

Reversible nature of photo-induced phase segregation and origin of long carrier lifetime in triple cation mixed halide perovskite films

Subodh K. Gautam, Minjin Kim, Douglas R. Miquita, Jean-Eric Bourée, Bernard Geffroy, Olivier Plantevin

► To cite this version:

Subodh K. Gautam, Minjin Kim, Douglas R. Miquita, Jean-Eric Bourée, Bernard Geffroy, et al.. Reversible nature of photo-induced phase segregation and origin of long carrier lifetime in triple cation mixed halide perovskite films. JPH 2021 - 6èmes Journées Pérovskites Halogénées, Geffroy, Bernard; Oswald, Frédéric, Mar 2021, Palaiseau, France. cea-03185858

HAL Id: cea-03185858 https://cea.hal.science/cea-03185858

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reversible nature of photo-induced phase segregation and origin of long carrier lifetime in triple cation mixed halide perovskite films

<u>Subodh K. Gautam^{1,*}</u>, Minjin Kim², Douglas R. Miquita^{1,3}, Jean-Eric Bouree², Bernard Geffroy^{2,4} and Olivier Plantevin¹

1 Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France. 2 LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau, France. 3 Centro de Microscopia - Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901- Brasil 4 Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France

Mixed-halide based hybrid perovskite semiconductors have attracted tremendous attention as a promising candidate for high efficient photovoltaic and light-emitting devices [1]. However, these advanced perovskite materials may undergo phase-segregation under light illumination due to halide ion migration and affecting their optoelectronic properties [2, 3]. In this contribution, we report such phase segregation effect in triple-cation mixed-halide perovskite film when subjected to photoexcitation and quantitatively analyze the processes that occur during phase segregation [4]. We highlight the relationship between photo-induced phase segregation and unusual increase in carrier lifetime in mixed halide perovskite under illumination (> 1 µs). Laser excitation induced halide ion migration lead to formation of smaller-bandgap iodide-rich and larger-bandgap bromide-rich domains which yield to red-shift in photoluminescence. The segregated iodide-rich domains efficiently trap the photo-excitedcarriers where they are long lived before recombination, revealing their dominant role in the origin of the unusual long carrier lifetime. Interestingly, these photo-induced changes are fully reversible and thermally activated when laser-excitation is turned off measured in temperature range of 270K-330K. A significant difference in activation energies for halide ion migration is observed during photoexcitation and recovery process under dark. In addition, temperature-dependent PL studies (10 K - 300 K) have been performed for better understanding of the role of exciton-phonon coupling to interpret the phase segregation driving forces. These findings will help to understand the key issues in the perovskite materials for the development of efficient solar cells and optoelectronic devices.

Figure: (a) Laser power-dependent photoluminescence (PL) spectra of triple-cation mixed-halide $(MA_{0.83} FA_{0.17})_{0.95}Cs_{0.05}$ Pb $(I_{0.83} Br_{0.17})_3$ perovskite film showing red-shift in PL at room temperature and (b) PL-decay spectra measured on red-shifted PL positions.

References: [1] Fu *et al.* Nat. Rev. Mater. 4, 169–188 (2019); [2] Hoke *et al.* Chem. Sci. 6, 613–617 (2015); [3] Draguta *et al.* Nat. Commun. 8, 200 (2017); [4] Subodh K. Gautam *et al.* Adv. Funct. Mater. (2020) 2002622.

6^{èmes} Journées Pérovskites Halogénées 2021 31 Mars, 1 et 2 Avril 2021, PALAISEAU