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In most studies, street networks are considered as undirected graphs while one-way streets and
their effect on shortest paths are usually ignored. Here, we first study the empirical effect of one-
way streets in about 140 cities in the world. Their presence induces a detour that persists over a
wide range of distances and characterized by a non-universal exponent. The effect of one-ways on
the pattern of shortest paths is then twofold: they mitigate local traffic in certain areas but create
bottlenecks elsewhere. This empirical study leads naturally to consider a mixed graph model of 2d
regular lattices with both undirected links and a diluted variable fraction p of randomly directed
links which mimics the presence of one-ways in a street network. We study the size of the strongly
connected component (SCC) versus p and demonstrate the existence of a threshold pc above which
the SCC size is zero. We show numerically that this transition is non-trivial for lattices with degree
less than 4 and provide some analytical argument. We compute numerically the critical exponents
for this transition and confirm previous results showing that they define a new universality class
different from both the directed and standard percolation. Finally, we show that the transition on
real-world graphs can be understood with random perturbations of regular lattices. The impact of
one-ways on the graph properties were already the subject of a few mathematical studies, and our
results show that this problem has also interesting connections with percolation, a classical model
in statistical physics.

PACS numbers:

INTRODUCTION

In most countries a majority of individuals commute
by car [1] and smart monitoring of traffic in cities has
become crucial for enhancing productivity while reduc-
ing transport emissions [2, 3]. Historically, a simple and
efficient way to manage traffic is by using dedicated traf-
fic codes, including the design of one-way streets [4]. The
first official attempt to create dedicated one-way roads is
said to date back to 1617 in London [5]. The ‘No En-
try’ sign was officially adopted for standardization at the
League of Nations convention in Geneva in 1931 [4]. To
this day, one-way streets are created in order to smooth
motor traffic in cities [6], to reduce driving time and con-
gestion, or to preserve specific neighborhoods [7] from
traffic.

Mathematically, street networks can be represented by
graphs where the vertices are intersections and the links
road segments between consecutive intersections. Almost
all studies on street networks [8–15, 17, 18] describe street
network as undirected graph but formally a network of
both undirected links and one-way streets (represented
by directed edges) is called a mixed graph [19]. Despite
their relevance for practical applications [20], there are
very few results available for directed street networks, ex-
cept for the following one: Robbins’ theorem [21] states
that it is possible to choose a direction for each edge -
called hereafter a strong orientation - of an undirected
graph G turning it into a directed graph that has a path

from every vertex to every other vertex, if and only if
G is connected and has no bridge (i.e. an edge whose
deletion increases the graph’s number of connected com-
ponents). Robbins’ seminal result can be extended to
mixed graphs [22], stating that if G is a strongly con-
nected mixed graph, then any undirected edge of G that
is not a bridge may be made directed without chang-
ing the connectivity of G. Hence, it is possible to turn
streets into one-ways as long as their removal does not
disconnect the whole street network. It is thus recur-
sively possible for any bridgeless network to be turned
into a fully directed graph. In most cities, it should then
be possible to find a street-orientation that keep the net-
work strongly connected. This theorem however does not
say anything about how one-way streets modify shortest
paths. In this respect, very few results were obtained:
for the diameter for example, Chvatal and Thomassen
[23] proved that if the undirected graph has a diameter
d, then there exist a strong orientation with diameter less
than the (best possible) bound 2d + 2d2, but that it is
also a NP-hard problem to find. It is interesting to note
that for some applications, it is desirable to find a strong
orientation that is not efficient, i.e. doesn’t minimize the
diameter in order to discourage people from driving in
certain sections [20].

Here, we will first discuss some empirical results about
the fraction of one-way streets in cities and their effect
on shortest paths. This will naturally leads us to con-
sider the problem of percolation in mixed graphs and the
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City Country One-way share (%) Threshold

Beijing China 37 0.63(2)

Casablanca Morocco 19 0.73(2)

Paris France 66 0.78(2)

New York City USA 55 0.77(2)

Buenos Aires Argentina 71 0.78(2)

TABLE I: Empirical fraction (in length) of one-way streets in
five different cities compared to the SCC-percolation thresh-
old in the corresponding graphs. The percolation threshold is
measured when the probability to have a giant cluster (con-
necting opposite sides) crosses 1/2.

corresponding critical exponents that define a new uni-
versality class. We will then discuss the case of real-world
random graphs.

EMPIRICAL RESULTS

Information about one-way streets in cities is avail-
able from OpenStreetMap, an open source map of the
world [24]. We mined this dataset with the open soft-
ware OSMnX [25] that allowed us to extract directly the
street network from 146 cities defined by their adminis-
trative boundaries. The graph analysis of real networks
was done with networkx [26] and the theoretical anal-
ysis of regular lattices, computations of the percolation
threshold and of the critical exponents were done with
the C/C++ network analysis package igraph [27]. The
code is available at [28].

Fraction of one-ways and detour index

We define the fraction of one-way streets as p =
L1/L(G) where L1 is the total length of one-way streets
and L(G) the total length of the network G of size N .
We observe that this fraction ranges from very low values
such as 8% for the average of African cities up to 31%
for the average of European ones. We show in Table I
the empirical value of p in five different cities (compared
to the SCC-percolation threshold in the corresponding
graphs, see below).

We also show in Fig. 1 the distribution of p in different
continents. In particular, we observe that one-way streets
are significantly more common in Europe than in the rest
of the world. The occurrence of one-way streets seems
thus to be connected to more complex street plans [18].

We denote by dG(i, j) the shortest path distance from
node i to node j on the undirected graph G and d #»

G(i, j)
the corresponding quantity for the mixed graph denoted
by

#»

G (when one-ways are taken into account). The av-
erage detour due to one-ways is then defined as η =

1
N(N−1)

∑
(i,j)∈G

d #»
G (i,j)
dG(i,j) − 1. Figure 2a shows how the

FIG. 1: Distribution of the fraction p of one-way streets for
the five continents (the fraction is defined as the total length
of one-way streets over the total length of the network).

average detour increases with the fraction of one-way
streets p in the dataset of world cities we use. We first ob-
serve that the detour increases roughly linearly with the
fraction of one-ways (a power law fit gives an exponent
of 0.8) and that most cities have an average detour less
than 10%. We also note that there is a large dispersion
of this detour for a given value of the one-way fraction.
For example, for p ≈ 0.6 the detour varies from about
6% for Singapore up to 15% for Beirut (and even 5% for
p = 0.7 for Buenos Aires), showing that the impact on
shortest paths depends strongly on the precise location
of one-ways. Furthermore, we can separate the impact
of one-ways on various distances by defining the detour
profile given by

η(d) =
1

N(N − 1)

∑
(i,j) s.t. dG(i,j)=d

d #»
G(i, j)

dG(i, j)
− 1 (1)

We observe for various cities on Fig. 2b that η(d) roughly
decreases as a power law of the form η(d) ∼ d−θ demon-
strating the impact of one-way streets even for large dis-
tance (in this figure, the distance is normalized by its
maximum value for each city). In particular, we note
that if on average the detour due to one-way streets is
of the order of 10%, which seems small, detours at short
distances may be significantly higher (up to the order of
100%). Also, even if 10% is small at an individual level,
this has a non-neglibible effect in terms of time cost and
congestion at the city scale when summed over all car
users.

The exponent θ does not seem to be universal and
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FIG. 2: (a) Distribution of the average detour (%) as a
function of fraction p of one-way streets for 146 world cities
(R2 = 0.59). (b) For five selected cities in the world, we plot
the average detour η(d) due to one-way streets for a trip of
distance d as a function of d (normalized by the maximum
distance obtained for each city). The detour can be fitted by
a power η(d) ∼ d−θ. We find that θ differs from one city to
another and ranges roughly from 0.2 to 0.8. In particular,
small exponent values (such as in the case of NYC) might
be correlated with the presence of very long one-way streets
leading to a large detour even at very large spatial scales.
We have R2 = 0.87 for Beijing, R2 = 0.25 for Casablanca,
R2 = 0.99 for Paris, R2 = 0.12 for NYC and R2 = 0.90 for
Buenos Aires.

ranges between 0.2 and 0.8 for different cities. We note
that we expect in general θ ∈ [0, 1] where the upper-
bound θ = 1 corresponds to the case where one-way
streets create a constant detour in the directed net-
work, implying d #»

G(i, j) = C + dG(i, j) and therefore
η(d) ∼ 1/d. The case θ = 0 corresponds to the situ-
ation where the detour is proportional to the distance
traveled: d #»

G(i, j) ∝ dG(i, j) implying η(d) ∼ const. In
any case, this slow decrease of η(d) with d signals the
long-range effect of one-ways on shortest paths.

Betweenness centrality

Cars have to follow the direction of links and conse-
quently one-way streets govern the spatial structure of
traffic. The theoretical question is then to understand
what happens to the patterns of shortest paths when we
turn an undirected link into a one-way street. This can
for instance be measured by comparing the betweenness
centrality (BC) of nodes (see for example [16, 17] and
references therein). We denote by gG(i) the BC of node
i on the graph G defined as

gG(i) =
1

N
∑
s6=t

σst(i)

σst
(2)

where σst is the number of shortest paths from node s to
node t and σst(i) the number of these shortest paths that
go through node i. The quantity N is a normalization
that we choose here N = (N − 1)(N − 2). We denote by
g #»
G(i) the BC of node i when we include one-ways, and we

analyze the relative variation ∆ = (g #»
G(i)− gG(i))/gG(i).

In the case of Paris for example, we find that 53% of
the nodes have a smaller BC (∆ < 0) due to one-way
streets with 27% of them having less than half the undi-
rected BC and 3% less than 10%. For the other 47% with
∆ > 0 the BC is increased, more than doubled for 31% of
them and the BC is ten times higher in 3% of cases. We
thus observe here the dual effect of one-way streets: cer-
tain nodes are preserved and experience a reduced traffic
while this simultaneously create bottlenecks where the
BC can be very large. More generally, we observe (see
Fig 3) that the distribution of ∆ is not symmetric (with
a global average of ∼ 0.59) and skewed towards positive
values indicating that the bottlenecks due to the deviated
traffic can be extremely busy.

Strongly connected component

The strongly connected component (SCC) in the di-
rected graph is the set of nodes such that there is a di-
rected path connecting any pairs in it [20]. We note that
for a weakly connected graph such as the street network,
there is one SCC only. We first show (see Fig. 4 left col-
umn) the distribution of degrees of nodes (junctions) in
five different cities in the world, whose fraction p of one-
way streets ranges from 19% to 71% (see Table I). As
we could anticipate, we note significant differences in the
degree distribution between old cities like Paris or Bei-
jing where and newer cities like New York City, where
important areas are in the form of a square grid. Except
in the cases of Casablanca and Beijing, one-way streets
represent more than half of the total length of the net-
work. It is even more pronounced in the case of square-
gridded cities such as Manhattan where the percentage
of one-ways is 69% (with many east/west or north/south
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FIG. 3: Distribution of the relative variation ∆ of the be-
tweenness centrality (BC) due to one-way streets in the
Parisian network for negative (the BC decreases) and pos-
itive values of ∆ (the BC increases with one-ways). Both
distributions can be fitted by a lognormal and parameters
are: µ = 0.38, σ = 0.25 (negative values) and µ = 1.52 and
σ = 4.06. The distribution for positive values of ∆ is much
broader with large values of the relative variation of the BC
demonstrating the creation of critical bottlenecks in the net-
work. (a) For 53% of the nodes, we have ∆ < 0 which corre-
spond to nodes having a smaller BC due to one-way streets.
In this case, 27% of the nodes have less than half the undi-
rected BC and 3% less than 10%. (b) For 47% of nodes, the
BC is increased by one-way streets. For 31% of these nodes,
their BC doubled or more, and for 3% it is ten times larger.

oriented avenues and streets) which probably correspond
to the need for decreasing congestion and for simplifying
the navigation in the city. For each of these cities, we
keep the underlying bidirectional structure of the graph
(that we call the substrate of the real network) and we
vary the fraction p of one-way streets from 0 to 1 by ran-
domly turning a share p of streets into one-way streets
(and 1 − p is therefore the remaining fraction of undi-
rected links representing two-ways streets). In that pro-
cess, bidirectional streets in the real world may be turned
into one-way streets while one-way streets may be bidi-
rectional. Hence, for each value of p, we randomly allo-
cate one-way streets (with random orientation) and com-
pute the size S of the strongly connected component,
normalized by the number N of nodes. We construct
many realizations of this process allowing us to compute
statistical properties.

This measure of S/N enables us to understand how
many streets can be randomly turned into one-way
streets before parts of the city become disconnected. We
compare in Fig. 4 (right column) the resulting curve for
the same process on regular lattices of 3-point junctions
(honeycomb lattice) and 4-point junctions (square lat-
tice). For every city, we observe an abrupt percolation-
like transition for the SCC size when the fraction of ran-
dom one-way streets increases. We notice that for each
city the real share preal (represented by the star) of one-
way streets is below the transition threshold and that in
general (S/N)real ≈ 1, which means that - fortunately
- cities are not disconnected in the real life. This is ex-
pected for practical reasons and Robbins’ theorem [21]
states the existence of such a solution whatever the frac-
tion of directed links. We note, however, that this so-

lution is statistically not frequent and may be very far
from the average of S/N over all random configurations
at share preal.

PERCOLATION ANALYSIS

Percolation and digraphs. The model.

These empirical results bring us to study in more
depth this percolation-like transition observed for mixed
graphs. We first note that this problem is different from
the rare results available for digraphs (see for example
[29–34] and references therein). For example, similarly
to the Erdős-Renyi transition [35], adding directed links
to a digraph leads to a transition for the strongly con-
nected component [29]: for M/N > 1, there is an infinite
SCC (M is the number of directed arcs, and N the num-
ber of nodes). The control parameter is then the number
of edges which are all directed. Other studies general-
ized percolation in random fully directed – generally un-
correlated – networks [30–33] but whose results cannot
be directly applied to regular lattices due to the strong
degree correlations and the non-random nature of links.
Our model is also different from the well-known model of
directed percolation in statistical physics [36, 37] where
a preferred direction is chosen for all bonds on a regu-
lar lattice and which defines a universality class different
from usual percolation.

This type of percolation model was introduced by
Redner in a series of papers [38–40] as the random
resistor diode percolation, and was studied further in
[41, 42, 44, 45]. In the more general version of this model
defined on lattices, bonds can be absent, be a resistor
that can transmit an electrical current in either direc-
tion along their length, or diodes that connect in one
direction only. The general phase diagram was discussed
in [38, 39] using real-space renormalization arguments
which predict fixed points associated with standard per-
colation, directed percolation, and other new transitions.
The crossover between isotropic and directed percolation
was further studied in [41–44]. In relation to the problem
discussed here, Redner [38] observed a ‘reverse percola-
tion’ transition from a one-way connectivity in a given
direction to a two-way (isotropic) connectivity when con-
nected paths oriented opposite to the diode polarization
begin to span the lattice. This transition from a con-
nected component to a strongly connected component
corresponds to what we observe here.

The model discussed in this paper was previously con-
sidered in [45] where critical exponents are computed on
isotropically directed lattices where bonds can be either
absent, directed or undirected (in [46] the authors con-
sidered some properties in the critical case). The partic-
ular case where bonds are either undirected or directed
(but cannot be absent) is the specific case that applies
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FIG. 4: (Left column): The degree distribution of junctions
for 5 different cities from 5 different continents. The average
degree for these cities is 〈k〉 ∼ 3.4 (Casablanca), ∼ 3.1 (Bei-
jing), ∼ 3.5 (New York), ∼ 3.4 (Paris), ∼ 3.7 (Buenos Aires).
The most common junction is a 3-points fork in Casablanca,
Paris and Beijing, while 4-points crossroads are more frequent
in New York City and Buenos Aires. (Right column) The blue
points are obtained by picking a fraction p of streets in the
underlying bidirectional structure of the city (that we call the
substrate of the real network) and turning them into one-way
streets. In that statistical process, bidirectional streets in the
real world may be turned into one-way streets while one-way
streets may be bidirectional. We then plot the largest strongly
connected component size (S) in the total network normal-
ized by the number N of nodes as a function of p. Results are
obtained for 10 different disorder realizations.

FIG. 5: Average detour η as a function of the fraction p of
randomly chosen one-way streets in the city of Paris (France).
In this statiscal process, the detour increases with the frac-
tion p. We note, however, that the empirical detour in the
real world (indicated by a star symbol) remains below the
result expected from a random uniform distribution of one-
way streets. This indicates that the actual choice of one-way
streets in Paris is far from what would be obtained by a ran-
dom choice of one-way streets and favors small detours. We
compare these results to the obtained for a honeycomb lattice,
whose degree distribution is close the Paris.

to road networks and that we will focus on. We recall
here the precise definition of this model. We consider
a mixed graph

#»

G whose edges can be either directed or
undirected. As in the previous section, we denote by p
the fraction of directed edges and the limits p = 0 and
p = 1 correspond then to the undirected and the fully di-
rected graph, respectively. We assume that the directed
links have a random direction without any bias (i.e. each
direction has a probability 1/2). We vary the fraction
p and measure various quantities and we will consider
regular lattices such as the square and the honeycomb
lattices.

Detour properties

We will first consider the average detour on the honey-
comb lattice and observe that it increases with p (Fig. 5
for Paris. We also see in Fig. 5 that the real detour is
below the result obtained for a random distribution of
one-way streets (similar results are obtained for other
cities). This demonstrates the importance of the precise
location of one-ways that can affect in very different ways
the shortest paths statistics.

For the honeycomb lattice (Fig. 6), the average de-
tour η(d) due to directed links for a trip of distance d
scales as a power-law of d with η(d) ∼ d−θ (the quantity
d is here normalized by its maximum value). We find
θ = 0.5 ± 0.1 as shown in the data collapse of Fig. 6(a).
More precisely, we also show that the relation is of the
form η(d) = A(p)d−1/2 that remains valid for all p and
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FIG. 6: Average detour for the honeycomb lattice. (a) We

show the quantity η(d)
√
d versus d normalized by its value at

d = 0.1. The curves collapse onto a single one independent
from d and the observed discrepancies for d close to 1 and d
small come from finite-size effects. (b) The collapse suggest a

form η(d) = A(p)d−1/2, and a power law fit gives A(p) ∼ pγ

with γ ≈ 2.3 (R2 = 0.94). We, however, observe discrepancies
at large p.

with A(p) ∼ p2.3 (see Fig. 6b). This result in 1/
√
d sug-

gests the possibility of an argument relying on the sum
of random quantities leading to d #»

G(i, j)− dG(i, j) ∼
√
d.

Percolation threshold

In the following, we will focus on the size of the SCC
and related properties. In order to distinguish the new
transition from the usual percolation we will use the term
‘SCC-percolation’ when needed. Similarly to classical
percolation [47–53], we denote by P∞ the probability to
belong to the strongly connected component and which
will be the order parameter. We observe numerically
(over 1000 runs) that both lattices exhibit a phase tran-
sition (see Fig. 8 and 9) at a percolation threshold pc
above which the size of the SCC is negligible. We deter-
mine the percolation threshold pc(L) for a finite lattice
of linear size L using the method described in [54]. In or-
der to determine the percolation threshold numerically,
we define the threshold pc(L) for a finite lattice of linear
size L as the fraction of directed graphs for which the
probability P (L) to observe a strongly connected cluster
connecting two opposite sides of the system is 0.5 [54].
In practice, we compute pc(L) as the average threshold
between the last time such that P (L) > 0.5 and the first
time such that P (L) < 0.5 when p increases. Having the
threshold pc(L) for different sizes L, we use the classical
ansatz [54]

pc(L) = pc(∞)−A/Lν (3)

where ν is the exponent that describes the divergence of
the correlation length ξ ∼ |p−pc|−ν . Using this method,
we find for the honeycomb lattice pc = 0.6935 ± 0.0005
and pc = 0.998 ± 0.002 for the square lattice (see Fig. 8
and Fig. 9). For honeycomb lattices we thus observe a
threshold pc < 1 while for the square lattice we have

City pc(SCC) pc = 1− 1
2
pc(SCC) pc (measured)

Beijing 0.63 0.685 0.67(3)

Casablanca 0.73 0.635 0.62(3)

Paris 0.78 0.61 0.57(3)

NYC 0.77 0.615 0.57(3)

Buenos Aires 0.88 0.56 0.52(3)

TABLE II: We show here the SCC percolation threshold for
different cities (pc(SCC)), the percolation threshold predicted
using the conjecture Eq. 4 proposed in [45], and the measured
threshold.

pc = 1. This means here that for a degree equal or larger
than 4, the number of different paths between any pair of
points is large enough so that the SCC is always large. In
contrast, for the honeycomb lattice with a degree k = 3,
some nodes can more easily constitute ‘blocking points’
with one-way streets ending at it (see below for a more
detailed argument). Interestingly enough, real street net-
works have an average degree between 3 and 4 implying
a non-trivial threshold and the corresponding curve to
lie between those for the two lattices. The scaling ansatz
also gives the value ν = 1.1 ± 0.2 (and the same value
for the square lattice) which is slightly different from the
isotropic percolation value 4/3.

For this model, de Noronha et al. [45] proposed a con-
jecture for computing the percolation threshold which is
based on the idea that it is governed by the probability
that the nearest-neighbor can be reached from a given
site. Using duality arguments, this conjecture can be
proven to be exact for the square, triangular, and honey-
comb lattices [45]. For the model where bonds are either
undirected or directed (but not absent), this conjecture
reads

pc = 2(1− p0c) (4)

where p0c is the corresponding threshold for the usual per-
colation on the lattice. For the honeycomb lattice, p0c =
1−2 sinπ/18 which implies pc = 4 sinπ/18 ≈ 0.6926... in
agreement with our numerical estimate. This conjecture
was tested on both the honeycomb and square lattices
only and we tested it on real-world random graphs for
different cities. We show the results in Table II. We ob-
serve that there is a good agreement between the value
predicted by the conjecture Eq. 4 and our direct measure
for different cities: the conjecture seems to be correct for
these random graphs (within our error bars).

This conjecture shows that once p0c is smaller than 1/2,
there is no transition. For a regular lattice of degree k
(which is k = 2d for a hypercubic lattice in dimension d),
we can then ask what is the value of k above which there
is no transition anymore. The percolation threshold is
obviously an increasing function of the lattice degree k,
as it is easier to find a strongly connected component
on graphs with more neighbors, and there seems to be
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FIG. 7: Notations: a node of degree k has an incoming link
and k − 1 outgoing links. Among those, we have m outgoing
links, n−m incoming links and k− 1−n bidirectional edges.

no transition for lattices with average degree larger than
4. It is easy to show that pc = 0 for the one-dimensional
lattice (which corresponds to a regular lattice with degree
k = 2). We propose the following approximation in order
to understand how the threshold varies with the degree k
in a regular lattice. We adapt to our case the argument
proposed in [31]: we assume that a node has an incoming
link and we compute its average outdegree 〈ko〉 (which
varies from 0 to k − 1, we do not take into account the
incoming link here). The notations used are defined in
Fig. 7. The probability of having the links defined by
(n,m) is given by

pnm =
(p

2

)n
(1− p)k−1−n (5)

We take into account that the incoming link can be either
undirected (with probability 1−p) or directed and incom-
ing with probability p/2 leading to a prefactor p/2+1−p.
The outdegree for the configuration defined by n and j is
k−1−n+m. Considering also the combinatorial factors,
we obtain

〈ko〉 =

k−1∑
n=0

(p
2

)n
(1− p)k−1−n

n∑
m=0

(
k − 1

m

)(
k − 1−m
n−m

)
(6)

× (k − 1− n+m)
[p

2
+ 1− p

]
(7)

These sums can easily be computed and we find

〈ko〉 =
(

1− p

2

)2
(k − 1) (8)

The percolation condition is then 〈ko〉 ≥ 1 which means
that a directed path can go through this node which is
a necessary condition for belonging to the SCC. Writing
〈ko〉 = 1 then gives the percolation threshold

pc(k) = 2

(
1− 1√

k − 1

)
(9)

which is valid in the interval [2, 5]. This approximate
formula gives the exact result pc(k = 2) = 0 and
pc(k ≥ 5) = 1. The latter is obviously an approxima-
tion but it is in agreement, at least qualitatively with
our numerical results. It however overestimates - as ex-
pected for a necessary but not sufficient condition - the
degree above which pc = 1, and it would be interesting
to find how to modify this argument in order to recover
the numerical result pc(k = 4) = 1.0.

Critical exponent estimates: a new universality class

The critical exponents for this model were already es-
timated in [45] and we determine them independently
for both the honeycomb (Fig. 8) and the square lattices
(Fig. 9). In particular, in [45] it is assumed that the expo-
nent ν is the same as in isotropic percolation and given
by ν = 4/3. We replaced here this assumption by the
scaling ansatz Eq. 3 form for the percolation threshold.

Below the percolation threshold, the order parameter
scales as P∞ ∼ |p − pc|β and a direct fit (Fig. 8d) gives
β = 0.26 ± 0.02 (0.27 ± 0.02 for the square). Above the
percolation threshold, the maximal cluster size scales as
smax ∼ |p− pc|σ and at the threshold exactly, the proba-
bility ns to belong to a cluster of size s scales as ns ∼ s−τ .
These classical exponents take here the following values
(Fig. 8): τ = 2.14± 0.05 (2.11± 0.05 for the square lat-
tice) and σ = 0.56± 0.05 (the exponent σ is not defined
for the square lattice where pc = 1). We note here that
too close to criticality however, finite-size effects become
important when the correlation length is of order the sys-
tem size which reduces the range over which the fit can
be made. For the square lattice, we obtain the exponents
in a similar way (Fig. 9).

We note that these exponents satisfy the hyper-scaling
relations [51] τ = dσν + 1 and β = (τ − 2)/σ (where
the dimension is here d = 2), which is expected as these
relations are independent from the fact that links are
oriented or not. From the classical relations df = d/(τ −
1) we get for the fractal dimension of the SCC at the
threshold the value df = 1.75± 0.08.

We summarize these results in Table III. We observe
that the exponents are very different from the ones ob-
tained for the percolation on regular undirected lattices
or for the directed percolation, in agreement with the re-
sults obtained in [45] and pointing to a new universality
class in contrast with the analysis presented in [43, 44]
that showed that this model is in the same universality
class as standard percolation. There are however some
numerical discrepancies (for ν, σ, and df ) between our re-
sults and those of [45] and further work would be needed
for a precise determination of the exponents.
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FIG. 8: SCC-percolation transition for the mixed honeycomb
lattice and the calculation of critical exponents (too close to
criticality, finite-size effects become important when the cor-
relation length is of order the system size which reduces the
range over which the fit can be made). (a) The probabil-
ity to belong to the infinite cluster P∞ drops dramatically
when the fraction p of one-way streets is close to 0.69 in the
honeycomb lattice and 1 in the square lattice. (b) Calcu-
lation of pc = 0.6935 ± 0.0005. (c) The regression of the
finite-size percolation threshold as a function of L gives the
exponent ν = 1.1 ± 0.2. (d) Below criticality, the behavior
of P∞ with |p − pc| gives the exponent β = 0.26 ± 0.02. (e)
Above criticality, the maximal normalized cluster size scales
as smax ∼ |p− pc|σ and we find σ = 0.56± 0.05. (f) At crit-
icality, the number of clusters of sizes s scales as ns ∼ s−τ

and we find τ = 2.14± 0.05.

UNDERSTANDING THE TRANSITION IN
DISORDERED REAL-WORLD NETWORKS

Real-life street networks differ from the theoretical
square and honeycomb lattices. In particular, the de-
gree distribution of vertices (junctions) in city networks
can exhibit different shapes (see Fig. 4 left), either be-
ing centered around 3-point junctions - like in Beijing -
and hence closer to the honeycomb lattice, or being cen-
tered around 4-point junctions – as in Buenos Aires for
instance - and closer to the square lattice, or being a
combination of both like in New York City. In order to
test the effect of disorder on the percolation behavior, we
build various graphs starting from regular lattices, and
add or remove randomly edges. Removing links from the
honeycomb lattice shifts the SCC-percolation threshold
towards lower values in a linear way (Fig. 10a) while the
average degree 〈k〉 drops below 3. When the fraction

FIG. 9: (a) The percolation threshold for an infinite square
lattice is calculated as an extrapolation for various finite-size
lattices of side size ranging from L = 100 to L = 1000. We
find pc = 0.998 ± 0.002. (b) The regression of the finite-size
percolation threshold as a function of the linear size also gives
the critical exponent ν, and we obtain ν = 1.1±0.2. (c) Below
criticality, the behavior of P∞ with |p−pc| gives the exponent
β = 0.26. (d) At criticality, the number of clusters of sizes s
scales as a power-law of the size with critical exponent τ and
we find τ = 2.14± 0.05.

Critical 2d 2d directed Results This study

exponent percolation percolation of [45]

ν 4/3 1.73 (parallel) 4/3 1.1± 0.2

1.09 (perp.)

β 0.14 0.28 0.27± 0.01 0.26± 0.02

σ 0.40 0.31 0.41± 0.01 0.56± 0.05

df 1.90 1.84 1.80± 0.01 1.75± 0.08

τ 2.05 1.46 2.12± 0.08 2.14± 0.05

TABLE III: Critical exponents for standard percolation [52,
55] compared to directed percolation [56], the results obtained
in [45], and our results for SCC-percolation on mixed graphs.

of removed links is about 35% which corresponds to the
standard bond percolation threshold of the regular undi-
rected honeycomb lattice (the exact value is 2 sinπ/18
[47]), the giant component vanishes even without directed
links (an obvious necessary condition for having a SCC
is indeed the existence of a weakly connected giant com-
ponent). On the contrary, adding random edges to this
graph increases the percolation threshold until they are
too many edges in the system and the transition does
not occur anymore, as there is always a directed path
connecting any pair of nodes (Fig. 10b).

As observed above (Fig. 4 right column), underlying
graphs of real-world networks exhibit different non-trivial
SCC-percolation behaviors that result from the disorder
in their structure. We model these graphs by removal and
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FIG. 10: (a) The SCC-percolation threshold decreases lin-
early with the share of edges removed from the honeycomb
lattice. When the fraction of removed links is about 35%,
the giant component of the undirected honeycomb lattice
breaks down and the SCC-percolation threshold is 0. (b)
The SCC-percolation threshold increases with the number of
edges added to the honeycomb lattice. The behavior is here
well fitted by a square root function. (c) Starting from a regu-
lar square lattice, we construct various random planar graphs
by both addition and removal of edges until the distribution
of degrees is close to Paris. (d) On average, we recover the
SCC-percolation transition of the Paris real network.

addition of links in the regular graph. There are several
different ways of generating a random planar graph whose
distribution of degrees is close a given distribution. To
approximate the degree distribution of real world cities,
we use the following heuristic algorithm: starting from
a regular square lattice, we delete a certain share α4 of
links for which at least one of the endpoints has degree
4. We then do the same operation by removing a certain
share of links α3 for which at least one of the endpoints
has degree 3, then 2. Finally, we add a share of links
β4 between nodes of degree 4 and other nodes. We then
adjust step by step the parameters α1, α2, α3, α4 and
β4 until we find a distribution of degrees that is reason-
ably close to the real one. We test this model on the
case of Paris (France) and we construct a random mixed
graph whose distribution of degrees is close to the real
one: starting from a regular square lattice, we construct
various random planar graphs by both addition and re-
moval of edges until the distribution of degrees is close to
the empirical one (for Paris here). With this theoretical
network, we are able to recover the observed percolation
transition of the underlying network of Paris (Fig. 10c
and d) not to be confused with the actual choice of one-
way streets in Paris, which was proven to be statistically
unlikely. We retrieve the transition both at the level of
the percolation threshold and the shape of the function
(see Fig. 11 for other cities).

These results suggest that the degree distribution is
actually the main determinant for the percolation behav-

FIG. 11: In four cities, starting from a regular square lattice,
we construct various random planar graphs by both addition
and removal of edges until the distribution of degrees is close
to the real one (left panel). On average, we recover the SCC-
percolation transition of the corresponding real network (right
panel).

ior on these real-world graphs. It is important to note
that for percolation, bonds are drawn at random, while
as noted above, there are correlations between one-way
streets locations in real configurations and the degree dis-
tribution is not the only determinant in this case.

DISCUSSION

One-way streets in large cities are of fundamental im-
portance for controlling car traffic with dramatic effects
on neighborhoods in terms of pollution and noise. Ur-
ban planners have achieved to increase the number of
one-way streets in cities while preserving a giant strongly
connected component, as ensured by Robbin’s theorem:
even if it is a very hard task to do from scratch, adding
one-ways by preserving the strong orientation is a work-
ing strategy. How to locate one-way streets and their
effect on the graph structure were already the subject
of a few mathematical studies in graph theory, and we
show here that this problem has in addition interesting
connections with statistical physics. In particular, this
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problem naturally leads to a new percolation-like model
which belongs to a new universality class. Understanding
better this transition on both regular lattices and disor-
dered graphs represents certainly a challenge for theoret-
ical physicists, and might also shed light on the effects of
one-way streets in our cities.
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