
HAL Id: cea-03179670
https://cea.hal.science/cea-03179670v1

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methodology for Specification and Verification of
High-Level Requirements with MetAcsl

Virgile Robles, Nikolai Kosmatov, Virgile Prévosto, Louis Rilling, Pascale Le
Gall

To cite this version:
Virgile Robles, Nikolai Kosmatov, Virgile Prévosto, Louis Rilling, Pascale Le Gall. Methodology
for Specification and Verification of High-Level Requirements with MetAcsl. FormaliSE 2021 - 9th
International Conference on Formal Methods in Software Engineering, IEEE TCSE; SIGSOFT, May
2021, Online conference, France. �cea-03179670�

https://cea.hal.science/cea-03179670v1
https://hal.archives-ouvertes.fr

Methodology for Specification and Verification of
High-Level Requirements with MetAcsl

Virgile Robles∗, Nikolai Kosmatov∗†, Virgile Prevosto∗, Louis Rilling‡ and Pascale Le Gall§
∗ Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

firstname.lastname@cea.fr
† Thales Research & Technology, Palaiseau, France

nikolaikosmatov@gmail.com
‡ DGA, France, louis.rilling@irisa.fr

§ Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes
CentraleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France

pascale.legall@centralesupelec.fr

Abstract—Specification and formal verification of high-level
properties (such as security properties, like data integrity or
confidentiality) over a large software product remains an impor-
tant challenge for the industrial practice. Recent work introduced
METACSL, a plugin of the FRAMA-C verification platform, that
allows the user to specify high-level properties, called HIgh-
Level ACSL REquirements or HILARE, for C programs and
transform them into assertions that can then be verified by
classic deductive verification. This paper presents a methodology
of specification and verification of a wide range of high-level
properties with METACSL and illustrates it on several examples.
The goal is to provide verification practitioners with detailed
methodological guidelines for common patterns of properties in
order to facilitate their everyday work and to avoid some frequent
pitfalls. The illustrating examples are inspired by very usual kinds
of properties and illustrated on two use cases. One of them—on
the real-life code of the bootloader module of the secure storage
device Wookey—was fully verified using the described approach,
demonstrating its capacity to scale to real-life code. The other
one—on a microkernel of an OS—was added to illustrate other
common properties, where the description of the system was
intentionally left very generic.

I. INTRODUCTION

The last two decades have seen significant progress in
deductive verification of programs. Deductive verification is a
source-code-based verification technique that allows users to
formally prove that a given program satisfies a set of specified
requirements. Such requirements are usually formalized as pro-
gram annotations in the form of function contracts, including
pre- and post-conditions for each function. A deductive verifi-
cation tool can be applied to prove that each function satisfies
its contract. For C programs, it can be done using for instance
the WP plugin of the FRAMA-C verification platform [1], the
requirements being formalized with the ACSL language [2].

While this technique has proved to be suitable to specify
and verify many functional properties, it is less suitable
to address high-level program properties, such as security
requirements like data integrity or confidentiality. Software
security has become a major concern today, and the assessment
of security properties on critical software even more so. Yet
formal specification and verification of such properties over a

large software product remains an important challenge for the
industrial practice.

For instance, in a microkernel entrusted with the manage-
ment of tasks and their respective memory regions, a desirable
property for the integrity of data is that the content of a region
can be modified only when its owner is the currently executed
task. When expressed as function contracts, such properties
necessarily span over many functions, and must be encoded
into the contracts of each of them. Given the annotated code,
it remains difficult for the user to ensure that those properties
were correctly specified in all relevant functions. In some
cases, such properties can also be difficult to express as
function contracts. An example is a confidentiality property
in a microkernel that a memory region can be read only when
its owner is the current task. More generally, stating constraints
on all read and write operations or function calls would amount
to peppering the code with many annotations, an extremely
tedious and error-prone task if done manually.

Recent work [3, 4] proposed METACSL, a FRAMA-C plu-
gin1 that allows the user to specify high-level properties,
called HIgh-Level ACSL REquirements (HILARE)2, and au-
tomatically transform them into local annotations, effectively
automating the annotation peppering. A HILARE basically
defines three main components: a predicate to be instantiated
as local annotations, a target set of functions in which it
should be done, and a context defining the situations (e.g.
reading or writing operations) in which this instantiation
must be performed. The resulting annotations can then be
verified by classic deductive verification, using the WP plugin.
The purpose of this paper is to present a methodology of
specification and verification of a wide range of high-level
requirements with METACSL and to illustrate it on several
examples. The goal is to provide verification practitioners
with detailed methodological guidelines for various common
patterns of properties in order to facilitate their specification
and verification. The provided patterns can be followed by

1Available at https://git.frama-c.com/pub/meta
2Referred to as metaproperties in [3, 4]

firstname.lastname@cea.fr
nikolaikosmatov@gmail.com
louis.rilling@irisa.fr
pascale.legall@centralesupelec.fr
https://git.frama-c.com/pub/meta

less experienced verification engineers to avoid logical errors
in the specification of a HILARE. We also emphasize some
good practices showing how to avoid some frequent pitfalls.

The provided examples are inspired by very frequent kinds
of properties and illustrated on two security-relevant use cases.
The first one, based on the bootloader module of the secure
storage device WOOKEY3 [5], was fully verified using the
described approach, demonstrating its capacity to scale to real-
life code. The second one, on a microkernel of an operating
system (OS), is only sketched and was included to illustrate
other common properties, where the description of the system
was intentionally left generic.

Contributions. The contributions of the paper include:
∙ a methodology for specification and verification of high-

level requirements based on METACSL, including a rich
set of common property patterns,

∙ their application to the verification of a critical module
of the secure storage device WOOKEY, whose security
properties were fully verified using METACSL,

∙ an illustration of their application to a microkernel.
Outline. Section II gives a brief overview of ACSL and

FRAMA-C. Then, in Section III, we lay down a general
methodology for dealing with high-level requirements with
HILARE. Section V describes and illustrates several com-
monly used specification patterns. It relies on two use-cases,
that are presented in Section IV and then studied further in
Section VI to showcase how the presented patterns can be
articulated for complex properties. General guidelines related
to the proof of such properties are then mentioned in Sec-
tion VII. Finally, Sections VIII and IX provide related work
and a conclusion.

II. BACKGROUND

We briefly recall in this section the main features of
ACSL, upon which HILARE and METACSL are relying. An
ACSL [2] annotation is primarily a first-order logic formula
that is supposed to hold for any program state reaching some
specific point in the program. Notably, an ACSL function
contract for a function f will specify the pre-condition of
f, that is, the properties that f requires from its caller, as
well as the post-condition of f, that is, the properties that f
ensures when it returns control back to its caller. In addition,
it is often important to specify the footprint of f, i.e. the
set of memory locations that the function might assign to
during its execution, either directly or through calls to other
functions. Apart from contracts, another important kind of
annotation is the assertion, which allows specifying a property
locally at a given point within a function body. Finally, ACSL
formulas are based on pure C expressions (i.e. without side-
effects), as well as logic functions and predicates, either built-
ins (notably to speak about pointers) or user-defined. For
convenience of the reader, Figure 2 summarizes the meaning
of ACSL (and HILARE) constructs used in this paper. For

3Available at https://github.com/wookey-project

1 int A, B, C;
2
3 /*@ requires validity: \valid(p) ∧ \valid(q);
4 requires separation: \separated(p,q);
5 assigns *p;
6 ensures copied: *p ⩵ *q; */
7 void copy(int* p, const int* q) { *p = *q; }
8
9 /*@ requires A ⩵ B;

10 assigns A,B;
11 ensures C ≥ 0 ∧ A ⩵ C ∧ B ⩵ C ∨
12 C < 0 ∧ A ⩵ \old(A) ∧ B ⩵ \old(B); */
13 void foo(){
14 if (C ≥ 0){
15 copy(&A,&C);
16 copy(&B,&C);
17 /*@ assert same: A ⩵ B; */
18 }
19 }

Figure 1: Example of C code with ACSL specification

Syntax Semantics
&& || ==> ! Logical operators
\forall var; P Universal quantification
\exists var; P Existential quantification

\diff(S1,S2) \union(S1,S2) Set operators S1 ⧵ S2, S1 ∪ S2
\ALL Set of all functions

\at(loc,lab) \old(loc) Value of location at label
\valid(p) Pointer validity

\separated(loc1, loc2) Memory separation
\overlaps(loc1, loc2) Memory overlapping
\tguard(P) \fguard(P) Guards against typing errors

\formal(param) Refers to function parameter
\written \read \called Refers to constrained object

Figure 2: ACSL and HILARE terms and predicates

example, \separated(p,q) indicates that memory loca-
tions referred to by pointers p and q are disjoint. To indicate
that two locations are not disjoint, in this work we denote by
\overlaps(p,q) the negation of \separated(p,q).
Note that in the code examples in this paper, some C and
ACSL constructs (e.g. >=, ||, &&, \forall, ==>) are
pretty-printed using mathematical notation (e.g. ≥, ∨, ∧, ∀,
⇒).

To make things more palatable, let us have a look at the
small example shown in Figure 1. It contains two functions
with their ACSL contracts. Concretely, ACSL annotations are
C comments, beginning with the character @.

The contract for copy, in lines 3-6, first gives two pre-
conditions (given in requires clauses). Note that any ACSL
formula may be given one or several names followed by a
column “:”, which are simply identifiers added for readabil-
ity and traceability purposes. The validity pre-condition
indicates that copy expects to be given two valid pointers,
i.e., it must be able to dereference p and q safely. The
separation requirement indicates that p and q must point
to two disjoint locations of the memory. Then, the assigns
clause explains that copy does not modify anything except the
location pointed to by p. Finally, copy ensures that when it
returns, the value of *p is equal to the one stored in *q (which,
as can be deduced by separation and the assigns clause,
is left untouched).

The contract for foo requires that it starts in a state where
global variables A and B are equal, and says that it may

https://github.com/wookey-project

overwrite both A and B. Its post-condition is a disjunction,
which says that if C is non-negative, A and B get assigned the
value of C, and if C is negative, A and B are left untouched.
The \old(A) construct indeed refers to the value of A in the
pre-state of the contract, allowing the post-condition to relate
the values of the post-state and the pre-state. Finally, inside
the body of foo, we assert that after the two copy, A and
B have the same value.

Within the FRAMA-C framework, verification that the code
is correct with respect to its ACSL specification can be done
through several means, notably the WP and E-ACSL plugins.
The former relies on deductive verification, and generates a
set of proof obligations that are sent to automated provers.
On the example of Figure 1, command frama-c -wp -
wp-rte example.c instructs WP to attempt proving the
specification itself as well as the absence of runtime errors and
immediately succeeds in proving the 12 proof obligations that
are generated. The E-ACSL plugin can be used to instrument
the code so that each annotation can be checked at runtime,
e.g. to be assessed against a test suite, as further explained in
[6, 4].

III. GENERAL METHODOLOGY

When confronted with a verification problem that seemingly
involves large parts of a code base, using METACSL and its
HILARE specification language might be an efficient and
expressive way to encode the desired properties with reason-
able effort. With experience, the specification and verification
process with METACSL usually follows a recurring pattern,
which might be useful for new users to know about.

Ensuring the problem is within the scope of METACSL

While it is possible to encode various categories of proper-
ties with HILARE, some of them are outside of its scope and
could be better addressed by more suitable tools.

Thus, one should check that a desired property:
∙ does not relate multiple execution traces. Indeed if the

specification involves the comparison of multiple execu-
tion traces, it is a relational property. METACSL is not
intended to deal with such properties.4

∙ is not overly concerned with the order of execution. While
HILARE can be used to write simple temporal properties
(e.g. relating two consecutive states of the program),
complex properties describing the behavior of a program
over time could be better treated with other FRAMA-C
plugins.5

∙ can somehow be reduced to a property on the global
state. Since METACSL is meant to express high-level
requirements, properties can only be expressed over data
that is visible in the global scope. While there are some
facilities to pry into the state of individual functions
when necessary, a property that is overly specific to a
local state might be hard to verify, or even to specify,

4One could use e.g. the dedicated RPP plugin for that purpose.
5Such as CAFE or AORAÏ.

as a HILARE. In fact, a plain ACSL annotation would
probably be sufficient in this case.

Identifying the working subset of the global state
As mentioned before, HILARE can only express properties

over data that are visible at global level. Hence, it is necessary
to identify where to anchor the properties in the global state.
There are several such “anchor points”:
Global variables This is the simplest and most desirable way.

Global variables can just be referred to by name in any
HILARE.

Common parameters Sometimes data are not global but
passed around as a parameter in a large number of func-
tions. If the naming of the formal parameter is consistent
across those functions, it can be referred to.

Heap data Memory dynamically allocated on the heap6.
Once the relevant elements of the state of the program have

been identified and made available, the properties themselves
can be formulated as HILARE. The set of variables (or more
generally, memory locations) used to specify a property is
referred to as its memory footprint.

Formulating the problem as HILARE
One should first identify the target set of the property: what

set of functions should uphold the requirement. It is often
helpful to define named function sets using C macros, and to
compose them with set operators (see Section V). Remember
that by default a HILARE is not transitive: it does not apply
to the callees of a function unless explicitly specified. Built-in
operators can be used to refer to the sets of callees or callers
of a function (or over-approximate them in case the code base
contains indirect calls).

Reasoning with HILARE means reasoning with conditions
on some action: ideally, one should try to express the require-
ment either as an invariant or as a constraint on:

∙ memory modifications;
∙ memory (reading) accesses;
∙ function calls.
In general, properties are easier to express when formulated

as a constraint on some code operations that must hold under
all or most circumstances, except maybe specific ones. This
step is detailed in Section V through a number of common
specification patterns.

Memory footprint closure. One of the main pitfalls of
HILARE specification is forgetting to constrain the modifica-
tions of all variables in the footprint of every HILARE. It is
important to ensure that such variables cannot be maliciously
modified during the execution. Hence, for each location in
a HILARE footprint, the practitioner should specify (e.g. as
another HILARE) what parts of the code can modify it and
under which constraints. This will be illustrated in Section VI.

6If not available directly, such a location can be accessed using a binding
feature in METACSL that semi-automatically enables such memory to be
available at high level through ghost variables. However, static verification
of properties involving such bindings might be harder.

Absence of undefined behaviors. Failing to account for
potential undefined behaviors and other runtime errors is
another trap to avoid. Indeed, even carefully written global
specification (or any specification) will be rendered useless by
undetected illegal behaviors, because their absence is one of
the main assumptions of the verification tools. For example,
the following assertion will happily be considered valid by WP
though it might be false (since pointer p to the character A is
here used to write an integer).
char A, B = 1;
int* p = &A; *p = 0; // Undefined behavior: buffer overflow
//@ assert compiler_dependent: B ⩵ 1;

Hence it is important to ensure that the -wp-rte option is
passed to FRAMA-C as mentioned at the end of Section II.
Thanks to it, WP will try to prove that every memory access
is valid (and report, as expected, a failure in this example).

Assessing the properties
METACSL is a plugin that translates each HILARE into

annotations in the target functions, that can then be assessed by
existing FRAMA-C plugins, such as EVA, E-ACSL or WP. We
will focus here on the usage of WP, that is, through deductive
verification.

When running METACSL followed by WP on a HILARE-
specified program, most of the verification conditions are
usually easily proved valid. Some guidelines about addressing
proof failures are laid out in Section VII.

IV. PRESENTATION OF THE USE CASES

The first use case is the bootloader of the WOOKEY [5]
project, which aims at prototyping a secure and trusted USB
storage device, and is fully open-source. It has two possible
banks (i.e. code areas) it can boot from, called flip and flop.
The bootloader performs various security and integrity checks
on the bank headers. It then chooses a bank to boot from,
locks the other one, checks the integrity of the firmware, and
jumps to the chosen bank (either in normal or update mode,
depending on the press of a button).

It is a basic yet critical component of the device, as it
has full privileges to modify the firmware, and it is the only
software component that cannot be patched once the device is
built and programmed.

The bootloader uses a global variable called ctx, storing
some information about the current context of the booting
sequence in its fields. In particular, it has two boolean fields
ctx.boot_flip and ctx.boot_flop. Initially, they are
both false. After the bank choice step in the boot sequence,
one (and only one) of them is set to true, depending on
which data bank is chosen. The data of the banks themselves
is accessible through two pointers char* flip_data and
char* flop_data.

Additionally, the boot sequence is explicitly organized as
a finite-state automaton which has an almost linear structure:
the control flow is expected to go from the initialization state
through six intermediate states until it reaches the final boot
state. Thus the control flow goes from a state to the next one,
never going back to a previous state. It can only deviate from

that linear structure when encountering an error or a security
breach, in which case the automaton enters a final error state.

The code is organized as a set of transition functions from
one state to another where the actual logic is performed. For
example, the final jump occurs in the function that represents
the transition to the final boot state. These transition functions
are called from a parent function managing the control flow by
making calls to a small API designed to ease the manipulation
of the automaton. In particular, this API manipulates a global
state variable, holding the current state of the automaton.

The second use case is a microkernel of an OS dealing with
various tasks. Contrary to the first use-case, we intentionally
give a very generic simplified description of the system,
leaving out the low-level implementation. This simplified
description suits a micro-controller target like in WOOKEY,
in which the CPU only uses physical addresses.

We assume that the system has a pre-determined7 number
NUM_TASKS of applicative tasks, each one being identified
by a task number taskId > 0 of type uchar (see Figure
3). Variable CurTask contains the number of the currently
executed task. When the (privileged) microkernel services
are executed, the variable Context is set to SYSTEM_CTX,
otherwise execution proceeds with ordinary privileges.

The memory is structured in disjoint allocated memory
areas that we call regions. The number of regions is given
by NUM_REGIONS. These memory areas are modeled using
two arrays, RegionStart and RegionSize indicating for
each region respectively the pointer to the beginning of the
region and its size in bytes. The owner of a region is modeled
by the RegionOwner array. Thus, region j is owned by task
RegionOwner[j], starts at address RegionStart[j]
and contains RegionSize[j] bytes. The region is owned by
the microkernel if RegionOwner[j]⩵SYSTEM_OWNER,
and by an applicative task otherwise. Region j is a code
region if RegionKind[j]⩵CODE_REGION, and a data
region otherwise.

Each task has a priority modeled by TaskPriority and
a status modeled by TaskStatus. A task i is ready to
be executed if TaskStatus[i] is equal to READY_TSK,
and is waiting or sleeping otherwise. Task i1 is of a
higher priority than task i2 if TaskPriority[i1] <
TaskPriority[i2] (notice that the highest priority has
the smallest value).

Lastly, the activation of a hardware Supervisor Mode Ac-
cess Prevention (SMAP) feature is symbolized by a boolean
SMAP_enabled variable. When enabled, the CPU should
prevent the microkernel from accessing task memory at all
when in privileged mode.

V. COMMON HILARE SPECIFICATION PATTERNS

This section exposes the actual syntax of HILARE specifi-
cation, along with a set of commonly used patterns to specify

7This model realistically assumes that the numbers of tasks and regions
are determined at compilation and do not change. However it is not a hard
limitation, and dynamic changes can also be supported.

typedef unsigned char uchar;
typedef unsigned int uint;
// Number of tasks, defined at compilation
#define NUM_TASKS ...
// Number of regions, defined at compilation
#define NUM_REGIONS ...
#define SYSTEM_CTX 0
#define SYSTEM_OWNER 0
#define READY_TSK 0
#define CODE_REGION 0

char Context; // System (SYSTEM_CTX) or Task context
uchar CurTask; // Current task
uint SMAP_enabled; // 0 disabled, 1 enabled
uchar TaskPriority[NUM_TASKS]; // Priority of task i
uchar TaskStatus [NUM_TASKS]; // Ready or waiting

char* RegionStart[NUM_REGIONS]; // Start of region i
uint RegionSize [NUM_REGIONS]; // Size of region i
uchar RegionOwner[NUM_REGIONS]; // Owner of region i
uchar RegionKind [NUM_REGIONS]; // Code or Data

Figure 3: Modeling tasks and memory regions in a microkernel

usual integrity and confidentiality properties. It is intended to
serve as a reference during a specification task and to support
Section VI where they are put together to form more complex
properties. The process allowing the verification of HILARE
specification is described in Section VII, and is useful to have
a good understanding of HILARE.

meta \prop,
\name(Name),
\targets(Targets),
\context(Context),

Predicate;

Figure 4: Base pattern of a HILARE

A HILARE has the form illustrated in Figure 4, named
base pattern. It specifies that Predicate must be valid in the
given Context for all functions in Targets. Name denotes
an user-defined name for the HILARE. As will be discussed
later, Context can be one of \strong_invariant,
\precond, \postcond, \weak_invariant,
\writing, \reading or \calling. Predicate is
an ACSL predicate (the reader can refer to the ACSL
specification [2] for the grammar) and can be a very general
property, but is usually some form of validity check of
different memory operations (hence manipulating memory
locations) or a global invariant.

Furthermore, Targets is a set of functions. The set can
simply be described in full, but it can also be built using several
built-in terms, listed below.

a) All functions
The \ALL term represents the set of all functions defined

in the program under analysis.
b) Set operators

Usual set operators can be used to build the target set, such
as union \union(S1,S2) and difference \diff(S1,S2).
Notably, \diff(\ALL,S) specifies a target set of the form
“all functions except the ones in S”.

c) Callees closure
The \callees(S) operator returns the transitive closure

of S by function call, i.e. the set containing S and every

function (transitively) called by functions in S. It is especially
useful when dealing with programs with clearly defined entry
points.

The following subsections give different possible meanings
to the concepts of Predicate and Context in the base pattern
by describing how they can work together with the target set
to specify interesting properties. Wherever it appears, symbol
Location refers to a variable or a range of elements of an
array, represented by their addresses.

A. Global weak invariant

Name specifies that predicate Prop holds at the beginning
and the end of each function in the Targets set.
meta \prop,

\name(Name),
\targets(Targets),
\context(\weak_invariant),

Prop;

For example, the following property states that every func-
tion needs the variable logic_state to be correct (for
some unspecified definition of is_correct) in the pre-
condition and must ensure it is still correct in the post-
condition. However, the state may be temporarily incorrect
inside the function.
meta \prop,

\name(state_always_valid),
\targets(\ALL),
\context(\weak_invariant),

is_correct(logic_state);

To disallow even brief violations of the invariant, one should
use the \strong_invariant context, which ensures the
invariant is valid at each sequence point of the program, as
seen in Section V-C.

B. Global post-condition

Name specifies that the predicate Prop holds at the end of
each function in the Targets set.
meta \prop,

\name(Name),
\targets(Targets),
\context(\postcond),

Prop;

It is similar to V-A but omits the pre-condition on all
functions. Both of them are simple ways to automatically add
components to a large number of function contracts.

C. Global strong invariant

Name specifies that the predicate Prop holds at every step
of each function in the Targets set.
meta \prop,

\name(Name),
\targets(Targets),
\context(\strong_invariant),

Prop;

D. No memory modification
Name specifies that no function in the Targets set directly

writes8 to Location.
meta \prop,

\name(Name),
\targets(Targets),
\context(\writing),

\separated(\written, Location);

For example, the following HILARE means that the
logic_state global variable can never be written to.
meta \prop,

\name(state_never_changed),
\targets(\ALL),
\context(\writing),

\separated(\written, &logic_state);

In practice, when METACSL processes such a HILARE for
further verification, it iterates through all target functions and
write instructions, and adds an assertion of Predicate where
\written has been replaced by the particular location being
written to by the local instruction. The same process is used
for all of the following variations of this pattern.

Note that Location may still be written to by functions that
are not in Targets but that are called by functions in Targets.
To automatically include these functions, the \callees
operator is very useful.

As mentioned above, \diff is also very useful here,
to indicate that only a fixed set (e.g. for initialization) of
functions is allowed to write to some object. For instance,
the following HILARE states that private_key can only
be set in enc_init.
meta \prop,

\name(only_init_allowed),
\targets(\diff(\ALL, {enc_init})),
\context(\writing),

\separated(\written, &private_key);

E. Conditional memory modification
Name restricts the situations when functions in the Targets

set can write to Location. When Guard holds, the write is
allowed only if Constraint also holds just before the write
operation.
meta \prop,

\name(Name),
\targets(Targets),
\context(\writing),

Guard ∧
\overlaps(\written, Location)
⇒ Constraint;

This is one of the most used patterns. Note that Guard
can be omitted to ensure that Constraint holds on all write
accesses to Location.

For example, the following HILARE is similar to the
example in V-D but instead of simply forbidding memory
modification, it allows it only if has_privilege is true.
meta \prop,

\name(state_change_requires_privilege),
\targets(\ALL),

8Indirect writes i.e. instructions hidden behind function calls are not
considered.

\context(\writing),

\true ∧ // Can be omitted
\overlaps(\written, &logic_state)
⇒ has_privilege ≠ 0;

F. Precise conditional memory modification
Name restricts the situations when functions in the Targets

set can write to the global variable Var. When Guard holds,
the write is allowed only if the relation between its previous
and new value is valid according to the predicate Relation.
meta \prop,

\name(Name),
\targets(Targets),
\context(\writing),

Guard ∧
\overlaps(\written, &Var)
⇒ Relation;

Relation is a particular instance of a constraint, that can
refer to the value of Var before and after the write using
respectively \at(Var, Before) and \at(Var, After).
For example, the following HILARE only allows assigning
increasing values to the global var.
meta \prop,

\name(increasing_values),
\targets(\ALL),
\context(\writing),

\overlaps(\written, &var)
⇒ (\at(var, Before) ≤ \at(var, After));

G. No memory access
Name specifies that no function in the Targets set directly

reads from Location.
meta \prop,

\name(Name),
\targets(Targets),
\context(\reading),

\separated(\read, Location);

Similarly to memory modification (Section V-D), target
operators can be very useful to build more complex properties.

H. Conditional memory access
Name restricts the situations when functions in the Targets

set can directly read from Location. When Guard holds, the
read is allowed only if Constraint also holds at the time of
reading.
meta \prop,

\name(Name),
\targets(Targets),
\context(\reading),

Guard ∧
\overlaps(\read, Location)
⇒ Constraint;

This is the dual of pattern V-E, and is used for similar
purposes.

I. No function call
Name specifies that no function in the Targets set may

directly call Function.
\tguard is a METACSL built-in predicate that expands

to its argument if it is well-typed, and to \true otherwise.

Here, its presence is necessary since \called and Function
can of course have non-compatible prototypes, making the
disequality ill-typed. In that case, \called is obviously not
Function, so that the HILARE holds. See the METACSL
reference paper [4] for more information about \tguard and
the similar \fguard predicate, that evaluates to \false if
the argument is ill-typed.
meta \prop,

\name(Name),
\targets(Targets),
\context(\calling),

\tguard(\called ≠ Function);

VI. COMBINING PATTERNS TO EXPRESS COMPLEX
PROPERTIES

This section demonstrates how the previous patterns can be
articulated into a larger specification methodology on realistic
confidentiality or integrity properties. To that end, we come
back to the use cases described in Section IV and detail the
specification process of some selected properties.

A. The WOOKEY bootloader

Definitive bank choice. In the code of the bootloader, one
single function called loader_exec_req_selectbank
has the task of choosing which data bank (flip or flop) to boot
from, and set the ctx.boot_flip and ctx.boot_flop
accordingly. It is necessary to ensure that:

∙ the behavior of that function is correct (at the end, only
one of the two fields is true),

∙ the two fields are modified only by that function.
Whereas the first requirement may be specified with a usual

function contract on loader_exec_req_selectbank,
the second one requires HILARE properties (one for each
field) and is a direct application of pattern V-D, as seen in the
first property of Figure 5. A similar property can be written
for the flop bank.

meta \prop,
\name(ctx_f lip_only_mod_in_selectbank),
\targets(\diff(\ALL, loader_exec_req_selectbank)),
\context(\writing),

\separated(\written, &ctx.boot_flip);

meta \prop,
\name(selectbank_callees_f lipf lop_neutral),
\targets(\diff(\callees(loader_exec_req_selectbank),

loader_exec_req_selectbank)),
\context(\postcond),

ctx.boot_flip ⩵ \old(ctx.boot_flip)
∧ ctx.boot_flop ⩵ \old(ctx.boot_flop);

meta \prop,
\name(f lip_read_means_f lip_chosen),
\targets(\ALL),
\context(\reading),

(ctx.boot_flop ∨ ctx.boot_flip)
∧ \overlaps(\read, &ctx.flip_data)
⇒ ctx.boot_flip;

Figure 5: Specification of the bank choice requirements

As stated before, the behavior of the function itself can
be specified with a simple ACSL contract stating that
at the end of the function, either ctx.boot_flip or
ctx.boot_flop is set (but not both), or an error has been
raised. To prove this contract however, the solver must know
that the callees of loader_exec_req_selectbank do
not change the value of the two fields. This is an immediate
consequence of the previous property, and can be stated as a
HILARE to be used by solvers using pattern V-B: in Figure 5,
selectbank_callees_flipflop_neutral states that
all callees of our function (except the function itself, which is
included in the \callees set) must ensure the values of the
flip and flop fields are the same at the end and at the beginning.
This is an instance of a high-level lemma, as described later
in Section VII.

Confidential bank data. A confidentiality property that
the code should respect is that after the bank choice has
been made, the data of the dropped bank should never be
accessed again by the bootloader. This is an instance of
pattern V-H, as seen in the last property of Figure 5. Namely,
flip_read_means_flip_chosen stipulates that if a
bank has been chosen (if one of the fields is true) and data
belonging to flip is being read, then it should mean that flip
is the chosen bank. Of course, a similar HILARE can be
specified for flop.

Valid boot sequence transitions. Another set of properties
concerns the bootloader’s automaton. As described previously,
the bootloader uses an explicit finite-state automaton structure
to guide its control flow, ensuring each step is correctly
executed, and in the appropriate order, and that any error or
security breach stops the boot sequence. While the design of
this automaton and its steps is important, it is also critical to
verify that the actual code does not infringe the automaton
rules.

Each transition in the automaton is embodied by a function
that carries out the specific actions to get to the next state (for
example, performing integrity checks on the data bank), and
then actually changes the state of the automaton.

Each of these transition functions has a nextstate formal
parameter that should be used to change the current state at
the end of the function. The current state of the automaton
is stored in a global state variable. To ensure that each
transition function correctly changes the state, we can write
Figure 6’s transitions_honor_next_state property,
which uses pattern V-B.

There are several things to notice:

∙ The target set is defined as the set of all transition
functions (which must be defined manually using a C
macro) minus the functions for the boot and error states,
which never return.

∙ The property uses the \formal operator, which enables
it to refer to formal parameters of the target functions:
\formal(x) refers to a formal parameter named x
which must exist in the prototype of each target function.

meta \prop,
\name(transitions_honor_next_state),
\targets(\diff(TRANSITION_FUNCTIONS,

\union(loader_exec_req_boot,
loader_exec_error,
loader_exec_secbreach))),

\context(\postcond),

\fguard(
logic_state ⩵ \formal(nextstate)
∨ logic_state ⩵ LOADER_ERROR

);

meta \prop,
\name(state_wrapper_only_called_in_transitions),
\targets(\diff(\ALL,

\union(TRANSITION_FUNCTIONS, INIT_FUNCTIONS)))
\context(\calling),

\tguard(\called ≠ loader_set_state);

Figure 6: Partial specification of the bootloader’s automaton

∙ The automaton state at the end can either be the specified
next state or the error state.

∙ As the target set may contain functions without a
nextstate formal parameter (which would make
\formal raise a type error), the whole predicate must
be surrounded by \fguard, thus defaulting to \false:
should that case occur, the corresponding verification
conditions will fail, so that users will be warned and
have the ability to either amend the HILARE or fix the
function to follow appropriate naming conventions.

Enforced automaton control flow. Here, we check that
transition functions correctly manipulate the state. However,
other functions may still do anything with the state, ren-
dering the previous property useless if expressed alone. To
strengthen the overall verification, we can specify that the state
is only modified by these transition functions (and various
initialization functions).

In the previous section (V-D), we showed how to spec-
ify that the actual variable is only modified through the
set_state setter. If we keep that property, it is then
enough to check that this setter is only called by transition
functions, with an instance of pattern V-I. It is materialized
in the last property of Figure 6, where the target is defined
as “all functions minus transition functions and initialization
functions” (using set difference and union), and we check that
these target functions do not call the setter.

Lastly, a quick analysis of the code shows that
the transition functions are called by a single function
loader_exec_automaton_transition managing the
control flow, itself called by loader_exec_automaton
and then by main.

Though it is necessary to specify that these management
functions operate correctly (in a way not detailed in this paper),
we also want to ensure that these functions are only called in
that order, i.e. that there is no inner code that spuriously calls
the automaton management functions recursively. We can use
that same pattern V-I three times to specify that these functions
are only called by their expected parents.

Overall, the specified properties ensure that:

meta \prop,
\name(region_integrity_task),
\targets(\diff(\ALL, init)),
\context(\writing),

∀ i∈ ℤ; 0 ≤ i < NUM_REGIONS
∧ Context ≠ SYSTEM_CTX
∧ \overlaps(\written,

RegionStart[i] + (0 .. RegionSize[i] - 1))
⇒ RegionOwner[i] ⩵ CurTask ∧ RegionKind[i] ≠ CODE_REGION;

meta \prop,
\name(region_integrity_system),
\targets(\diff(\ALL, init)),
\context(\writing),

∀ i∈ ℤ; 0 ≤ i < NUM_REGIONS
∧ Context ⩵ SYSTEM_CTX
∧ \overlaps(\written,

RegionStart[i] + (0 .. RegionSize[i] - 1))
⇒
(RegionOwner[i] ⩵ CurTask ∨ RegionOwner[i] ⩵ SYSTEM_OWNER)
∧ RegionKind[i] ≠ CODE_REGION;

meta \prop,
\name(region_confidentiality_task),
\targets(\diff(\ALL, init)),
\context(\reading),

∀ i∈ ℤ; 0 ≤ i < NUM_REGIONS
∧ Context ≠ SYSTEM_CTX
∧ \overlaps(\read,

RegionStart[i] + (0 .. RegionSize[i] - 1))
⇒ RegionOwner[i] ⩵ CurTask ∧ RegionKind[i] ≠ CODE_REGION

Figure 7: Spec. of region integrity and confidentiality

∙ The call graph has a correct structure. The functions
with the actual bootloading logic are only called by the
automaton management functions, which are not called
back.

∙ The automaton management functions are correct: they
call transition functions according to the current state and
specify a correct next state.

∙ That next state is correctly used by transition functions.
∙ The automaton state is not spuriously modified by inner

functions.
This demonstrates that an initial, high-level and fuzzy

requirement such as “the code is correct w.r.t. the automa-
ton structure” must often result in a set of tightly coupled
HILARE, where some enforce the requirement directly while
the others ensure that no “side-channel” exists to modify the
anchor points of the property outside of the intended flow of
execution. It took approximately 3 person-months to specify
and verify every requirement on WOOKEY.

B. A simple microkernel
The simplified microkernel described in Section IV is by

nature a critical component of its host system, and as such
should uphold several confidentiality and integrity properties
pertaining to different aspects of its behavior.

Task memory isolation. One such aspect is the strict
compartmentalization of tasks: a task should only read from
and write to the memory regions it owns. Moreover, it should
not access regions containing code in any way. This can be
specified with similar HILARE using patterns V-E and V-H.

The first property in Figure 7 iterates on all regions and
states that if a memory region is modified (that is, if the

#define FORALL_REGION(name, pred) \
(∀ name∈ ℤ; 0 ≤ name < NUM_REGIONS ⇒ pred)

#define CONTEXT_IS_SYSTEM (Context ⩵ SYSTEM_CTX)
#define REGION_OWNED_BY_SYSTEM(r) \

(RegionOwner[r] ⩵ SYSTEM_OWNER)
#define REGION_RANGE(r) \

(RegionStart[r] + (0 .. RegionSize[r] - 1))
#define SMAP_ENABLED (SMAP_enabled ≠ 0)

meta \prop,
\name(micro_kernel_confidentiality),
\targets(\diff(\ALL, init)),
\context(\reading),

FORALL_REGION(r,
CONTEXT_IS_SYSTEM
∧ ¬ REGION_OWNED_BY_SYSTEM(r)
∧ \overlaps(\read, REGION_RANGE(r))
⇒ ¬ SMAP_ENABLED

);

meta \prop,
\name(micro_kernel_integrity),
\targets(\diff(\ALL, init)),
\context(\writing),

FORALL_REGION(r,
CONTEXT_IS_SYSTEM
∧ ¬ REGION_OWNED_BY_SYSTEM(r)
∧ \overlaps(\written, REGION_RANGE(r))
⇒ ¬ SMAP_ENABLED

);

Figure 8: Specification of the SMAP feature

location targeted by a write overlaps with a region) while in
user land, then (i) the owner of that region should be the
task itself, and (ii) it should not be a code region. Here, as the
Location in pattern V-E, we use RegionStart[i] + (0
.. RegionSize[i] - 1), which represents the range of
addresses corresponding to region number i.
region_integrity_system, the second property on

Figure 7, follows the same principles. Its Guard captures
the modification of regions while in system context (when
the privileged microkernel services are invoked from a task)
and the Constraint forces the owner of the modified regions
to be either the original task or the microkernel. Again,
modifications of code regions are forbidden.

These two integrity properties are then mirrored us-
ing pattern V-H to specify their confidentiality counter-
parts, that is restraining memory accesses instead of mod-
ifications. Due to space constraints, we only show in
Figure 7 region_confidentiality_task which is
region_integrity_task’s confidentiality counterpart.

Controlled privileged operations. The SMAP feature men-
tioned in Section IV should also be enforced: when enabled,
code in privileged mode should not have any access what-
soever to task regions. Again, this can be specified with
instances of patterns V-E and V-H with a structure similar
to the previous properties. Figure 8 illustrates such restriction
of memory accesses, both for reading and writing. The Guard
filters accesses in privileged mode to regions not owned by the
microkernel, which can only happen if SMAP is disabled.

Furthermore, Figure 8 demonstrates how the usage of
C macros can improve the readability and portability of
specifications by abstracting implementation details to simple
predicates. In particular, the FORALL_REGION macro hides

the underlying array, bounds and indices, which are just noise,
requirement-wise.

Write XOR execute. Our microkernel discriminates mem-
ory regions by their kind: either code or data. While the previ-
ous properties ensure that code regions cannot be modified or
accessed, executing instructions contained in data regions must
also be prevented. Furthermore, a task should not try to jump
to another task’s code. Finally, when in privileged mode, only
microkernel code should be run. These three requirements can
be materialized by the HILARE depicted in Figure 9.

meta \prop,
\name(code_execution),
\targets(\ALL),
\context(\calling),

∃ i∈ ℤ; 0 ≤ i < NUM_REGIONS
∧ RegionStart[i] ≤ (char*)\called

< RegionStart[i] + RegionSize[i]
∧ RegionKind[i] ⩵ CODE_REGION
∧
((Context ≠ SYSTEM_CTX ∧ RegionOwner[i] ⩵ CurTask)
∨
(Context ⩵ SYSTEM_CTX ∧ RegionOwner[i] ⩵ SYSTEM_OWNER)
);

Figure 9: Code/data exclusion and isolation

Rather than using a specific pattern, code_execution
is a direct instantiation of Section V’s base pattern: it is a
general validity check of the function call operation, where
\called is the location of any function that may be called.
It states that for every call during the execution, the call should
land in a region that: (i) is a code region, (ii) is owned by the
current task if executing in user mode, and (iii) is owned by
the kernel if we are in privileged mode.

meta \prop,
\name(schedule_priority),
\targets(\diff(\ALL, init)),
\context(\writing),

\overlaps(\written, &CurTask) ⇒
TaskStatus[\at(CurTask,After)] ⩵ READY_TSK ∧
(∀ j∈ ℤ; 0 ≤ j < NUM_TASKS ∧ TaskStatus[j] ⩵ READY_TSK ⇒
TaskPriority[j] ≥ TaskPriority[\at(CurTask,After)]);

meta \prop,
\name(current_always_ready),
\targets(\diff(\ALL, init)),
\context(\strong_invariant),

TaskStatus[CurTask] ⩵ READY_TSK;

Figure 10: Specification of scheduling requirements

Valid task scheduling. Specification of the scheduling be-
havior calls for different specification patterns: when switching
contexts, the microkernel should not jump to any task that is
ready to run, but to a task with highest priority. Hence, when-
ever the current task changes, the first HILARE in Figure 10
puts a constraint on the new task instead of the old one. This
is a use-case for pattern V-F. schedule_priority has no
guard (so all modifications of CurTask are captured), but
states that any new value of CurTask must represent a task
that is both ready and of highest priority (compared to other

ready tasks). Notice the use of \at(CurTask,After) to
refer to the new value of CurTask.

While this captures the requirements related to context
switch, there are others that our system should honor. One
of them, current_always_ready of Figure 10, is that
while the scheduler can only switch to ready tasks, the current
task shall remain in a ready state for the entirety of its
execution. This is an invariant that should never be broken,
hence pattern V-C is used to enforce that status.

Tying up loose ends. Although all the previous HILARE
taken together form a consistent set that accurately formalizes
some of the requirements for the microkernel, it is of the
utmost importance to ensure the absence of loose ends, i.e. to
check whether the memory footprint is properly constrained, as
mentioned in Section III. For example, properties in Figure 7
expect the data in RegionOwner to be correct. However,
there is no safeguard preventing malicious code from spuri-
ously changing region owners.

To resolve this issue, it is necessary to carefully track any
variable in the footprint of every HILARE, and specify when,
if ever, it is allowed to change, with the help of pattern V-D.
This is done for some of the variables in Figure 11: for
example, context_modification ensures that only a
set of functions9 should be able to enable or disable
privileged mode, and region_owners_final states that
region owners should never change.

This should be done for all other relevant variables, such as
SMAP_enabled, TaskPriority, RegionKind, etc.

meta \prop,
\name(context_modification),
\targets(\diff(\ALL,)),
\context(\writing),

\separated(\written, &Context);

meta \prop,
\name(task_status_modification),
\targets(\diff(\ALL, {scheduler, init})),
\context(\writing),

\separated(\written, TaskStatus + (0 .. NUM_TASKS - 1));

meta \prop,
\name(region_owners_f inal),
\targets(\ALL),
\context(\writing),

\separated(\written,
RegionOwner + (0 .. NUM_REGIONS - 1));

Figure 11: Selected footprint modification constraints

VII. VERIFICATION DISCUSSION

A. The verification mechanism
As explained in previous sections, the usual verification

process of HILARE is to run METACSL, which transforms
a HILARE into a set of code annotations, and then run WP,
the deductive verification plugin of FRAMA-C, which tries to
prove the various annotations generated by METACSL.

9Where is defined as all kernel entry points such as system calls,
exceptions and interrupts.

The transformation from HILARE to code annotations
is best explained by example. Consider the example from
Figure 1 and assume we want to check that in this program, A
can only be modified if the current value of C is above zero.
This can be easily specified with an instance of pattern V-E:
meta \prop,

\name(constant_once_negative),
\targets(\ALL),
\context(\writing),

\overlaps(\written, &A) ⇒ C ≥ 0;

Now since it is a write constraint, METACSL will weave
this HILARE into the program by instantiating the predicate
\overlaps(\written, &A)⇒C ≥0 before every writ-
ing statement, replacing \written by affected location. This
results in the program listed below (without the earlier ACSL
annotations). We also add a bad function that deliberately
violates our property to further illustrate the transformation.
int A, B, C;
void copy(int* p, const int*q) {

/*@ assert P1: \overlaps(p, &A) ⇒ C ≥ 0; */

*p = *q;
}
void foo() { ... /* Unchanged */ }
void bad() {

/*@ assert P2: \overlaps(&C, &A) ⇒ C ≥ 0; */
C = -1;
/*@ assert P3: \overlaps(&A, &A) ⇒ C ≥ 0; */
A = 42;

}

First, note that an annotation is inserted before each write.
Hence, foo, containing only calls and conditionals, is un-
changed. Also note how each time \written gets replaced
by the location of the write (i.e. its address), such as p in P1.

Proving a HILARE is then a matter of using other FRAMA-
C plugins to validate the annotations. For example, the com-
mand:

frama-c example.c -meta \
-then-last -wp -wp-rte

would instruct METACSL to weave the annotated HILARE
into the program and to pass the result to WP, to try and prove
the annotations, as well as the absence of runtime errors.

In P2, \overlaps(&C, &A) trivially simplifies to false,
hence the whole implication is true. As expected P3 cannot
be proven valid since it simplifies to \true ⇒ C ≥ 0 and
C is provably negative. To prove P1, we would need to add it
as a pre-condition to copy since, when using deductive veri-
fication, pre-conditions are the only way to have assumptions
about the state at call site.

While some technical issues and features of the transforma-
tion for more complicated patterns (such as V-F) are omitted
here, this gives a good idea on how METACSL generates a
set of annotations equivalent to a HILARE and how to prove
them.

B. Useful tips and pitfalls
Several guidelines and pitfalls were already presented in

Section III. We discuss here some additional ones.
Proof failure analysis. If some of the annotations are not

proved, this can be due to several reasons:

(i) The program is incorrect with respect to the HILARE:
the code (or the HILARE) needs to be fixed. Given the
name of the failing annotation, it is easy to trace back to
the guilty HILARE.

(ii) There are insufficient pre-conditions on the function: the
given context is not sufficient for the property to be valid.
One should add pre-conditions needed for the proof.

(iii) The prover is not powerful enough: one should manually
subdivide the proof into a few intermediate steps by
writing annotations that are easier to prove and can help
to deduce the required one.

(iv) Some functions that are called are not specified enough.
It is common that, while a function clearly does not
modify the state related to a property, this is not reflected
in its specification and the prover cannot deduce that,
after the call, the memory footprint of the property
is unchanged. A first step consists thus in manually
specifying the memory footprint of the callees. If this is
not sufficient, one should specify the conditions needed as
a conditional invariant on all potentially called functions
using a HILARE.

Avoid overloading the proof context. When dealing with
large functions, it may be useful to use the -meta-checks
option which instructs METACSL to instantiate a HILARE
as a set of checks instead of assertions. The difference is
subtle: a check simply tries to prove a predicate at a given
point, while an assertion additionally adds it to the context for
further proofs. Hence at the end of a long function, provers
might struggle with an overloaded proof context containing all
previous assertions of the function.

High-level lemmas. When faced with problem (iii), a
classic solution is to provide lemmas used to cut the goal.
While it is possible to write lemmas in ACSL, this solution
may not work for a HILARE as it can rely on specific
local properties in the target functions or on variables non-
available globally (e.g. a function parameter). An efficient
solution is to write a HILARE used as a lemma to prove
another HILARE or an ACSL annotation: it is just as
efficient as using a regular lemma in a normal context.
selectbank_callees_flipflop_neutral in Sec-
tion VI-A is an example of such an auxiliary HILARE.

VIII. RELATED WORK

Defining and verifying security properties of OS kernels
down to the concrete source code was done in several projects,
including notably [7, 8, 9, 10, 11, 12], with different strategies.
Compared to these projects, which target micro-processors
with MMU-based memory isolation, the security properties
shown in this paper are just simple examples for the sake
of illustration and better match micro-controller setups, which
usually have no MMU and thus do not implement virtual
memory. For instance, a model of the hardware including the
MMU, the processor’s privilege levels and the program counter
is required to show that the MMU configuration matches the
kernel’s internal control structures and that the control flow

only enters the kernel privilege level at the defined entry
points for syscall, exception, and interrupt handling. Moreover,
some projects prove higher-level security policy abstractions
like information flow enforcement [8, 10, 9], from which
confidentiality and integrity properties similar to the ones
introduced in this paper can be derived, such as memory
isolation in PIP [11], as defined for a separation kernel [13].

Compared to these projects, the contribution illustrated in
this paper is the ability to both define and mechanically verify
global security properties directly at the level of the C source
code. Indeed, all previous approaches first define and prove the
security properties on an abstract model of the OS kernel and
the underlying hardware and second show that the concrete,
low-level code executed refines the abstract model and still
verifies the security properties defined on the abstract model.
It is argued that for verification purposes, it is easier to
reason on an abstract model than on low-level concrete source
code [8]. However we believe that using macros appropriately
in METACSL, as shown in Section VI, helps defining prop-
erties in an abstract way, by pushing implementation details
to the macro definitions. Moreover proving that the concrete
code refines the abstract model requires significant efforts.
In particular, in INTEGRITY [7], the proof that the C source
code refines the abstract model is manual and thus cannot be
considered as maintainable. Similarly, in SEL4, an abstract
model in Isabelle/HOL and the C source code are written
separately and all mechanized proofs of security properties
rely on a first mechanized proof of correctness that the C
source code refines the abstract model [8]. This proof of
correctness initially costed 25 person.years [14] and the team
is still working on how to improve its maintainability [15].

To make this approach more scalable, in CERTIKOS the
OS kernel and the hardware are modeled as a set of small
stackable layers (also called deep specifications), whose in-
terfaces and observable behaviors are defined in Coq [16]. In
each layer, the C or assembly implementation is verified to
be a refinement of the layer’s upper interface (called overlay)
assuming that the layer’s lower interface (called underlay) is
correctly implemented by lower layers. The verification of each
layer implementation is done using COQ tactics [17]. Global
properties can then be proved using only the COQ model of
the layers’ interfaces. The drawback of such a modularized
approach is that it makes it difficult to obtain an efficient
implementation of a microkernel, because in microkernels
targeting performance the implementations of the required
features are entangled. Indeed by principle such software must
only implement the bare minimal features required at the
kernel privilege level and the performance of the microkernel
is critical for the performance of the whole software system.

In PROSPER [10], refinement steps are bypassed using a
HOL4 model of the ARMv7 instruction set architecture [18].
The information flow properties are defined and verified on an
abstract model of idealized ARMv7 machines representing the
user-level execution contexts and the kernel execution context.
In the verification process, HOL4 is used to generate pre-
and post-conditions for atomic executions of the kernel at

boot-time and from entry to exit to/from the kernel execu-
tion context (that is, for hypercall, exception and interrupt
handling). The verification of the concrete kernel code thus
consists in verifying these pre- and post-conditions and is done
at the ARMv7 binary code level using the BAP toolset [19].
Although this approach has not been tested on a unified full-
featured OS microkernel, it is likely to be more scalable than in
SEL4 and more performance-compatible than in CERTIKOS.
However, it forces to reason on a model of the target machine
architecture, making the source code an implementation detail,
while METACSL allows us to reason on the C source code and
its adaptations to the target machine architecture.

In PIP and PROVENCORE, the C source code is automat-
ically generated from an executable specification, in COQ
for PIP [11] and in a proprietary language called Smart for
PROVENCORE [12], on which all properties and mechanized
proofs are written. The extension of the proof to the C
code relies on the code generation process, whose proof of
correctness is ongoing for PIP [11] and is not public for
PROVENCORE. While generating C code from an abstract
executable specification makes it easier to prove the actual
C code, this adds the open challenge of being able to generate
efficient code. Ongoing efforts study COQ tactics [20] that
implement heuristics to generate efficient code.

A few security properties of WOOKEY’s bootloader were
defined in [21]. Some were defined with help from the
FRAMA-C GUI and the EVA plugin [22] and verified by
inserting assertions and checking that they were not violated
using dynamic symbolic execution with KLEE [23].

Bootloader verification was attempted for SABLE [24]
and a simplified variant of a RISC-V first-stage bootloader
(FSBL) [25]. In both cases, the bootloaders ensure integrity
and authenticity of the loaded software and the platform state,
although with different strategies. In SABLE, the dynamic root
of trust measurement facility of Intel and AMD processors as
well as a hardware TPM are used to prevent system image
decryption in case of failure and otherwise allow an external
user to do remote attestation of the successful boot process.
More traditionally and like in WOOKEY, the RISC-V FSBL
studied in [25] is the ROM-located first piece of software
executed at boot and checks the cryptographic signature of
the loaded software.

In both projects the verification follows techniques already
used for microkernels but is reported as partially achieved.
SABLE follows the strategy of SEL4 [14] while the RISC-V
FSBL follows the code generation strategy down to RISC-V
binary code using Bedrock2 [26], an imperative language and
compiler written in COQ, and the riscv-coq implementation
of the RISC-V specification in COQ. Interestingly the RISC-
V FSBL verification covers the use of the hardware DMA to
load the software image.

The HILARE specification language is related to previous
high-level extensions of a contract-based specification lan-
guage. For example, JML [27] has been extended by Cheon
and Perumandla [28] to specify protocols (properties pertain-

ing to the order of call sequences), and by Trentelman and
Huisman [29] to express temporal properties. While protocols
may be expressible in HILARE (with variations of pattern V-I
and using ideas similar to WOOKEY’s automaton) as well as a
subset of temporal properties (using pattern V-F), it may not
be as simple as the syntax provided in their work, since such
properties are not the main focus of HILARE.

The general idea of defining a high-level concept in the
global scope and then weaving it into the implementation is
analogous to the Aspect-Oriented Programming (AOP) [30]
paradigm: HILARE can be seen as cross-cutting concerns
at specification rather than code level. Contexts can then be
related to pointcuts, which in AOP are a set of control flow
points where the code needed by the concern should be added.

IX. CONCLUSION

Convenient solutions for specification of high-level program
requirements are highly needed for (formal) verification and
certification of real-life software products. In this respect, this
paper proposes a pragmatic methodology for large C programs.
We describe a set of common property patterns and show how
to apply them to specify security-relevant properties on two
use cases. One of them—the bootloader of the secure storage
device WOOKEY—was fully verified using this approach. The
second one—sketching in a generic way selected features of
a microkernel—illustrates the ability of our approach to cover
many relevant security properties of an OS.

The proposed technique is based on three key ingredients.
The first one is the idea to specify a HILARE as a predicate
to be automatically instantiated at the relevant program points
into normal ACSL annotations that can then be automati-
cally proved by classic deductive verification. In this way,
a HILARE can be seen at the same time as a high-level
property and a set of the resulting low-level properties. Second,
the definition of several contexts (global or weak invariants,
reading, writing, calling operations) along with a target set of
functions in which the resulting low-level properties should be
inserted allows a wide range of possibilities of specification.
Third, combined with the expressiveness of ACSL (including
predicates and primitives to express memory-related properties
such as separation), the overall solution becomes suitable to
express a large range of relevant security properties such as
memory isolation, integrity and confidentiality.

Future work includes applications of the HILARE-based
approach to other real-life software products and an identifi-
cation of other property patterns possibly necessary to express
other kinds of high-level properties.

Acknowledgement. We warmly thank Ryad Benadjila, Ar-
nauld Michelizza, Patricia Mouy, Mathieu Renard, Philippe
Thierry and Philippe Trebuchet from the ANSSI for our
fruitful discussions about WOOKEY, and the FRAMA-C team
for their continuous support. The work of the first author was
partially funded by a Ph.D. grant of the French Ministry of
the Armed Forces – Defense Innovation Agency. Many thanks
to the anonymous referees for their helpful comments.

REFERENCES

[1] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski. “Frama-C: A software analysis
perspective”. In: Formal Asp. Comput. 27.3 (2015). DOI:
10.1007/s00165-014-0326-7.

[2] P. Baudin, P. Cuoq, J.-C. Filiâtre, C. Marché, B. Monate,
Y. Moy, and V. Prevosto. ACSL: ANSI/ISO C Specifi-
cation Language. https : / / github . frama - c . com / acsl -
language/acsl. 2020.

[3] V. Robles, N. Kosmatov, V. Prevosto, L. Rilling, and
P. Le Gall. “MetAcsl: Specification and Verification
of High-Level Properties”. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS).
Vol. 11427. LNCS. 2019. DOI: 10 .1007/978-3-030-
17462-0_22.

[4] V. Robles, N. Kosmatov, V. Prevosto, L. Rilling, and P.
Le Gall. “Tame Your Annotations with MetAcsl: Spec-
ifying, Testing and Proving High-Level Properties”. In:
Tests and Proofs (TAP). Vol. 11823. LNCS. Springer,
2019. DOI: 10.1007/978-3-030-31157-5_11.

[5] R. Benadjila, A. Michelizza, M. Renard, P. Thierry,
and P. Trebuchet. “WooKey: Designing a Trusted and
Efficient USB Device”. In: Annual Computer Security
Applications Conference (ACSAC). 2019. DOI: 10.1145/
3359789.3359802.

[6] N. Kosmatov and J. Signoles. “A Lesson on Runtime
Assertion Checking with Frama-C”. In: 4th Interna-
tional Conference on Runtime Verification (RV 2013).
Vol. 8174. LNCS. Springer, 2013, pp. 386–399. DOI:
10.1007/978-3-642-40787-1_29.

[7] R. J. Richards. “Modeling and Security Analysis of
a Commercial Real-Time Operating System Kernel”.
In: Design and Verification of Microprocessor Systems
for High-Assurance Applications. Ed. by D. S. Hardin.
2010. DOI: 10.1007/978-1-4419-1539-9_10.

[8] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T.
Bourke, S. Seefried, C. Lewis, X. Gao, and G. Klein.
“seL4: from General Purpose to a Proof of Information
Flow Enforcement”. In: IEEE Symposium on Security
and Privacy. 2013. DOI: 10.1109/SP.2013.35.

[9] D. Costanzo, Z. Shao, and R. Gu. “End-to-End Ver-
ification of Information-Flow Security for C and As-
sembly Programs”. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI). 2016. DOI: 10.1145/2908080.2908100.

[10] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and
O. Schwarz. “Formal Verification of Information Flow
Security for a Simple Arm-Based Separation Kernel”.
In: ACM Conference on Computer & Communications
Security (CCS). 2013. DOI: 10.1145/2508859.2516702.

[11] N. Jomaa, P. Torrini, D. Nowak, G. Grimaud, and S.
Hym. “Proof-Oriented Design of a Separation Kernel
with Minimal Trusted Computing Base”. In: Interna-
tional Workshop on Automated Verification of Critical

Systems (AVOCS). 2018. DOI: 10.14279/tuj.eceasst.76.
1080.

[12] S. Lescuyer. “ProvenCore: Towards a Verified Iso-
lation Micro-Kernel”. In: International Workshop on
MILS: Architecture and Assurance for Secure Systems,
MILS@HiPEAC. 2015. DOI: 10.5281/zenodo.47990.

[13] J. M. Rushby. “Design and Verification of Secure
Systems”. In: ACM Symposium on Operating Systems
Principles (SOSP). 1981. DOI: 10.1145/800216.806586.

[14] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D.
Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolan-
ski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
“seL4: Formal Verification of an OS Kernel”. In: ACM
Symposium on Operating Systems Principles. ACM,
2009. DOI: 10.1145/1629575.1629596.

[15] J. Andronick. “A Million Lines of Proof About a Mov-
ing Target (Invited Talk)”. In: International Conference
on Interactive Theorem Proving (ITP). Vol. 141. LIPIcs.
2019. DOI: 10.4230/LIPIcs.ITP.2019.1.

[16] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg,
and D. Costanzo. “CertiKOS: An Extensible Architec-
ture for Building Certified Concurrent OS Kernels”. In:
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2016.

[17] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu,
S.-C. Weng, H. Zhang, and Y. Guo. “Deep Speci-
fications and Certified Abstraction Layers”. In: ACM
Symposium on Principles of Programming Languages
(PoPL). 2015. DOI: 10.1145/2676726.2676975.

[18] A. Fox and M. O. Myreen. “A Trustworthy Monadic
Formalization of the ARMv7 Instruction Set Archi-
tecture”. In: International Conference on Interactive
Theorem Proving (ITP). 2010. DOI: 10 .1007 / 978 -3 -
642-14052-5_18.

[19] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz.
“BAP: A Binary Analysis Platform”. In: Computer
Aided Verification (CAV). 2011. DOI: 10.1007/978-3-
642-22110-1_37.

[20] C. Pit-Claudel, P. Wang, B. Delaware, J. Gross, and A.
Chlipala. “Extensible Extraction of Efficient Imperative
Programs with Foreign Functions, Manually Managed
Memory, and Proofs”. In: Automated Reasoning. LNCS.
2020. DOI: 10.1007/978-3-030-51054-1_7.

[21] ANSSI, Amossys, EDSI, LETI, Lexfo, Oppida, Quark-
slab, SERMA, Synacktiv, Thales, and T. Labs. “Inter-
CESTI: Methodological and Technical Feedbacks on
Hardware Devices Evaluations”. In: SSTIC 2020.

[22] S. Blazy, D. Bühler, and B. Yakobowski. “Structuring
Abstract Interpreters Through State and Value Abstrac-
tions”. In: Verification, Model Checking, and Abstract
Interpretation. 2017. DOI: 10.1007/978-3-319-52234-
0_7.

[23] KLEE. URL: https://klee.github.io/.
[24] S. D. Constable, R. Sutton, A. Sahebolamri, and S.

Chapin. Formal Verification of a Modern Boot Loader.
Electrical Engineering and Computer Science - Techni-

https://doi.org/10.1007/s00165-014-0326-7
https://github.frama-c.com/acsl-language/acsl
https://github.frama-c.com/acsl-language/acsl
https://doi.org/10.1007/978-3-030-17462-0_22
https://doi.org/10.1007/978-3-030-17462-0_22
https://doi.org/10.1007/978-3-030-31157-5_11
https://doi.org/10.1145/3359789.3359802
https://doi.org/10.1145/3359789.3359802
https://doi.org/10.1007/978-3-642-40787-1_29
https://doi.org/10.1007/978-1-4419-1539-9_10
https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1145/2908080.2908100
https://doi.org/10.1145/2508859.2516702
https://doi.org/10.14279/tuj.eceasst.76.1080
https://doi.org/10.14279/tuj.eceasst.76.1080
https://doi.org/10.5281/zenodo.47990
https://doi.org/10.1145/800216.806586
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.4230/LIPIcs.ITP.2019.1
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-030-51054-1_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://klee.github.io/

cal Reports 183. Syracuse University, 2018. URL: https:
//surface.syr.edu/eecs_techreports/183.

[25] Z. Straznickas. “Towards a Verified First-Stage Boot-
loader in Coq”. MA thesis. Massachusetts Institute of
Technology, 2020.

[26] A. Erbsen and S. Gruetter. Language and compiler for
verified low-level programming. URL: https : / / github .
com/mit-plv/bedrock2.

[27] G. T. Leavens, A. L. Baker, and C. Ruby. “JML: A Nota-
tion for Detailed Design”. In: Behavioral Specifications
of Businesses and Systems. 1999. DOI: 10.1007/978-1-
4615-5229-1_12.

[28] Y. Cheon and A. Perumandla. “Specifying and Check-
ing Method Call Sequences in JML”. In: International
Conference on Software Engineering Research and
Practice. 2005.

[29] K. Trentelman and M. Huisman. “Extending JML
Specifications with Temporal Logic”. In: International
Conference on Algebraic Methodology and Software
Technology. AMAST. 2002. DOI: 10.1007/3-540-45719-
4_23.

[30] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. “Aspect-
Oriented Programming”. In: European Conference on
Object-Oriented Programming. 1997. DOI: 10 . 1007 /
BFb0053381.

https://surface.syr.edu/eecs_techreports/183
https://surface.syr.edu/eecs_techreports/183
https://github.com/mit-plv/bedrock2
https://github.com/mit-plv/bedrock2
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/3-540-45719-4_23
https://doi.org/10.1007/3-540-45719-4_23
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381

	Introduction
	Background
	General methodology
	Presentation of the use cases
	Common HILARE specification patterns
	Global weak invariant
	Global post-condition
	Global strong invariant
	No memory modification
	Conditional memory modification
	Precise conditional memory modification
	No memory access
	Conditional memory access
	No function call

	Combining patterns to express complex properties
	The Wookey bootloader
	A simple microkernel

	Verification discussion
	The verification mechanism
	Useful tips and pitfalls

	Related work
	Conclusion

