hydro-organic matricesgenerally induce dramatic consequences on 

instrumentation and analytical performances in ICP techniques. 

At low level of organics (from a few percents up to 40 % in some particular cases), asignal 

enhancement effectcan occur. This particular phenomenonhas been extensively discussed in 

the literatureeither in ICP-OES or ICP-MS. A selection of studies illustrating this effect is 

presented below. 

 

Signal enhancements in hydro-organic matrices 

Experimental studies have been conducted to quantify signal enhancementagainst 

various matrices containing methanol[140-143], ethanol [144], acetonitrile[142, 145], 

methane [146], glycine[147], glycerol [146], glucose [146, 148], amines[149, 150], sodium 

bicarbonate[151], ammonium carbonate[141], etc. Signal enhancement was shown to 

increase with carbon content up to a determined value [146], then a more or less drastic 

decrease of the sensitivity at higher organic contentsis observed [142, 146].  

In general, signal enhancement can be considered as “element specific” [143, 144] and 

“carbon source specific”. Enhancement varied mainly with the nature and number 
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offunctional groups of the carbon source, for example –OH, [152]. Signal enhancement were 

found to be also associated with carbon sources physical states and physico-chemical 

properties such a boiling point, viscosity, dielectric constant, etc. [152, 153]. To illustrate the 

effects of variable levels of organic matrices on signal enhancement, a compilation of studies 

is proposed according to: (1) analytes (Table 9) and (2) carbon sources (Table 10).  

In ICP-MS, Allain et al. observed signal enhancement for almost all elements with 9-11 eV 

ionization energies (As, Au, Be, Hg, Se, Te and Zn) which was explained by charge transfer 

reactions[146].In another study, signal enhancements were observed for Y (6.22 eV) and Ge 

(7.90 eV) in diluted acetonitrile solutions and were also linked to charge transfer processes. 

The authors concluded that the higher the ionization potential, the higher the 

sensitivityincrease and the higher the organic content to reach it [145].Charge transfer 

reactions from C+ species to analyte atoms (M) may be considered as the main mechanism 

to explain signal enhancement[147, 154]. It follows the ionization process C+-species + M → 

C-species + M+[147]. This mechanism requires a M first ionization energy lower than the 

positively-charged carbon species ones [155, 156]. C+ (11.26 eV) is the main species involved 

but CO+ (14.01 eV), CO2
+ (13.77 eV), C2

+ (11.4 eV), ArC+ and other positively charged 

molecular carbon species can also play a role [147, 157]. Signal enhancement is also favored 

for M+ with energy close to that of the reactant ion (C+) [158, 159]. Besides, conversion of 

MO+ species (MO+ + C → M+ + CO) can enhance the sensitivity by reducing the refractory 

oxydes [143, 146]. Considering only this charge transfer mechanism, maximum 

enhancement factor can be theoretically calculated using the maximum ionization efficiency 

obtained from the Saha equation [160] (see Table 11). A comparison of experimental 

enhancement and maximumenhancement factors calculated considering only charge 

transfer mechanisms (Table 11) showed that for all elements studied with ionization 
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efficiency lower than 90 %, measuredenhancements were higher than the maximum 

calculated factor, except for B. This phenomenon was also observed, with some exceptions, 

for analytes with high ionization efficiencies. For example, higher enhancements were 

reported for Y (6.22 eV), Pb (7.42 eV), Rh (7.46 eV) and Li (5.39 eV)[140, 143] in diluted 

methanol and acetone, but for Co (7.88 eV), either signal stability [146], or higher 

enhancements [140] were observed in various hydro-organic matrices. In these studies, a 

shift of the maximum ion density zone towards the sampler and/or an improved aerosol 

transport efficiency was suggested in combination with charge transfer mechanisms, to 

explain the higher enhancements observed[140, 145]. In some cases, electrostatic effects in 

solution have also been evoked [120]. 

Signal enhancements depend on the nature of the matrix, its concentration and operating 

conditions and also on ion mass and ionization energy of the elementsin ICP-MS. Various 

mechanisms have been provided to explain these enhancements in hydro-organic 

matrices[143, 151, 152, 157, 161-164]. 

In ICP-OES, the presence of carbon reduces the intensity of some atomic lines for which 

excitation energies are lower than 6 eV. The signal is enhanced for atomic lines of higher 

excitation energies,whereas ionic lines are not affected by the presence of carbon[157, 165]. 
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6. Conclusion 

The physico-chemical properties of organic/hydro-organic matrices render their 

introduction into ICP sources particularly challenging due to the associated effects on all 

stages of instrumentation and analytical performances. This tutorial deals with theoretical 

considerations of effects induced by such matrices, to better understand the resulting 

phenomena from the aerosol generation to atomization/excitation/ionization processes. 

With respect to aqueous media, these matrices have antagonistic effects on the aerosol 

characteristics: beneficial due to the reduction of the mean drop size but detrimental 

because of the high solvent load and high associated dissociation energy. In relation to these 

aerosol characteristics, plasma tolerance and robustness are affected by the nature of the 

solvent, its concentration and instrumental setup with associated operating parameters.  

The production of carbon molecular constituents is also a consequence of the 

introduction of organic/hydro-organic matrices in ICP spectrometers, modifying the plasma 

fundamental properties and species distribution. Up to a given level, carbon content can 

have beneficial effects on excitation temperature and electron number density. Beyond this 

level, plasma tolerance and robustness are dramatically affected together with analytical 

performances. An overview of spectroscopic and non-spectroscopic interferences associated 

with organic/hydro-organic matrices has also been presented with indications to counteract 

them.  

More detailed practical considerations on instrumentation, such as the choice of adapted 

introduction devices, as well as instrumental and operating parameters optimization will be 

presented in Part II, together with analytical strategies for elemental quantification in 

organic/hydro-organic matrices.  
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Figures 

 

 

Figure 1: Evolution of publications number associated with a) “ICP-MS” and b) “ICP-AES” 

and“ICP-OES” topics from 1975 to 2013 (Web of ScienceTM database)[166] 
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Figure 2: Evolution of the publications number associated with “inductively coupled plasma” 

and “organic” topics from 1975 to 2013 (Web of ScienceTM database[166]) 
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Figure 3: Overview of the ICP-OES and ICP-MS main constituents 
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Figure 4: Overview of the aerosol transport processes involved in a concentric nebulizer 

coupled to a double pass spray chamber (from Todolí and Mermet [6]) 
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Figure 5: Historical evolution of RF generators for ICP-OES and ICP-MS. The upper boxes 

contain the RF power and the lower boxes the frequency [6, 88-90]. 
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Figure 6: Evolution of the tolerance (in mL min-1) [84]vs evaporation rate (µm3 s-1) [84], 

boiling point (°C), specific heat (in J g-1 K-1, 25 °C), surface tension (in nN m-1, 25 °C), viscosity 

(in mPa s, 25 °C) and density (in g mL-1, 20 °C)[167] for various organic solvents classified into 

three categories according to the plasma tolerance: (i) easy solvents (white diamond);(ii) 

intermediate solvents (grey diamonds); and, (iii) difficult solvents (black diamonds) (solvents 

without referenced physico-chemical data in[167] are not plotted). 

 

 

 

Figure 7: Schematic representation of the plasma part of an a) ICP-OES and b) ICP-MS 

including spatial coordinates (inspired by Albarede and Beard[168] and by Houk[160]) 
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Figure 8: Qualitative pictures of the spatial distribution of a) C2, b) atomic C and c) CN in the 

plasma (dark parts indicate increased intensities) (inspired by Kreuning and Maessen [111]) 
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Figure 9: Overview of the spectroscopic and non-spectroscopic interferences and ways to 

take into account their drawbacks (inspired by Agatemor et al.[43]) [44, 169] 
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Tables 

 

Table 1: Physico-chemical properties of commonly used organic solvents and water in ICP 

experiments  

1Estimated from the constants of the chemical bonds dissociation energies. 2Extreme values 

for ortho-, meta- and para-xylene.  

  

 Surface 

tension 

(mN m-1) (25 

°C)[167] 

Viscosity 

(mPa s)  

(25 °C)[167] 

Density 

(g mL-1)  

(20 

°C)[167] 

VOLATILITY Dissociation 

energy  

(kJ mol-1) 

(25 °C)1[170] 

Boiling point 

(°C)[167] 

Specific heat 

(J g-1 K-1) (25 °C) 

[167] 

Evaporation 

rate (µm3 s-1) 

[84] 

Water 71.99 0.890 0.99821 100.0 4.180 13.1 860 

Methanol 22.07 0.544 0.7909 64.6 2.531 47.2 1992 

Ethanol 21.97 1.074 0.7893 78.29 2.438 45.6 3472 

Acetonitrile 25.51 0.369 0.7825 81.65 2.229 / 2799 

Xylene2 28.01-29.76 0.581-0.760 0.86-0.88 138.37-144.5 1.710-1.753 18.5 9211 

Toluene 27.73 0.560 0.8668 110.63 1.707 58.4 7730 

Hexane 17.89 0.300 0.6593 68.73 2.270 298 9134 
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Table 2: Selected parameters generally employed to characterize the aerosol entering the 

plasma [6] 

Drop size distribution Solvent and analyte load 

D3,2 Sauter mean diameter - surface 

mean diameter or ratio of the total 

volume to the surface area of 

drops in an aerosol population 

(µm) 

Ql Sample uptake rate (mL min-1 or 

µL min-1) 

D4,3 Mass or volume mean diameter 

(µm) 

Stot Total mass solvent transport rate 

(mg min-1 or µg s-1) 

D50 Median of the volume drop size 

distribution (µm) 

Wtot Total mass analyte transport rate 

(µg min-1 or µg s-1) 

εn Analyte transport efficiency 

  εs Solvent transport efficiency 
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Table 3: Models employed for the prediction of the Sauter mean diameter of aerosols 

pneumatically generated. 

Model Comments Ref. 

Dଷ,ଶ =
585

V ඨ
σ
ρ

+ 597 ൤
η
σρ
൨
଴.ସହ

ቆ1000
Q୪

Q୥
ቇ
ଵ.ହ

 
D3,2 (µm): surface mean diameter of the drop size 

distribution of the aerosol, also known as Sauter 

mean diameter 

 (dyn cm-1) : solvent surface tension 

 (g cm-3): solution density 

 (dyn s cm-2): solution viscosity 

V (m s-1): difference between the velocities of gas 

and liquid streams at the nebulizer outlet 

Qg and Ql (cm3 s-1): volumetric gas and liquid flow 

rates, respectively 

[74, 

75] 

Modified Nukiyama-Tanasawa model 

Dଷ,ଶ =
86.4

V ඨ
σ
ρ

+ 105.4 ൤
η
σρ
൨
଴.ସହ

൭݁݌ݔ ൬−
ܳ௚

10଺ ௟ܳ
൰൱ 

 

 

[76] 

Rizk and Lefebvre model 

Dଷ,ଶ = 0.48݀௟ ቆ
௟ܳ

௚ܸଶ݀௟ߩ
ቇ
௔

ቆ1 + ௟ܳߩ௟
ܳ௚ߩ௚

ቇ
௔

+ 0.15݀௟ ቆ
η௟ଶ

௟݀௟ߩ௟ߪ
ቇ
௖

൬1 + ௟ܳߩ௟
ܳ௚ߩ௚

൰ 

D3,2 (µm): Sauter mean diameter (a ≈ 0.40; 

b ≈ 0.40; c ≈ 0.50; f ≈ 0.60; g ≈ 0.10; h ≈ 0.50) 

dl: liquid outlet diameter 

dp: pre-filmer diameter 

dh: mean diameter of the gas exit 

V (m s-1): difference between the gas and liquid 

velocities at the capillary exits 

σ (dyne cm-1): solution surface tension ρ (g cm-3): 

solution density.  

η: solution viscosity.  

Q (cm3 s-1): volumetric flow rate.  

In all cases, the subscript ‘l’ refers to liquid and ‘g’ 

to gas. 

[78] 

Shanawany-Lefebvre model 

Dଷ,ଶ = ݀௛ ቆ1 + ௟ܳߩ௟
ܳ௚ߩ௚

ቇ ൥0.33 ቆ ௟ܳ

௚ܸଶ݀௣ߩ
ቇ
௙

൩ ቆ
௟ߩ
௚ߩ
ቇ
௚

+ 0.68 ቆ
η௟ଶ

௟݀௣ߩ௟ߪ
ቇ
௛

 

[79] 
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Table 4: Effects of physico-chemical properties associated with organic matrices, on the 

different steps from the aerosol generation to the ion extraction (modified from Sánchez et 

al. [10]) 

Step Physical 

properties  

Organic solvents vs 

water 

Consequences 

Primary 

aerosol 

generation 

Surface tension 

(mN m-1) 

lower 

Finer primary aerosol(D3,2) 
Viscosity 

(mPa s) 

lower (with 

exceptions) 

Volatility higher (with 

exceptions) 

Aerosol 

transport 

Volatility higher (with 

exceptions) 

Higher amount of analyte and 

solvent in the plasma → higher 

solvent load (critical) (Wtot, Stot) 

Density (g mL-1) lower Coarser tertiary aerosol(D3,2) 

Higher amount of analyte and 

solvent in the plasma → higher 

solvent load (critical) (Wtot, Stot) 

Atomization

/excitation/

ionization 

Volatility higher (with 

exceptions) 

Plasma turbulence and degradation 

Dissociation 

energy (kJ mol-1) 

higher Plasma degradation 

Ion All parameters / Carbon depositions, interferences 
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extraction 
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Table 5: Plasma tolerance, expressed as: “maximum tolerable aspiration rate”,defined by no 

excessive carbon deposition or plasma extinction (in mL min-1)[85]; “limiting aspiration 

rates”,defined by stable plasma conditions without noticeable carbon deposition during 1 

hour (in mL min-1)[84]; “ease of introduction”[14]; “feasibility of the plasma 

ignition”[86];and, “maximum tolerable solvent plasma load”,defined by reflected power 

lower than 75 W and plasma stability at least 8 hours (in mg s-1)[68]. Uptake rates in mL min-

1 or mg s-1 are indicated in brackets.  

 TOLERANCE 

“Maximum 

tolerable 

aspiration 

rate” 

Low  

< 0.5 mL min-1 

Intermediate 

0.5-6.5 mL min-1 

High  

≥ 6.5 mL min-1 

Ref. 

ICP-OES 

1.7 kW 

(1980) 

benzene, diethyl ether  

(< 0.05) 

 

hexane (< 0.1) 

 

acetone, cyclohexane (0.1) 

 

heptane (0.2) 

 

toluene (0.4) 

methyl isobutyl 

ketone (1.5) 

 

xylene (2.5) 

 

chloroform, carbon 

tetrachloride (3.0) 

 

ethyl acetate 

(6.5) 

 

chlorobenzene, 

ethanol, 

methanol, 

nitrobenzene, 

butanol, 

pentanol, 

propanol (> 6.5) 

[85]1 
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“Limiting 

aspiration 

rate” 

Low  

< 2 mL min-1 

Intermediate  

2-5 mL min-1 

High  

≥ 5 mL min-1 

Ref. 

ICP-OES 

1.75 kW 

(1982) 

benzene, cyclohexane, 

diethyl ether, hexane, 

pentane, tetrahydrofuran 

(< 0.1) 

 

acetone, methanol, toluene 

(0.1) 

 

acetonitrile, heptane (0.2) 

 

carbon disulfide, isooctane, 

dimethylformamide (0.5) 

 

pyridine (1.0) 

 

ethyl acetate (1.5) 

decane, dimethyl 

sulfoxide, 

dichloromethane 

(2.0) 

 

ethanol, propyl 

acetate (2.5) 

 

chlorobenzene, 

chloroform, methyl 

isobutyl ketone, 

propanol (3.0) 

 

xylene (4.0) 

butanol, carbon 

tetrachloride, 

nitrobenzene, 

pentanol (> 5.0) 

[84]2 

      

“Ease of 

introduction” 

Impossible  Difficult  Easy Very easy Ref. 

ICP-OES acetone, chloroform, acetylacetone, amyl acetic acid, [14]3 
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1.6 kW 

(1982) 

benzene, 

cyclohexane, 

ethyl acetate, 

dioxan, 

hexane, 

methanol  

ethanol, 

toluene 

acetate, butanol, 

butyl acetate, 

isoamyl acetate, 

isobutyl acetate, 

isopropanol, methyl 

isobutyl ketone, 

propanol  

aniline, benzyl 

alcohol, 2-

butoxyethanol, 

carbon 

tetrachloride, 

diisobutyl 

ketone, 

diisopropyl 

ketone, 

dimethyl 

sulfoxide, 

hexanol, 

nitrobenzene, 

pyridine, tributyl 

phosphate, 

xylene 

     

“Feasibility 

of the 

plasma 

ignition” 

Not suitable (difficult 

solvents) 

Feasible Excellent Ref. 

ICP-OES 

1.9 kW 

ethanol, methanol, 

isopropanol  

chloroform, toluene butanol, 1,2-

dichloroethane, 

[86]3 
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(1984) methyl isobutyl 

ketone, octanol, 

xylene 

     

“Maximum 

tolerable 

solvent 

plasma load” 

Low Intermediate High  Ref. 

ICP-OES 

1.9 kW 

(1986) 

methanol (1.5)  chloroform (> 

10.7) 

[68]1 

1Limits for each group were drawn from the author’s conclusions. 2Data are displayed 

according to the Molinero et al. classification[93]. 3No numerical data were given by the 

authors.  
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Table 6: ICP-OES studies of height above the load coil (mm) for maximum sensitivity. Lower 

(bold), higher (italics) or similar (underlined) heights above the load coil for organic vs 

aqueous matrices. Analyses of aqueous standard solution in pure organic matrices have 

been preceeded by liquid-liquid extraction [14, 117, 118]or dilution in water miscible solvent 

steps[80, 110, 116].  

Solvent / 

uptake 

Analyte Optimization 

process 

Introduction device / optimum 

operating parameters1 

Height above the load coil (mm) Ref.  

PURE ORGANIC MATRICES 

Diisobutyl 

ketone 

1.8 mL min-1 

P Univariate2 Concentric nebulizer 

Neb3: 0.7 L min-1 / 1.6 kW 

Aux4: 1.1 L min-1 / Plasma5: 13 L 

min-1 

 Water Diisobutyl ketone [117] 

P I 16 14 

Diisobutyl 

ketone 

1.8 mL min-1 

Mo, Sb Univariate Concentric nebulizer 

Neb: 0.7 L min-1 / 1.4-1.5 kW 

Aux: 1.10-1.25 L min-1 / Plasma: 

14.5-16.0 L min-1 

 Water Diisobutyl ketone [118] 

Mo II 17 14 

Sb I 18 14 

Diisobutyl 

ketone 

1.8 mL min-1 

Cd, Cu, 

Fe, Mo, 

Ni, Pb, V, 

Zn 

Univariate 

 

 

 

Concentric nebulizer 

Neb: 0.65 L min-1 / 1.5 kW 

Aux: 1.2 L min-1 / Plasma: 13 L 

min-1 

 

 Water Diisobutyl ketone [14] 

Cd6 14 14 

Cu 21 18 

Fe 17 16 

Mo 17 14 

Ni 18 14 

Pb 18 16 

V 22 19 

Zn 17 16 

Carbon 

tetrachloride 

0.5 mL min-1 

Ba Univariate Concentric nebulizer – glass 

cylinder spray chamber 

Neb: 0.9 L min-1 / 1.5 kW 

Aux: 1 L min-1 / Plasma: 14 L 

min-1 

 height above the load coilwith carbon 

tetrachloride vs aqueous matrices (e.g. at 0 °C, 

10 mm for water, 16 mm for CCl4)  

[116] 

Carbon 

tetrachloride 

Ba Univariate Concentric nebulizer – glass 

cylinder spray chamber 

 height above the load coil with CCl4 vs 

aqueous matrices  

[110] 
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0.5 mL min-1 Neb: 0.9 L min-1 / 1.5 kW 

Aux: 0-2.3 L min-1 / Plasma: 14 

L min-1 

Chloroform 

0.8 mL min-1 

Cr, Cu, Li, 

Mn 

Univariate Concentric or V-groove 

nebulizer – spray chamber / T: 

-52 to 7.5 °C 

Neb: 0.7 L min-1 / 1.5-1.9 kW 

Aux: 1.5 L min-1 / Plasma: 25 L 

min-1 

 height above the load coil with increasing 

chloroform load 

[68] 

Chloroform  

1 mL min-1 

Mg Univariate Cross-flow nebulizer – double 

pass spray chamber 

Neb: 0.65-0.9 L min-1 / 1.0-1.5 

kW 

Aux: 0.5 L min-1 / Plasma: 10 L 

min-1 

 height above the load coil with increasing 

chloroform load  

[100] 

Toluene 

2.0 mL min-1 

Cr, Cu, 

Fe, Mn, 

Zn 

Univariate V-groove nebulizer – spray 

chamber 

Neb: 0.7 L min-1 / 1.75 kW 

Aux: 1.5 L min-1 / Plasma: 25 L 

min-1 

 

 

 Water Toluene  

15 µmol s-1 

Toluene 

50 µmol s-1 

[111] 

Cr ≈ 12 ≈ 23 ≈ 17 

Cu ≈ 16 ≈ 23 ≈ 17 

Fe ≈ 16 ≈ 23 ≈ 17 

Mn ≈ 16 ≈ 23 ≈ 17 

Zn1 ≈ 15 ≈ 12 ≈ 12 

Acetone 

chloroform 

cyclohexane

methanol 

Water:  

0.65 mL min-1 

Organic: 0.1-

0.7 mL min-1 

Cu 

Mn 

Simplex7(3 

gas flow 

rates, RF 

power, 

temperature, 

height above 

the load coil) 

V-groove high-solids nebulizer 

– Scott-type double pass 

jacketed spray chamber 6 T: -

25 to 55 °C 

Neb: 0.4-3.0 L min-1 / 1.0-2.5 

kW 

Aux: 0-3.0 L min-1 / Plasma: 15-

34 L min-1 

 

Height above the load coil: 0-

60 mm 

 Cu Mn [80] 

Water 41 18 

Cyclohexane 32 12 

Methanol 18 12 

Hexane1 51 20 

Chloroform / 16 

Acetone 32 18 

HYDRO-ORGANIC MATRICES 

Acetone, Sr Univariate Concentric nebulizer – Scott-  height above the load coil with increasing [113] 
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acetonitrile, 

ethanol (0-2 

% organic 

solvent v/v) 

1.1 mL min-1 

type double barrel spray 

chamber 

Neb: 0.9 L min-1 / 1.0 kW 

Aux: 0.9 L min-1 / Plasma: 10 L 

min-1 

solvent percentage 

1Optimum operating parameters in organic conditions. Note that the optimum height above 

the load coil in aqueous conditions are obtained with specific optimized operated 

parameters. 2Univariate search: optimization of one parameter, other parameters kept 

constant. 3Nebulizer gas flow rate. 4Auxiliary gas flow rate. 5Plasma gas flow rate. 6Exception. 

7Simplex optimization: multivariate optimization based on variable step-size simple 

algorithm. 
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Table 7: Compilation of main carbon spectral interferences in ICP-OES. Only carbon lines 

with sensitivity higher than 100,000 a.u. (arbitrary unit), interfered spectral lines, with 

wavelengths delta lower than 0.1 nm and sensitivity up to 1 % of those of the carbon lines 

are considered[131]. 

Spectral 

carbon line 

(nm) 

ICP 

sensitivity 

(a.u.) 

Interfered spectral lines (wavelength delta < 0.1 nm) 

Spectral line Sensitivity 

(a.u.) 

Spectral line Sensitivity 

(a.u.) 

Spectral 

line 

Sensitivity 

(a.u.) 

C I 

296.7224 
4,300,000 

La I  350,000 Hf I 170,000 W I 68,000 

Dy II 260,000 Fe I 140,000 Cr I 62,000 

Cr I 260,000     

        

C I 

296.4839 
4,300,000 

Gd I 13,000,000 La I  320,000 Re I 87,000 

Hf I 400,000 Nb I 190,000 Ta II 85,000 

Er II 370,000 Nb I 190,000 Zr II 52,000 

La I 330,000 Y I 110,000   

        

C I 

424.6622 
1,700,000 

Sc II 2,500,000 Nd II 500,000 Nd II 370,000 

U I 1,400,000 Nd II 460,000 Mo I 230,000 

Sm II 640,000 Nd I 410,000 Sm II 150,000 

Gd I 540,000 Nd II 380,000 Tm II 25,000 

        

C II 

232.3689 
120,000 

Yb II 170,000 Co II 10,000 W II 8,400 

Os I 25,000 Ir I 9,400 Nb II 8,000 

Os I 22,000 Nb II 8,600 In I 2,500 

Nb II 17,000     

        

C II 

232.7152 
120,000 

Pd I 87,000 Ge I 23,000 Ni II 3,300 

Co II 63,000 Fe II 7,100 Bi I 2,900 

Co I 33,000 Nb II 6,800 Fe II 1,400 
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C II 

232.5587 
120,000 

Ni I 120,000 Co II 14,000 Ta II 5,800 

Co II 63,000 W II 13,000 Ni II 3,300 

Co I 33,000 Pt I 11,000 Fe II 1,400 

Os I 22,000 W II 8,300 Co II 1,300 

Os I 18,000     

        

C II 

232.4857 
120,000 

Yb II 170,000 Os I 18,000 Ir I 9,400 

Ni I 120,000 Nb II 17,000 Nb II 8,600 

Os I 22,000 W II 13,000 Ta II 5,800 

Os I 22,000 Co II 10,000 In I 2,500 

        

C II 

232.8322 
120,000 

Si II 200,000 Ge I 23,000 Ru II 4,100 

Pd I 87,000 W II 17,000 Bi I 2,900 

W I 68,000 Fe II 7,100   
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Table 8: Compilation of carbon related interferences for various isotopes in ICP-MS and 

associated resolving power to overcome them([133, 135, 136, 171] and references therein) 

Isotope Abundance 

(%) 

Carbon related interferences Resolving power  

24Mg 79.0 12C2
+ 1,600 

25Mg 10.0 12C2
1H+, 13C12C+ 1,100 – 1,400 

26Mg 11.0 12C14N+, 12C2
1H2

+, 12C13C1H+ 800 – 1,300 

27Al 100 12C15N+, 13C14N+, 1H12C14N+ 900 – 1,500 

28Si 92.2 12C16O+ 1,600 

29Si 4.7 13C16O+, 12C17O+, 12C16O1H+ 1,100 – 1,300 

30Si 3.1 12C18O+, 13C17O+, 13C16O1H+, 12C17O1H+, 

12C16O1H2
+ 

800 – 1,200 

31P 100 13C18O+, 12C18O1H+ 900 – 1,100 

44Ca 2.1 12C16O2
+ 1,300 

45Sc 100 12C16O2
1H+, 13C16O2

+ 1,100 – 1,200 

46Ti / 46Ca 8.3 / 0.001 13C16O2
1H+ 1,000 

47Ti 7.4 12C35Cl+ 2,700 

48Ti 73.7 12C4
+, 36Ar12C+ 900 – 2,400 

49Ti 5.4 36Ar13C+, 36Ar12C1H+, 12C37Cl+ 1,800 – 2,700 

51V 99.8 38Ar13C+ 2,300 

52Cr 83.8 40Ar12C+ 2,400 

53Cr 9.5 40Ar13C+ 2,100 

60Ni 26.2 12C16O3
+ 1,100 
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63Cu 69.2 36Ar12C14N1H+, 14N12C37Cl+, 16O12C35Cl+ 1,300 – 1,800 

65Cu 30.9 12C16O37Cl+, 12C18O35Cl+ 1,600 – 2,000 

75As 100 23Na12C40Ar, 12C31P16O2
+ 1,800 – 2,500 

77Se 7.6 12C19F14N16O2
+ 1,100 
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Table 9: Compilation of selected examples resulting in signal enhancement higher than 1.1 

for analytes classified according to their ionization energies. Main enhancement mechanisms 

are indicated 

Analyte 

(ionization 

energy) 

Carbon source (C) C (g L-1) Signal enhancement  Instrumentation (sample uptake, RF power, 

Neb, height above the load coil or sampling 

depth) 

Ref. 

Factor Principal source 

Rb  

(4.18 eV) 

Acetone(≈ 0.6 %) ≈ 3 ≈ 1.2 Aerosol1 
ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 [161] 

Methanol (≈ 5 %) ≈ 15 ≈ 1.2 Aerosol 

In  

(5.79 eV) 

Isopropanol (≈ 0.08 mol L-1 / 

≈ 0.8 %) 

≈ 2.9 ≈ 1.8 Aerosol ICP-MS, 1 mL min-1, 1.15 kW, 0.85 L min-1, 8 mm [144] 

Al 

(5.99 eV) 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 2 Aerosol + 

electrostatic 

effects 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

Y  

(6.22 eV) 

Acetonitrile (20 %) ≈ 90 ≈ 1.6 Charge 

transfer2 

ICP-MS3 [145] 

Methanol (20 %) ≈ 59 5 Aerosol + 

(charge 

transfer)4 

ICP-MS, 340 nL min-1 + 15 µL min-1 make-up flow, 

1 kW, 1 L min-1 

[140] 

Pb  

(7.42 eV) 

Methanol (2 %) ≈ 6 ≈ 1.4 Aerosol + 

electrostatic 

effects 

ICP-MS, 0.65 mL min-1, 1.5 kW, 0.87 L min-1 [120] 

Methanol (20 %) ≈ 59 6 Aerosol + 

(charge 

transfer) 

ICP-MS, 340 nL min-1 + 15 µL min-1 make-up flow, 

1 kW, 1 L min-1 

[140] 

Rh  

(7.46 eV) 

Methanol (20 %) ≈ 59 12 Aerosol + 

(charge 

transfer) 

ICP-MS, 340 nL min-1 + 15 µL min-1 make-up flow, 

1 kW, 1 L min-1 

[140] 

Ni 

(7.64 eV) 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 1.4 Aerosol + 

electrostatic 

effects 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

Mg  

(7.65 eV) 

Methanol (20 %) ≈ 59 31 Aerosol + 

possible charge 

transfer 

ICP-MS, 340 nL min-1 + 15 µL min-1 make-up flow, 

1 kW, 1 L min-1 

[140] 
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Cu  

(7.73 eV) 

Isopropanol (≈ 0.08 mol L-1 / 

≈ 0.8 %) 

≈ 2.9 ≈ 1.5 Aerosol ICP-MS, 1 mL min-1, 1.15 kW, 0.85 L min-1, 8 mm [144] 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 1.2 Aerosol + 

electrostatic 

effects 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

Co  

(7.88 eV) 

Methanol (20 %) ≈ 59 17 Aerosol + 

possible charge 

transfer 

ICP-MS, 340 mL min-1 + 15 µL min-1 make-up 

flow, 1 kW, 1 L min-1 

[140] 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 1.5 Aerosol + 

electrostatic 

effects 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

Ge  

(7.90 eV) 

Acetonitrile (30 %) ≈ 140 ≈ 2.4 Possible charge 

transfer 

ICP-MS3 [145] 

B  

(8.30 eV) 

Glycine (≈ 6 % (m/v)) 20 1.5 Charge transfer 

+ carbon space 

charge effect + 

(other species 

space charge 

effects) 

ICP-MS, 1 mL min-1, 1 kW, 1.0 L min-1 [147] 

Sb  

(8.61 eV) 

Methanol (2 %) ≈ 6 ≈ 1.4 Aerosol + 

electrostatic 

effects + charge 

transfer 

ICP-MS, 0.65 mL min-1, 1.5 kW, 0.87 L min-1 [120] 

Methanol (3 %) ≈ 9 1.5 Aerosol + 

charge transfer 

ICP-MS, 1 mL min-1, 1.32 kW, 0.949 L min-1 [141] 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 1.2 Aerosol + 

electrostatic 

effects + charge 

transfer 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

Cd  

(8.99 eV) 

Acetone (≈ 0.6 %) ≈ 3 ≈ 1.3 
Aerosol ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 [161] 

Methanol (≈ 5 %) ≈ 15 ≈ 1.4 

Te  

(9.01 eV) 

Glycerol (1 mol L-1) ≈ 36 1.9 Ionization 

equilibrium 

modification 

due to C species 

ICP-OES, 1 mL min-1, 1.2 kW, 0.85 L min-1 [146] 
Methane (4 %)5 ≈ 20 ≈ 3.5 

Au  

(9.23 eV) 

Glycerol (1 mol L-1 / ≈ 7 %) ≈ 36 3.25 
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Be  

(9.32 eV) 

Glycine (≈ 6 % m/v) 20 1.15 Charge transfer 

+ carbon space 

charge effect + 

(other species 

space chanrge 

effects) 

ICP-MS, 1 mL min-1, 1 kW, 1.0 L min-1 [147] 

Isopropanol (≈ 0.08 mol L-1/ 

≈ 0.8 %) 

≈ 2.9 ≈ 1.5 Aerosol + 

(charge 

transfer) 

ICP-MS, 1 mL min-1, 1.15 kW, 0.85 L min-1, 8 mm [144] 

Zn  

(9.39 eV) 

Isopropanol (≈ 0.08 mol L-1 / 

≈ 0.8 %) 

≈ 2.9 ≈ 1.8 Aerosol + 

possible charge 

transfer 

ICP-MS, 1 mL min-1, 1.15 kW, 0.85 L min-1, 8 mm [144] 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 1.4 Aerosol + 

electrostatic 

effects + charge 

transfer 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

Se  

(9.75 eV) 

Acetic acid (≈ 40 %) ≈ 170 ≈ 3.0 Charge transfer 

+ possible 

aerosol ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 [161] 

Acetone (≈ 2 %) ≈ 10 ≈ 4.4 Aerosol + 

charge tranfer 

Acetonitrile (30 %) ≈ 140 ≈ 7.3 Charge transfer ICP-MS3 [145] 

Blood serum / 3 Charge transfer ICP-MS, 1.35 mL min-1, 1.4 kW, 0.914 L min-1 [154] 

Butanol (1 %) ≈ 5 ≈ 2.5 Aerosol + 

charge transfer 
ICP-MS, 1 mL min-1, 1.15 kW, neb : variable 

[152] 

CFA-C (amine) (10 %) / 1.5 

(77Se),1.3 

(82Se) 

/6 ICP-MS, 1 mL min-1, 1.4 kW, 0.9 L min-1 [149] 

Ethanol (2 %) ≈ 8 ≈ 3.5 Aerosol + 

charge transfer 
ICP-MS, 1 mL min-1, 1.15 kW, neb : variable 

[152] 

Glucose (≈0.15 mol L-1) 10 1.4 Charge transfer ICP-OES, 1 mL min-1, 1 kW, 0.75 L min-1, 15 mm [148] 

Glycerol (1 mol L-1 / ≈ 7 %) ≈ 36 2.5 Ionization 

equilibrium 

modification 

due to C species 

ICP-OES, 1 mL min-1, 1.2 kW, 0.85 L min-1 [146] 
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Isopropanol (≈ 0.1 mol L-1 / ≈ 1 %) ≈ 3.6 ≈ 2.5 Aerosol + 

charge transfer 

ICP-MS, 1 mL min-1, 1.15 kW, 0.85 L min-1, 8 mm [144] 

Methane (4 %) ≈ 20 ≈ 3.5 Ionization 

equilibrium 

modification 

due to C species 

ICP-OES, 1 mL min-1, 1.2 kW, 0.85 L min-1 [146] 

Methanol (2 %) ≈ 5.9 ≈ 3 Aerosol + 

charge transfer 

ICP-MS, 1 mL min-1, 1.15 kW, neb : variable [152] 

Methanol (3 %) ≈ 9 3.4 (SeIV), 

3.1 

(SeMet) 

Aerosol + 

charge transfer 

ICP-MS, 1 mL min-1, 1.32 kW, 0.949 L min-1 [141] 

Methanol (≈ 10 %) ≈ 30 ≈ 3.1 Aerosol + 

charge transfer 
ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 

[161] 

Methanol (20 %) ≈ 59 6 Charge transfer 

+ aerosol 

ICP-MS, 340 mL min-1 + 15 µL min-1 make-up 

flow, 1 kW, 1 L min-1 

[140] 

Propanol (1 %) ≈ 5 ≈ 2 Aerosol + 

charge transfer 
ICP-MS, 1 mL min-1, 1.15 kW, neb : variable 

[152] 

Sodium bicarbonate (25 mmol L-1) ≈ 0.3 1.5 Charge transfer ICP-MS, 1.5 kW, 1.1 L min-1, 7 mm [151] 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 1.2 Aerosol + 

electrostatic 

effects + charge 

transfer 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

As  

(9.79 eV) 

Acetic acid(≈ 40 %) ≈ 170 ≈ 3.1 Charge transfer 

+ possible 

aerosol ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 [161] 

Acetone (≈ 2 %) ≈ 10 ≈ 4.4 Aerosol + 

charge transfer 

Acetonitrile (2 %) ≈ 9 ≈ 2.8 Ionization 

equilibrium 

modification 

due to C species 

ICP-MS, 0.4 mL min-1, 1.4 kW, 0.8 L min-1 

[142] 

Acetonitrile (30 %) ≈ 140 ≈ 6.1 Charge transfer ICP-MS3 [145] 

Ammonium carbonate 

(≈ 0.3 mol L-1) 

4 2.3 (AsIII) Charge transfer ICP-MS, 1 mL min-1, 1.32 kW, 0.949 L min-1 [141] 

CFA-C (amine) (10 %) / 2.1 / ICP-MS, 1 mL min-1, 1.4 kW, 0.9 L min-1 [149] 
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Glycerol (1 mol L-1 / ≈ 7 %) ≈ 36 2.4 Ionization 

equilibrium 

modification 

due to C species 

ICP-OES, 1 mL min-1, 1.2 kW, 0.85 L min-1 [146] 
Methane (4 %) ≈ 20 ≈ 5.5 

Methanol (2 %) ≈ 5.9 ≈ 2 Aerosol + 

electrostatic 

effects + charge 

transfer 

ICP-MS, 0.65 mL min-1, 1.5 kW, 0.87 L min-1 [120] 

Methanol (3 %) ≈ 9 3.4(AsIII), 

4.2 

(DMA), 

4.5 (AsB) 

Aerosol + 

charge transfer 

ICP-MS, 1 mL min-1, 1.32 kW, 0.949 L min-1 [141] 

Methanol (5 %) ≈ 15 ≈ 2.3 Ionization 

equilibrium 

modification 

due to C species 

ICP-MS, 0.4 mL min-1, 1.4 kW, 0.8 L min-1 

[142] 

Methanol (≈ 10 %) ≈ 30 ≈ 3.5 Aerosol + 

charge transfer 
ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 [161] 

Methanol (20 %) ≈ 59 31 Charge transfer 

+ aerosol 

ICP-MS, 340 mL min-1 + 15 µL min-1 make-up 

flow, 1 kW, 1 L min-1 

[140] 

Sodium bicarbonate (25 mmol L-1) ≈ 0.3 1.5 Charge transfer ICP-MS, 1.5 kW, 1.1 L min-1, 7 mm [151] 

Sodium dodecylsulfate (SDS)  

(0.2 % m/v) 

≈ 1.0 ≈ 1.5 Aerosol + 

electrostatic 

effects + charge 

transfer 

ICP-MS, 0.65 mL min-1, 1.35 kW, 0.87 L min-1 [120] 

Hg  

(10.44 eV) 

Acetic acid (≈ 40 %) ≈ 170 ≈ 1.7 Possible aerosol 
ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 [161] 

Acetone (≈ 2 %) ≈ 10 ≈ 1.8 Aerosol 

Ethylenediamine (6 %) ≈ 22 1.5 Aerosol ICP-MS, 1 mL min-1, 1.35 kW, 0.60 L min-1, 8 mm [150] 

Glycerol (1 mol L-1 / ≈ 7 %) ≈ 36 6 Ionization 

equilibrium 

modification 

due to C species 

ICP-OES, 1 mL min-1, 1.2 kW, 0.85 L min-1 [146] 

Methanol (≈ 30 %) ≈ 30 ≈ 1.7 Aerosol ICP-MS, 0.33 mL min-1, 1.3 kW, 1.05 L min-1 [161] 

Triethanolamine (6 %) ≈ 33 2.0 Aerosol ICP-MS, 1 mL min-1, 1.35 kW, 0.60 L min-1, 8 mm [150] 

P Acetonitrile (40 %) ≈ 190 ≈ 9.3 Charge transfer ICP-MS3 [145] 
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(10.49 eV) 

1Improvement of aerosol transport efficiency. 2Charge transfer reactions from C+ species to 

analyte atoms. 3No operating conditions are provided. 4Minor mechanism. 5Added to the 

nebulizer gas flow rate.6Not discussed. 
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Table 10: Compilation of selected examples resulting in signal enhancement higher than 1.1 

classified according to the considered carbon sources and their amounts. Main 

enhancement mechanisms are indicated. 

Carbon source Carbon source 

content 

C (g L-1) Analytes Signal enhancement Ref. 

Factor Principal source 

Acetic acid ≈ 40 % 170 

As ≈ 3.1 

Charge transfer1 

+ possible 

aerosol2 
[161] 

Hg ≈ 1.7 Possible aerosol 

Se ≈ 3.0 
Charge transfer + 

posible aerosol 

Acetone 

≈ 0.6 % ≈ 3 
Cd ≈ 1.3 

Aerosol 

[161] 

Rb ≈ 1.2 

≈ 2 % ≈ 10 

As ≈ 4.4 
Aerosol + charge 

transfer 

Hg ≈ 1.8 Aerosol 

Se ≈ 4.4 
Aerosol + charge 

transfer 

Acetonitrile 2 % ≈ 2 As ≈ 2.8 

Ionization 

equilibrium 

modification due 

to C species 

[142] 
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20 % ≈ 90 Y ≈ 1.6 

Charge transfer [145] 30 % ≈ 140 

As ≈ 6.1 

Ge ≈ 2.4 

Se ≈ 7.3 

40 % ≈ 190 P ≈ 9.3 

Ammonium 

carbonate 
≈ 0.3 mol L-1 4 As 2.3 (AsIII) 

Charge transfer [141] 

Blood serum / / Se 3 Charge transfer [154] 

Butanol 1 % ≈ 5 Se ≈ 2.5 
Aerosol + charge 

transfer 

[152] 

CFA-C (amine) 10 % / 

As 2.1 /3 

[149] 
Se 

1.5 (77Se), 

1.3 (82Se) 

/ 

Ethanol 2 % ≈ 8 Se ≈ 3.5 
Aerosol + charge 

transfer 

[152] 

Ethylenediamine 6 % ≈ 22 Hg 1.5 Aerosol [150] 

Glycerol 
1 mol L-1 

≈ 7 % 
≈ 36 

As 2.4 
Ionization 

equilibrium 

modification due 

to C species 

[146] 

Au 3.25 

Hg 6 

Se 2.5 

Te 1.9 

Glycine ≈ 6 % (m/v) 20 
B 1.5 Charge transfer 

+ carbon space 
[147] 

Be 1.15 
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charge effect + 

(other species 

space charge 

effects)4 

Glucose ≈ 0.15 mol L-1 10 Se 1.4 Charge transfer [148] 

Isopropanol 

≈ 0.08 mol L-1 

≈ 0.8 % 

≈ 2.9 Be ≈ 1.5 
Aerosol + (charge 

transfer) 

[144] 

≈ 2.9 Cu ≈ 1.5 
Aerosol 

≈ 2.9 In ≈ 1.8 

≈ 2.9 Zn ≈ 1.8 

Aerosol + 

possible charge 

transfer 

≈ 0.1 mol L-1 

≈ 1 % 
≈ 3.6 Se ≈ 2.5 

Aerosol + charge 

transfer 

Methane5 4 % ≈ 20 

As ≈ 5.5 Ionization 

equilibrium 

modification due 

to C species 

[146] 
Se ≈ 3.5 

Te ≈ 3.5 

Methanol 

2 % ≈ 5.9 Se ≈ 3 
Aerosol + charge 

transfer 

[152] 

3 % ≈ 9 As 

3.4 (AsIII), 

4.2 (DMA), 

4.5 AsB) 

Aerosol + charge 

transfer [141] 
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Sb 1.5 Aerosol 

Se 

3.4 (SeIV), 

3.1 

(SeMet) 

Aerosol + charge 

transfer 

5 % ≈ 15 As ≈ 2.3 

Ionization 

equilibrium 

modification due 

to C species 

[142] 

≈ 5 % ≈ 15 
Cd ≈ 1.4 

Aerosol 

[161] 

Rb ≈ 1.2 

≈ 10 % ≈ 30 

As ≈ 3.5 
Aerosol + charge 

transfer 

Hg ≈ 1.7 Aerosol 

Se ≈ 3.1 
Aerosol + charge 

transfer 

20 % ≈ 59 

As 31 
Charge transfer 

+ aerosol 

[140] 

Co 17 Aerosol + 

possible charge 

transfer 
Mg 31 

Pb 6 Aerosol + (charge 

transfer) Rh 12 

Se 6 Charge transfer 
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+ aerosol 

Y 5 
Aerosol + (charge 

transfer) 

Propanol 1 % ≈ 5 Se ≈ 2 
Aerosol + charge 

transfer 

[152] 

Sodium 

bicarbonate 
25 mmol L-1 ≈ 0.3 

As 1.5 
Charge transfer [151] 

Se 1.5 

Sodium 

dodecylsulfate 

(SDS) 

0.2 % m/v ≈ 1.0 

Al ≈ 2 

Aerosol + 

electrostatic 

effects 

[120] 

As ≈ 1.5 

Aerosol + 

electrostatic 

effects + charge 

transfer 

Co ≈ 1.5 

Aerosol + 

electrostatic 

effects 

Cu ≈ 1.2 

Aerosol + 

electrostatic 

effects 

Ni ≈ 1.4 

Aerosol + 

electrostatic 

effects 
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Sb ≈ 1.2 

Aerosol + 

electrostatic 

effects + charge 

transfer 

Se ≈ 1.2 

Aerosol + 

electrostatic 

effects + charge 

transfer 

Zn ≈ 1.4 

Aerosol + 

electrostatic 

effects + charge 

transfer 

Triethanolamine 6 % ≈ 33 Hg 2.0 Aerosol [150] 

1Charge transfer reactions from C+ species to analyte atoms. 2Improvement of aerosol 

transport efficiency. 3Not discussed. 4Minor mechanism. 5Added to the nebulizer gas flow 

rate.  
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Table 11: Maximum ionization efficiency in ICP-MSfor hard-to-ionize elements (efficiency < 

90 %) together with calculated and experimental maximum enhancement factor 

(experimental factors are obtained from Tables 9 and 10). 

 Elements Ionization 

efficiency 

(%)[160] 

Ionization 

energy (eV) 

[167] 

Calculated 

maximum 

enhancement 

factor 

Experimental 

maximum 

enhancement 

factor 

Io
ni

za
tio

n 
en

er
gy

 9
-1

1 
eV

 

As 52 9.79 1.9 ≈ 31 

Au 51 9.23 2.0 ≈ 3.25 

Be 75 9.32 1.3 ≈ 1.5 

Hg 38 10.44 2.6 ≈ 6 

I 29 10.45 3.4 / 

P 33 10.49 3.0 ≈ 9.3 

S 14 10.36 7.2 / 

Se 33 9.75 3.0 ≈ 7.3 

Te 66 9.01 1.5 ≈ 3.5 

Zn 75 9.39 1.3 ≈ 1.8 

O
th

er
 e

le
m

en
ts

 B 58 8.30 1.7 ≈ 1.5 

Br 5 11.81 20 / 

Cd 85 8.99 1.2 ≈ 1.4 
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Cl 0.9 12.97 111 / 

Os 78 8.44 1.3 / 

Pt 62 8.96 1.6 / 

Sb 78 8.61 1.3 ≈ 1.5 

Si 85 8.15 1.2 / 

 

 


