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Impact of fine divertor geometrical features on the modelling of JET 

corner configurations 

On the difficulty of modelling JET corner configurations 

SOLEDGE2D-EIRENE simulations setup 

Impact on upstream profiles 

Impact on divertor conditions 

Impact on target conditions 

Conclusions 
 A minor modification of the target geometry in 2D mean-field simulations can 

lead to large differences in modelled edge plasma conditions 

 In the case of JET corner configurations, strong impact on far SOL upstream 

profiles and HFS target conditions, less on LFS 

 Highlights sensitivity of edge plasma conditions to minor geometrical 

modifications and need to model with adapted numerical tools 

 2D mean-field codes = work-horse of 

edge plasma modelling 

 Main 2D mean-field codes (EDGE2D, 

SOLPS, SOLEDGE2D) use structured 

mesh and flux-surface aligned grid 

 Problem when dealing with geometries 

where relevant solid surfaces are 

strongly not orthogonal to flux surface, 

e.g. JET corner configurations 

 Proposed work-around: run simulations 

with tile 7 slanted (Fig. 1) 

Fig. 1: EDGE2D grid for modelling of JET V6 

configuration illustrating the necessary 

artificial change in the target geometry 

(courtesy D. Moulton) 

 Question: how are simulation results impacted by this artificial modification 

of the geometry? 

 Strategy: check with code able to deal with both real and artificial 

geometries 

 SOLEDGE2D-EIRENE [1] can tackle both geometries thanks to use of 

penalization method for boundary conditions [2] 

 Simulations have been run in both geometries 

(Fig. 2) with following parameters: 

o pure D plasmas, no drifts 

o PSOL= 9.2MW 

o H-mode transport coefficients (Fig. 3) 

o separatrix density scan through feedback 

on gas-puff 

 

Fig. 2: Geometries and meshes 

used for the presented set of 

simulations. (a) and (b): real 

geometry; (c) and (d): slanted tile 

7 geometry. Red full line = main 

separatrix. Red triangles = 

location of gas puff. Magenta lines 

= location of pumps. 

Fig. 3: Perpendicular transport 

coefficients profiles 

Fig. 4: Outer mid-plane profiles of density (left) and electron temperature (right) for all simulated 

cases. The color scale corresponds to the various separatrix densities (in m-3). Dashed lines = real 

tile 7, full lines = slanted tile 7. 

Apex of tile 7 

 Strong impact in far SOL beyond T7’s apex: slanted T7 systematically denser 

 At low density difference propagates to near SOL (deeper penetration of neutrals) 
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Fig. 8: Target conditions as a function of upstream density ne
u. Top: outer divertor; bottom: inner 

divertor. Blue dashed lines = real T7, red full lines = slanted T7. Triangles = peak value at the strike 

point; circles = far SOL value . 

Fig. 7: Density and electron temperature profiles at 

targets. Top: electron density; bottom: electron 

temperature; left: wide view; right: zoom around 

strike points. Vertical dashed lines = separatrix. 

Dashed lines = real T7, full lines = slanted T7. 

Color = upstream density ne
u (m-3). 

Fig. 6: electron density (in m-3) in the divertor 

for 3 upstream densities. Top: real T7; middle: 

slanted T7; bottom: ratio slanted / real. 

Fig. 5: neutral density (log10(m
-3)) in 

the divertor for 3 upstream densities. 

Top: real T7; bottom: slanted T7 

 Neutrals distribution 

little impacted except 

for larger density in 

slanted case on HFS 

baffle (Fig. 5) 

 Contrasted impact on electron 

density distribution (Fig. 6): 

o Relatively small in LFS near 

SOL 

o But slanted T7 leads to much 

denser plasma (especially at 

low density) in far SOL and 

HFS target 
 

 In-line with density evolution: 

o Denser & cooler HFS strike-point 

        => earlier roll-over 

o LFS strike-point much less impacted 

o Difference mainly at intermediate 

densities (high-recycling) 


