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ABSTRACT

In order to understand stellar evolution, it is crucial to efficiently determine stellar surface rotation periods. Indeed, while they are
of great importance in stellar models, angular momentum transport processes inside stars are still poorly understood today. Surface
rotation, which is linked to the age of the star, is one of the constraints needed to improve the way those processes are modelled.
Statistics of the surface rotation periods for a large sample of stars of different spectral types are thus necessary. An efficient tool
to automatically determine reliable rotation periods is needed when dealing with large samples of stellar photometric datasets. The
objective of this work is to develop such a tool. For this purpose, machine learning classifiers constitute relevant bases to build our
new methodology. Random forest learning abilities are exploited to automate the extraction of rotation periods in Kepler light curves.
Rotation periods and complementary parameters are obtained via three different methods: a wavelet analysis, the autocorrelation
function of the light curve, and the composite spectrum. We trained three different classifiers: one to detect if rotational modulations
are present in the light curve, one to flag close binary or classical pulsators candidates that can bias our rotation period determination,
and finally one classifier to provide the final rotation period. We tested our machine learning pipeline on 23 431 stars of the Kepler
K and M dwarf reference rotation catalogue for which 60% of the stars have been visually inspected. For the sample of 21 707 stars
where all the input parameters are provided to the algorithm, 94.2% of them are correctly classified (as rotating or not). Among
the stars that have a rotation period in the reference catalogue, the machine learning provides a period that agrees within 10% of the
reference value for 95.3% of the stars. Moreover, the yield of correct rotation periods is raised to 99.5% after visually inspecting 25.2%
of the stars. Over the two main analysis steps, rotation classification and period selection, the pipeline yields a global agreement with
the reference values of 92.1% and 96.9% before and after visual inspection. Random forest classifiers are efficient tools to determine
reliable rotation periods in large samples of stars. The methodology presented here could be easily adapted to extract surface rotation
periods for stars with different spectral types or observed by other instruments such as K2, TESS or by PLATO in the near future.
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1. Introduction

Low-mass stars with convective outer layers (hereafter solar-
type stars) can exhibit magnetic activity (e.g., Brun & Browning
2017). In the Sun, one of the manifestations of magnetic activity
is the emergence of magnetic spots at its surface. While for stars
other than the Sun, one cannot directly image starspots in great
detail, one can in principle detect their impact on, for example,
stellar brightness. As the star rotates, starspots come in and out
of the visible hemisphere, thus modulating the stellar brightness.
As a consequence, such spot modulation encloses information on
stellar magnetic activity and surface rotation (e.g., Berdyugina
2005; Strassmeier 2009).

Surface rotation periods represent a key parameter to under-
stand stellar angular momentum transport. This process is not
yet sufficiently understood in order to be correctly implemented
in stellar evolution codes (e.g., Aerts et al. 2019, and refer-
ences therein). Neglecting angular momentum transport may
have a significant impact on the stellar age estimates (e.g.,
Eggenberger et al. 2010). These stellar ages are crucial for study-
ing the evolution of the Milky Way (e.g., Miglio et al. 2013),
as well as for a better characterisation of planetary systems
(e.g., Huber 2018). The evolution of planetary systems, which
is driven by tidal and magnetic effects, is indeed strongly influ-
enced by the stellar rotation rate, through angular momen-

tum exchange between planets and their host star star (e.g.,
Zhang & Penev 2014; Mathis 2015; Bolmont & Mathis 2016;
Strugarek et al. 2017; Benbakoura et al. 2019).

The surface rotation period is found to be a strong func-
tion of the stellar age: low-mass stars with an external convec-
tive envelope spin down during their main-sequence evolution.
The first empirical relation between the two stellar parameters
was proposed by Skumanich (1972, also known as Skumanich
spin-down law). In particular, for young main-sequence solar-
type stars, the rotation period can be used to constrain stellar
ages through the so-called gyrochronology relations (e.g., Barnes
2003, 2007; Mamajek & Hillenbrand 2008; Meibom et al. 2011,
2015; García et al. 2014a). However, for stars older than the
Sun, the ages determined by gyrochronology deviate from the
asteroseismic ages (Angus et al. 2015; van Saders et al. 2016).
Angus et al. (2020) also show that the empirical gyrochronology
relations cannot reproduce the stellar ages inferred from veloc-
ity dispersion. These discrepancies justify the need for improved
gyrochronology relations. Furthermore, the presence of surface
rotational modulation in the light curves has a limiting effect
on the detection of low-amplitude transiting exoplanets (e.g.,
Cameron 2017). The amplitude of those rotational modulations
is directly linked to the surface stellar magnetic activity level
and leads to difficulties in performing asteroseismic analysis of
active solar-like stars because this magnetism inhibits pulsations
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(e.g., García & Ballot 2019; Mathur et al. 2019, and references
therein).

During its four-year nominal mission, the Kepler satel-
lite (Borucki et al. 2010) collected high-quality, long-term, and
nearly continuous photometric data for almost 200 000 targets
(Mathur et al. 2017) in the Cygnus-Lyra region. After the fail-
ure of two reaction wheels, Kepler was reborn as a new mis-
sion called K2 (Howell et al. 2014). K2 observed more than
300 000 targets around the ecliptic (Huber et al. 2016) over 20
three-month campaigns. The Transiting Exoplanet Survey Satel-
lite (TESS, Ricker et al. 2015) observed nearly the all sky dur-
ing its nominal mission. TESS gathered data for tens of millions
of stars with an observational length ranging from 27 days to
one year. This large amount of observations represent the best
photometric dataset to study the distribution of stellar surface
rotation periods, Prot. But to reach this goal and extract periods
for large samples of stars, automatic procedures are required.
Such an attempt was recently undertaken with a deep learning
approach using convolutional neural networks (Blancato et al.
2020). However, training those networks requires a heavy com-
putational power. Hence, the development of an easy-to-train
machine learning procedure coupled with the outputs of widely-
used rotation pipelines will be an extremely valuable asset.
Indeed, this is the objective of the current study.

Random forest (RF) algorithms (Breiman 2001) are either
able to classify large samples of stars (when used for classifica-
tion) or to provide parameter estimates (when used for regres-
sion). In asteroseismology, RF algorithms have already been
used to estimate stellar surface gravities (log g, Bugnet et al.
2018) and to automatically recognise solar-like pulsators
(Bugnet et al. 2019). They have also recently been used to per-
form analyses linked to surface stellar rotation, but only in
order to infer long rotation periods from TESS 27-day-long light
curves (Lu et al. 2020). In this work, we present the Random
fOrest Over STEllar Rotation (ROOSTER), which is designed
to select a rotation period for stars observed by Kepler through
a combination of RF classifiers applied to a variety of methods
used to extract Prot and different ways to correct the light curves.
Thus, the main goal of ROOSTER is to automatically achieve a
large degree of reliability that could even be improved by per-
forming a small number of human visual validation of certain
results, which are also suggested by the pipeline.

The layout of the paper is as follows. Section 2 presents
the sample of K and M stars used in this work as well as the
methodology to extract the surface rotation periods. Section 3
describes all the parameters used to feed ROOSTER. In Sect. 4,
we explain how the ROOSTER pipeline is built and we detail the
training scheme we chose for this work. In Sect. 5, we present
the rotation periods obtained with the ROOSTER pipeline and
the strategy implemented for stars with missing input parame-
ters. Results, limitations, and possibilities to increase the accu-
racy of ROOSTER are discussed in Sect. 6. Finally, conclusions
and perspectives are given in Sect. 7.

2. Observations and methodology to extract
surface rotation periods

The target sample of this work is comprised of main-sequence
K and M stars observed by the Kepler mission. This sample
was the one analysed in the rotation study done by Santos et al.
(2019). It is the most complete rotation catalogue for the Kepler
K and M dwarfs. Hereafter, this catalogue is referred as S19. In
it, 26 521 targets were selected according to the Kepler Stellar
Properties Catalogue for Data Release 25 (DR25, Mathur et al.

2017) and for 15 290 of them, a Prot was provided. As the pur-
pose of this work is rotation analysis, different types of poten-
tial contaminants are removed from our study, namely Kepler
objects of interest, eclipsing binaries, misclassified red giants,
misclassified RR Lyrae, light curves with photometric pollution
by nearby stars or multiple signals, classical pulsators (namely
δ Scuti and/or γ Doradus) candidates, and contact binary candi-
dates (see S19 for details on the contaminants).
S19 determined average rotation periods, Prot, and average pho-
tometric activity indexes (S ph, Mathur et al. 2014), for more than
60% of the targets. In fact, about 30% of the reported Prot by S19
are new detections in comparison with the previous largest Prot
catalogue (McQuillan et al. 2014). In addition to an automatic
selection of reliable Prot, the S19 analysis required an extensive
amount of visual examinations (see Sect. 2.2), which justifies the
need for a pipeline such as ROOSTER.

2.1. Light curve preparation

We use three sets of KEPSEISMIC light curves1, the same
used in S19. KEPSEISMIC data is calibrated using KADACS
(Kepler Asteroseimic Data Analysis and Calibration Software;
García et al. 2011), which applies customised apertures and cor-
rects for outliers, jumps, drifts, and discontinuities at the edges of
the Kepler Quarters. Because regular interruptions in the obser-
vations (such as the gaps induced every three days due to the
angular momentum dump of the Kepler satellite) could produce
a false detection of Prot, gaps shorter than 20 days are filled by
implementing inpainting techniques using a multi-scale discrete
cosine transform (García et al. 2014b; Pires et al. 2015).

We use in particular three different data sets obtained with
three high-pass filters, with cutoff periods at 20, 55, and 80 days.
The transfer function is unity for periods shorter than the cut-
off period, while for longer periods it varies sinusoidaly, slowly
approaching zero at twice the cutoff period. Thus, for a given
filter, it is possible to recover periods longer than the respective
cutoff period. The main goal of using and comparing three differ-
ent filters is to find the best trade-off between filtering the unde-
sired instrumental modulations at long periods while keeping
the intrinsic stellar rotational signal. KEPSEISMIC light curves
are optimised for asteroseismic studies, but are also very well
suited for rotation and magnetic activity studies (see for exam-
ple Appendix B in S19).

2.2. Methodology to extract Prot

Surface rotation periods can be studied with different meth-
ods, namely: periodogram analysis (e.g., Reinhold et al. 2013;
Nielsen et al. 2013); Gaussian processes (e.g., Angus et al.
2018); gradient power spectrum analysis (e.g., Shapiro et al.
2020; Amazo-Gómez et al. 2020); autocorrelation function
(ACF, e.g., McQuillan et al. 2013, 2014); time-period analysis
based on wavelets (e.g., Mathur et al. 2010; García et al. 2014a);
or with a combination of different diagnostics such as the com-
posite spectrum (CS, e.g., Ceillier et al. 2016, 2017; Santos et al.
2019). Using artificial data, Aigrain et al. (2015) compared the
performance of different pipelines used to determine the rotation.
The authors found that the combination of the data set prepa-
ration and different rotation diagnostics, in particular the one
implemented in this work (see next paragraph), yields the best
set of results in terms of reliability and completeness.

1 KEPSEISMIC data are available at MAST via http://dx.doi.
org/10.17909/t9-mrpw-gc07
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In this work, we use the procedure followed in S19 to extract
Prot combining three analysis methods (time-period analysis,
ACF, and CS) with the KEPSEISMIC light curves. Those Prot
are respectively denoted PACF, PGWPS and PCS. Control param-
eters related to the ACF and CS are also extracted, they are
denoted HACF, GACF, and HCS. Each method also allows us to
compute a magnetic activity proxy S ph. Description and details
concerning those parameters can be found in Appendix A.

During the visual examination in S19, a group of classical
pulsators (CP) and close binaries (CB) candidates was identified.
Those stars are referred hereafter as Type 1 CP/CB candidates.
These targets are typically fast rotators (Prot < 7 days), showing
very stable and fast beating patterns, a large number of harmon-
ics in the power spectrum, and/or very large S ph values. Interest-
ingly, Simonian et al. (2019) found that the majority of the fast
rotators observed by Kepler are tidally-synchronised binaries. In
fact, there is a significant overlap between the Type 1 CP/CB
candidates and the tidally-synchronised binaries (see S19). This
suggests that the modulation seen in the light curve of such
objects may still be related to rotation but not of single targets.
Therefore, we advice caution while studying such targets. In
S19, the Type 1 CP/CB candidates were flagged through visual
inspection.

3. Parameters used to feed the machine learning
algorithms

To ensure that ROOSTER is able to identify targets with
detectable rotation modulation and to extract reliable rotation
periods, the selection of relevant parameters is crucial. They
will help the algorithm to perform successive classifications as
described in Sect. 4. Indeed, a random forest algorithm relies on
the following principle: during the training step, a forest of clas-
sification trees is grown to perform splits between the elements
with different labels (Breiman 2001). From the root of the tree,
the training sample is progressively separated in purer (consider-
ing the labels) sub-samples. This task is performed by selecting
at each iteration the best split over a range of randomly generated
range of splits using the input parameters.

The three rotation periods (PACF, PGWPS, and PCS) obtained
thanks to the method described in Sect. 2.2 and in Appendix A,
combined with the three sets of data corresponding to the three
different high-pass filtered KEPSEISMIC light curves (20, 55
and 80 days), yield a total of 9 rotation-period candidates for
each star. The objective is to train the algorithm to choose the
rotation period given in S19. To do so, we also feed our pipeline
with the parameters (amplitude, central value and standard devi-
ation) of the five first Gaussian functions fitted on the GWPS and
the CS. If, for a given star, the ith Gaussian function could not
be fitted, the corresponding parameters are set to zero. We also
include the χ2 of the two fits, the number of Gaussian functions
fitted to each GWPS and CS and the mean level of noise. This
makes 108 additional input parameters (36 for each filter). As
only a few stars have a sixth Gaussian function fitted for both
GWPS and CS method, we verified that keeping the correspond-
ing parameters out of the classification does not affect the result.
We also feed the random forest algorithm with the HACF, GACF,
and HCS for each filter, and the S ph with corresponding errors for
each method and each filter, leading to 27 more parameters.

Because the rotation periods depend on the global parame-
ters of the stars (age, spectral type, etc.), we complement our
set of input parameters with the effective temperature, Teff , and
logarithm of surface gravity log g from the DR25 catalogue
(Mathur et al. 2017). We also decide to use the Flicker in Power

metric (FliPer, Bugnet et al. 2018), which is correlated with the
stellar surface gravity. FliPer is a measure of the total power in
the stellar power spectral density (PSD) between a low frequency
cut-off, νC and the Nyquist frequency, νN. It can be defined as:

FliPer (νC) =
1

νN − νC

∫ νN

νC

PSD(ν) dν − Pn, (1)

where Pn is an estimate of the photon noise level which depends
on the magnitude of the star. In this work, we used a noise esti-
mation calibrated with the whole set of KEPSEISMIC calibrated
light curves. We consider the following four FliPer values: F0.7,
F7, F20, F50 for νC of 0.7, 7, 20 and 50 µHz, respectively.

Additional parameters linked to the quality of the stellar tar-
gets and of the acquired light curves are added: Kepler mag-
nitude values Kp from the Kepler input catalogue (Brown et al.
2011), length of the light curves (in days), bad quarter flag, num-
ber of bad quarters in the light curve, and finally, the start time
and end time of the light curve.

For each star, a total of 159 input parameters are used to feed
the ROOSTER pipeline. The full list of parameters is given in
Table B.1.

4. The ROOSTER pipeline

ROOSTER uses three random forest classifiers2: RotClass,
which selects stars that have a rotation signal; PollFlag, which
flags the Type-1 CP/CB candidates; and PeriodSel, which allows
ROOSTER to choose the final rotation period between the three
different filters and the three analysis methods. Due to its ability
to take into account a large number of parameters, its flexibility,
and its adaptability to the training set, the random forest algo-
rithm constitutes a clear improvement from the former method
consisting in defining thresholds on a small number of key
parameters.

The three classifiers are trained with the same 159 input
parameters per star as defined in the previous section, but each
classifier considers different training sets and gives different out-
put labels. Depending on the task the classifier has to achieve,
each of them may give different importance to the input param-
eters. The flow diagram of ROOSTER is shown in Fig. 1.

4.1. Description

The first ROOSTER classifier, RotClass, separates stars with rota-
tional modulations (labelled Rot stars) from other stars (labelled
NoRot stars). These NoRot stars are rejected and are no longer
considered in the rest of the analysis (although some of those stars
may later still be flagged for visual checks). An example of Rot
star, KIC 1164583, is presented in Fig. 2. In this figure, the light
curves and the output of the three different rotation period retrieval
methods (WPS/GWPS, ACF, and CS) are shown.

In general, the risk of confusion by the ROOSTER pipeline
between a Rot and a NoRot star is a consequence of two main
issues: it can be difficult to reliably detect low-amplitude rota-
tional modulations and Kepler instrumental effects may intro-
duce additional periodic modulations in the light curve.

A small fraction of Rot stars (generally stars with Prot < 7
days) may be close-in binaries or classical pulsator stars can-
didates. As mentioned above, the detected signal for this type
of targets may not be consistent with rotation of single stars.
The PollFlag classifier is trained to identify these CP/CP candi-
dates and flag them as FlagPoll, while the rest of the stars are
2 The random forests classifiers are implemented with the Python
scikit-learn package (Pedregosa et al. 2011).
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Fig. 1. Structure of the ROOSTER pipeline. The yellow diamonds out-
line the action of each classifier used by the machine learning algo-
rithm. The stars of the sample (lightblue parallelogram) are anlaysed by
the pipeline. The red and dark blue parallelograms emphasis the label
attributed by the ROOSTER classifiers to each star of the sample. First,
stars with rotational modulation are selected by RotClass and the label
Rot or NoRot is given. NoRot stars are not considered in the subse-
quent analysis. The PollFlag classifier flags Type 1 CP/CB candidates
(labelled FlagPoll). The remainder of the stars receive the FlagOk label.
Finally, the PeriodSel classifier selects the rotation period.

labelled FlagOk. The light curve and PSD of the FlagPoll can-
didate, KIC 2283703, is shown as an example in Fig. 3. Its Type
1 CP/CB character can be recognised due to the large amplitude
of the brightness variations, the beating pattern, and the large
number of high-amplitude peaks in the PSD.

Finally, the third classifier, PeriodSel, is trained with the
same 159 parameters defined in Sect. 2. This time, the labels
of the training set correspond to the nine possible rotation peri-
ods (PACF, PCS, PGWPS in the 20, 55, and 80-day filters). The
goal is to select the most reliable period among those nine esti-
mates, which may differ. For example, Fig. 2 illustrates the
impact of the high-pass filter when producing the light curves
of KIC 1164583. The 55- and 80-day filters indicate a 47-day
period, while the period detected from the 20-day filter is 21
days. The comparison between the three WPS shows that the
47-day signal has been filtered out by the 20-day filter. The WPS
shows power at longer periods which is another evidence for a

longer period being filtered. The 47-day GWPS period of the 55-
day filter is finally chosen as the retrieved Prot. PeriodSel selects
one of the nine estimates as the retrieved rotation period, Prot,ML.
We emphasise that the transfer function of a given filter slowly
approaches zero at twice the cutoff period, that is to say it is pos-
sible to retrieve rotation periods longer than the cutoff period of
the filter applied to the light curve.

4.2. Training

The followed approach allows us to show the robustness of
ROOSTER. In particular, ROOSTER must be weakly dependent
to the exact composition of the training set. This can be only
achieved if the training-set parameter space distribution is simi-
lar to the test-set parameter space distribution. Hence, we decide
to perform a training-loop process where the three classifiers are
trained one hundred times. Each time, the full working sample is
randomly divided in a training set (containing 75% of the stars)
and a test set (containing 25% of the stars). The number of times
each star is drawn in the test set over the one hundred training
repetitions follows a binomial law with probability p = 0.25 and
number of trials n = 100.

In total, the target sample of this study includes 23 431 tar-
gets from S19: 21 707 of them have all the parameters from the
rotation pipeline (referred as the RotClass sample), while 1,724
have missing parameters (referred as the MissingParam sample,
mainly due to missing ACF values). S19 gives measured Prot for
14 936 stars: 14 562 for the RotClass sample and 374 stars for the
MissingParam sample. These stars are labelled Rot and are then
used with the PeriodSel classifier (called the PeriodSel sample).
A total of 8495 stars do not have a reliable Prot in S19. Hence,
this S19 sample is ideal to train and evaluate the performance of
ROOSTER. The MissingParam sample is not considered at this
stage but will be used later in Sect. 5.2. The working PollFlag
sample is constituted of 630 stars: 315 Type 1 CP/CB candidates
completed at each training with 315 other stars randomly cho-
sen from the PeriodSel sample. The composition of the different
samples is summarised in Table 1.

An RF classifier not only gives a label to each classified star,
its forest structure also allows obtaining the proportion of trees
attributing a given class to each considered star. Indeed, the final
classification of the target corresponds to the label that is selected
by the majority of the trees. We can then define the classification
ratio as the number of trees giving the output label over the total
number of trees of the forest. This ratio is useful to estimate the
reliability of the machine-learning output for each star.

Since we perform a training loop with random repetitions,
we are also able to compute the mean classification ratio for each
star. This mean classification ratio is computed as the mean of all
the classification ratios found each time a star has been drawn in
the test set.

5. Results

In what follows, the accuracy term is defined as the agreement of
any label given by a ROOSTER classifier and the S19 catalogue
taken as a reference.

From the 21 707 stars of the RotClass sample, the mean clas-
sification ratio gives the right label (Rot or NoRot) for 20 443
stars, which yields an overall accuracy of ∼94.2%. We find that
1707 stars have been misclassified at least once during the 100
runs (7.9%) while 1259 stars have been misclassified in half
of the repetitions of the training they were part of the test set
(5.8%). Finally, 884 stars have been systematically misclassified
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Fig. 3. PSD of the Type 1 CP/CB candidate KIC 2283703. The light
curve is characterised by high-amplitude flux variation and beating
patterns over time, while the PSD exhibits a large number of high-
amplitude peaks.

(4.1%). The accuracy of RotClass is already valuable but can be
improved with a limited amount of visual checks. By performing
visual inspections, we verify that the highest number of misclas-
sifications occur within the mean classification ratio between 0.4
and 0.8. For this reason, stars within these mean classification
ratios should be part of the visual verification for future target
samples. In the case of the target sample of the current study,
2230 stars (10.3%) are within this interval. One of the reasons
for the misclassifications is the presence of instrumental modu-
lations that can be mistaken by rotation periods.

Concerning PollFlag, the goal is to obtain a high sensitiv-
ity to real Type-1 CP/CB candidates, while keeping the frac-
tion of misclassifications low. The sensitivity is here defined
as the fraction of Type 1 CP/CB candidates correctly identified
by PollFlag. Thus, the sensitivity does not take into account
the fraction of non-Type 1 CP/CB candidates correctly iden-
tified. In this case, it is a more relevant estimator than the
accuracy, as the fraction of Type-1 CP/CB candidates in the
sample is small. During the training loop, approximately 2.8%
of the considered non-Type-1 CP/CB candidates have been
misclassified by PollFlag as Type-1 CP/CB candidates. If
PollFlag had been applied blindly on the full PeriodSel sample,
this means that approximately 400 non-Type-1 CP/CB candi-
dates would have been wrongly flagged. However, considering
the mean classification ratio, only two Type-1 CP/CB candi-
dates have been misclassified, which yields a PollFlag sensitiv-
ity of ∼99.4%. Looking at the detailed results during the training
loop, 6 Type-1 CP/CB candidates are misclassified at least once
(1.9%), 4 are misclassified in half of the repetitions (1.3%), and
none is systematically misclassified.

Finally, the mean classification ratio of the PeriodSel clas-
sifier gives us an accuracy of ∼86.8%, that is to say the label
corresponding to the rotation period from S19 is attributed to
12 638 stars over 14 562 in the PeriodSel. Nevertheless, a signif-
icant fraction of the labels chosen by PeriodSel contains a Prot
which is within 10% of the one in S19. For this reason, we adopt
the agreement within 10% as the true accuracy, TA, of PeriodSel
in the following way:

TA =
Card (Egood)

Card (E)
× 100, (2)

with E being the considered ensemble of stars and Egood the
subsample from E where PeriodSel retrieves a Prot,ML matching
Prot,S19 within 10%.

We find that PeriodSel selected an incorrect period for 830
stars at least once (5.7%), for 693 (4.8%) in half of the realisa-
tions and systematically for 569 (3.9%). In terms of the mean
classification ratio, a correct rotation period Prot,ML is retrieved
for 13 871 stars. Hence, the true accuracy is ∼95.3%. Figure 4
shows the comparison between Prot,ML and the reference values
from S19. From the 1924 stars for which the label attributed by
ROOSTER was not the same as in S19, 1233 are within the
shaded blue area of the figure. For the remaining 4.7% of the
stars, we observe three cases:

1. Among the periods retrieved by ROOSTER, 103 of them
lie within a tolerance threshold that is slightly over 10% (see
the shaded green area of Fig. 4). This could be due to a precision
difference between PGWPS, PACF, and PCS or to the filter that was
selected to choose the value of the rotation period.

2. The machine learning mistakes instrumental modulations
for real rotation signals when such signatures appear in the light
curves. These instrumental modulations usually have periods
between 38 and 50 days. 99 ROOSTER rotation periods lie both
in this [38–50] days regions and outside of the 10% agreement
region.

3. Depending on the rotation signature, some of the nine
period estimates correspond to the second harmonic of the cor-
rect rotation period. PeriodSel privileges this harmonic over the
fundamental period for 381 stars of the PeriodSel sample.

5.1. Weight of the considered parameters

Here we discuss briefly the importance given by the three classi-
fiers to the input parameters. For each classifier, Fig. 5 presents
the weights of the ten most important parameters. The rotation
periods provided by the ACF and GWPS for the 55-day filter
are in the top five parameters of RotClass. PollFlag favours the
ACF parameters, which is coherent as the ACF shows a spe-
cific pattern for CP/CB candidates. We note that PollFlag is the
only classifier among the three that also prioritises errors on S ph
determination to perform the classification. For PeriodSel, three
of the most important parameters are the rotation period values
computed from the 55-day filtered light curves. The parameters
of the Gaussian functions fitted to the GWPS and CS also have
a strong influence over the classification. The remainder of the
most important parameters are the HACF, GACF, and HCS from
the 20-day filtered light curves, which highlights the importance
of those control parameters when considering the reliability of a
potential rotation signal.

Finally, one could be concerned by the effect of systematic
errors on Teff and log g parameters. However, because of the
small weight of these two parameters, their influence on our
classifiers’ accuracy is marginal. Therefore, the impact on our
methodology of any systematic error in both parameters is neg-
ligible. A similar conclusion will be reached in Sect. 6.2 where
we tested our algorithm using simulated data by Aigrain et al.
(2015).

5.2. Strategy for stars with missing parameters

The rotation pipeline does not always provide a value for all
the parameters needed for the random forest classification. The
majority of the missing parameters are related to the ACF for the
55- and 80-day filters. In general this happens because there is no
clear peak in the ACF. However, to perform the classification, an
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Table 1. Composition of the different subsamples used for the study and scores of the different classifiers.

RotClass sample PollFlag sample PeriodSel sample MissingParam sample

Number of input stars 21 707 315 Type 1 CP/CB candidates + 315 non-candidates 14 562 1724
RotClass accuracy (%) 94.2/97.6 – – 77.4
PollFlag sensitivity (%) – 99.4 – 50 (∗)

PeriodSel accuracy (%) – – 95.3/99.5 79.4
Global accuracy (%) – – 92.1/96.9 –

Notes. The 315 non-candidate stars used in the PollFlag sample are randomly chosen in the PeriodSel sample at each training. For RotClass and
PeriodSel, the metrics chosen to express the score is the accuracy while it is the sensitivity for PollFlag. When two scores are given, the first and
the second one corresponds to the score before and after visual inspection, respectively. (∗)There is only 4 Type-1 CP/CB candidates in this sample,
among which, only 2 have been correctly classified yielding 50% probability.

input value must be provided for each of the 159 parameters. To
test ROOSTER on the stars with missing parameters, we choose
to train our three classifiers without the values for PACF, S ph,ACF
and the respective uncertainty for the three filters. However, we
decide to keep HACF and GACF as input parameters. If for a given
star in a given filter, PACF is not determined, HACF and GACF
will be set to zero. This is logical in the sense that the value
for GACF and HACF indicates whether the corresponding peak is
significant.

Like before, RotClass is trained with the RotClass sample.
Only 1334 of the stars of the MissingParam sample are cor-
rectly classified (accuracy of 77.4% compared to the accuracy
of 94.2% reached with the RotClass sample). This is not a sur-
prise in the sense that when the ACF does not yield a period
estimate, it suggests that the modulation in the light curve may
not be clear enough. This assumption is confirmed when com-
paring the fraction of stars with rotation signal in the RotClass
sample and in the MissingParam sample: 67.1% of the stars in
the RotClass sample are labelled Rot in S19 while only 24% of
the MissingParam sample are labelled Rot in S19. Thus, the two
distributions are very different and this impacts the outcomes of
the classifier.

The accuracy loss is similar for PeriodSel, with only 79.4%
of rotation period retrieved within 10%. Among the Missing-
Param sample, there are only four Type 1 CP/CP candidates,
which make it difficult to estimate the sensitivity for this sample.
Two of those candidates are correctly flagged (50%).

In order to optimise the efficiency of the pipeline, it is thus
preferable to be able to compute upstream a full set of parameters
for a maximal number of stars and to avoid having to deal with
a too large MissingParam sample.

6. Discussion

The RF classification with ROOSTER represents a clear
improvement compared to the automatic selection method based
on control parameters performed in S19 (see Appendix A). How-
ever, for a small fraction of the sample, the ROOSTER results
differ from those in S19. Nevertheless, the discrepancies repre-
sent well-known issues that we try to flag.

Once we have obtained the rotation periods from the
ROOSTER pipeline, we define a list of criteria so that we can
flag stars that require visual checks and hence improve the accu-
racy of the final retrieval of extracted rotation periods.

1. First, we identify stars for which the proper filter is not
selected. We expect Prot,ML chosen by PeriodSel to be coherent
with the filter from which they were extracted. This means that,
for Prot,ML < 23 days, Prot,ML should have been extracted from
the 20-day filtered light curve, for 23 days < Prot,ML < 60 days
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Fig. 4. Comparison between Prot,ML and the values given in S19 for the
stars of the PeriodSel sample. The shaded blue and green areas highlight
the 10 and 30% agreement regions, respectively. The number of stars
inside this area is colour coded. The stars outside the shaded area are
represented by red dots. The dashed blue line corresponds 2:1 line.

from the 55-day filtered light curve, for Prot,ML > 60 days from
the 80-day filtered light curve. If Prot,ML agrees within 15% with
the PGWPS of the proper filter, we replace Prot,ML by this value.
Otherwise, the star is flagged for visual check. This change is
motivated by the goal of retrieving the most accurate S ph, which
is generally obtained considering a light curve with a high-pass
filter coherent with Prot,ML.

2. As shown in Fig. 4, a significant number of stars lie on the
1:2 line, highlighting an issue with the harmonics of Prot, which
can partially be overcome. We flag targets for visual inspection
if at least one of the other Prot estimates (nine in total) is within
15% of the double of Prot,ML. We notice that this harmonics issue
is generally linked to Prot yielded by the GWPS fitting method
that selects a higher-order harmonic instead of the first one as it
is more often done by the ACF methodology. In order to reduce
the impact of this problem, it would be necessary to perform
a comprehensive study of the fitted GWPS harmonic’s pattern.
This analysis is out of the scope of the current paper but will be
the issue of a future upgrade of the ROOSTER pipeline.

3. The ROOSTER pipeline might also attribute the wrong
rotation period because of instrumental modulation in Kepler
data. The 55 and 80 day filtered light curves are the most affected
by instrumental modulations. For these cases, Prot,ML is usu-
ally between 38 and 50 days, but can be longer. Those instru-
mental modulations can be identified through visual inspection
of the light curves and of the control figures of the rotation
code. For this reason, we flag all stars with Prot,ML > 38 days.
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Fig. 5. Importance of the ten most important parameters for the three classifiers of the pipeline. The full list of ROOSTER input parameters is
given in Appendix B.

Instrumental modulations can correspond to, for example: sud-
den bursts in flux; abnormal flux variations which only happen
every four Kepler Quarters, that is to say every Kepler year; and
flux variations that are present throughout the light curve with a
main periodicity of one Kepler year, while in the rotation diag-
nostics used here one can identify its harmonics and the result-
ing filtered signals. We note that the 80-day filtered KEPSEIS-
MIC light curves are naturally the most affected by instrumental
modulations. However, the signature in the 20-day and 55-day
filtered light curves may also have an instrumental origin. This
is also true for other data products in the literature. Avoiding
instrumental modulations is one of our objectives and one of
the reasons to use three KEPSEISMIC light curves (Sect. 2.1)
and perform complementary visual checks (see also discussion
in S19).

4. Stars with Prot,ML < 1.6 days are also flagged to ensure that
the detected signal is not CP/CB-like. Observationally, synchro-
nised binaries correspond to targets with detected period shorter
than seven days (Simonian et al. 2019).

5. All the Type 1 CP/CB candidates in S19 have a period
shorter than seven days. We therefore flag for visual inspection
Type-1 CP/CB candidates detected by PollFlag when Prot,ML > 7
days.

6. Stars for which the length of data or the presence of
gaps might not be enough to cover the range of rotation peri-
ods expected for the studied stars are also visually inspected.
The flagging criterion can be based on the total length of obser-
vations (given in days or quarters) and on the continuity of
the light curve. In this work we have used a criterion in quar-
ters. Stars were flagged if their light curve was shorter than five
quarters.

7. The last group of visual checks correspond to stars are
those for which the mean classification ration of RotClass is
between 0.4 and 0.8, as already stated in Sect. 5.

The different types of stars flagged for visual inspection are
summarised in Fig. 6.

The six conditions listed above result in flagging for visual
inspection 4606 stars (31.6% of the PeriodSel sample). Among
those 4606 stars, 628 will be corrected after the visual inspec-
tion. Finally, for 27 stars, we prefer the value given by the
machine learning over the S19 value. After this step, we obtain
a 99.5% accuracy for the retrieval of Prot,ML. It should be noted
that among the 63 remaining stars outside the 10% agreement
between ROOSTER and S19, 24 of them lie in a large toler-
ance zone of 30% of the good rotation period. As mentioned in
Sect. 5, stars with mean classification ratio between 0.4 and 0.8
are visually checked. That means that some of the stars classified

NoRot by RotClass are also visually checked. The total number
of visual checks to perform in the scheme we just described is
then 5,461 (25.2% of the RotClass sample), which represent a
significant improvement compared to S19 (60% of the sample
was visually checked).

We are able to compute a global accuracy score for both
RotClass and PeriodSel classifiers. Among the 14 562 stars of
the PeriodSel sample, both RotClass and PeriodSel made correct
predictions for 13,413 stars (92.1 % of the sample), that is to say
RotClass correctly labelled them Rot and Prot,ML agrees within
10% of the Prot given in S19. After the visual checks, this accu-
racy is raised to 96.9%. The accuracy scores before and after
visual inspection are summarised in Table 1.

We note that it could be possible to reduce the global amount
of visual checks. For example, 683 stars are flagged only because
their light curve was shorter than five quarters. It represents
4.7% of the PeriodSel sample. Among those 683 stars, only 7 of
them are actually corrected after the visual inspection. The visual
check of short light curves could therefore be avoided without a
significant loss of accuracy. However, concerning the methodol-
ogy described in this paper, we decided to clearly point out every
risk of confusion that could occur in ROOSTER.

6.1. Period retrieval in short light curves

The ROOSTER accuracy on short light curves may yield inter-
esting hints about the performance of our method on a dataset
constituted by stars observed by TESS or K2. Our dataset
contains 29 light curves with length within 30 and 35 days and
690 light curves with length within 35 and 150 days. Period-
Sel accuracy over those two subsamples is 96.5% and 92.9%,
respectively. The Prot distribution for those two subsamples is
presented in Fig. 7. All the stars with light curves length below
35 days present rotation periods below five days. The ability of
our method to retrieve longer Prot in such short light curves is
beyond the scope of this paper and will be discussed in details in
a subsequent study.

6.2. Period retrieval with simulated data

ROOSTER was also applied on the simulated data of the hare
and hounds exercise in Aigrain et al. (2015). The results of this
analysis are presented in Appendix C. For the purpose of this
exercise, ROOSTER was trained considering only light curves
from S19 and had no previous knowledge of the simulated
data. We found that ROOSTER applied blindly performed better
than any of the methods compared in Aigrain et al. (2015). The
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ROOSTER accuracy scores are close to what we obtain on real
data in this study. It is important to notice that in this analysis Teff

and log g were not used in the training in order to have the same
homogeneous set of parameters for the noise-free and noisy light
curves.

7. Conclusion

In this paper, we have described ROOSTER, a machine learn-
ing analysis pipeline dedicated to obtain rotation periods with
a small amount of visual verification. ROOSTER has been suc-
cessfully applied to targets observed by the Kepler main mission.

The pipeline is built around three random forest classifiers, each
one in charge of a dedicated task: detecting rotational modula-
tions, flagging close binary and classical pulsator candidates, and
selecting the correct rotation period, respectively with the clas-
sifiers RotClass, PollFlag and PeriodSel.

We applied ROOSTER to the K and M main-sequence
dwarfs analysed in S19 (Santos et al. 2019). We were able to
detect rotation periods with an accuracy of 94.2% for a sam-
ple of 21 707 stars (RotClass sample). Within the RotClass sam-
ple, we considered 14,562 stars with measured rotation periods
(PeriodSel sample). The automatic analysis yields a true accu-
racy of 95.3% for PeriodSel, that is to say an agreement of the
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rotation period from ROOSTER within 10% of the reference
value from S19. We noticed that the majority of the misclassi-
fied stars were due to known effects, in particular, instrumen-
tal modulations and confusion with a harmonic of the true rota-
tion period. 31.6% of the stars of the PeriodSel sample are then
flagged for visual checks which allows us to correct wrong val-
ues for 628 more stars and raises the PeriodSel accuracy to
99.5%. Considering the results of the combined RotClass and
PeriodSel steps on the PeriodSel sample, the global accuracy of
ROOSTER is estimated at 92.1% without any visual check, and
96.9% after visual inspection of 25.2 % of the RotClass sample
(against 60% in S19). By removing some input parameters from
the ROOSTER training, we were also able to deal with stars with
missing input parameters, at the price of a loss of accuracy. How-
ever, this accuracy loss is not only due to the diminution of the
number of the parameters, but is also related to the intrinsic qual-
ity of the light curves for which the rotation pipeline was not able
to provide a full set of parameters.

It should be emphasised that the accuracy estimated here is
only valid for the K and M dwarf stars studied in S19. Rotation
signals for hotter stars (mid F to G) are more complex than for
K and M. In order to extend our analysis to those stars, a signifi-
cant sample of hotter stars should first be introduced in the train-
ing set. The different accuracy values should also be reassessed
before proceeding to the analysis. The length of the Kepler time
series and the exquisite quality of the photometric measurements
are important advantages for rotational analyses. To analyse light
curves from K2 or TESS (which have a typical observational
length significantly shorter than those of Kepler), first we need
to verify whether the current training set is appropriate. If this
is not the case, the classifiers must be trained with more suit-
able training sets (e.g by building a new training set with K2 or
TESS stars). The selection of targets for visual inspection would
probably be modified too.

Nevertheless, the global framework of ROOSTER can be
adapted the Kepler F and G main-sequence solar type stars
(Santos et al., in prep.). It should also be possible to use this
technique to analyse data from K2, TESS and, in a near future,
PLATO (PLAnetary Transit and Oscillations, Rauer et al. 2014).
Such large-scale survey would be a great asset for gyrochronol-
ogy models and our understanding of stellar spinning evolution
in relation with age and spectral type.
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Appendix A: Detailed parameter extraction
methodology

This appendix presents in detail of the methodology used to
extract the Prot candidates considered by ROOSTER.

The first method used to measure Prot is a time-period anal-
ysis using a wavelet decomposition (Torrence & Compo 1998;
Liu et al. 2007; Mathur et al. 2010). Wavelets of different peri-
ods, each one taken as the convolution between a sinusoidal and
a Gaussian function (Morlet wavelet), are cross-correlated with
the light curve to obtain the wavelet power spectrum (WPS, see
left panel of (b) in Fig. 2). The WPS is projected over the period-
axis to obtain the one-dimension Global Wavelet Power Spec-
trum (GWPS, see right panel of (b) in Fig. 2). Multiple Gaussian
functions are fitted to the GWPS starting by the one with the
highest amplitude. The fitted Gaussian function is removed and
the next highest Gaussian peak is fitted in an iterative way until
no peaks are above the noise level. Thus, the first period esti-
mate, corresponding to the period of the highest fitted peak in
the GWPS, is assigned as the rotation period recovered by this
methodology: PGWPS. The period uncertainty is taken as the
half width at half maximum (HWHM) of the Gaussian function.
Although this is a very conservative approach, it allows us to
take into account variations due to differential rotation as part of
the uncertainty.

The second analysis method is the ACF of the light curve.
The rotation period, PACF, corresponds to the period of the high-
est peak in the ACF at a lag greater than zero. Two other param-
eters are computed: GACF and HACF. GACF is the height of PACF,
while HACF is the mean difference between the height of PACF
and the two local minima on both sides of PACF (see an extended
description in Ceillier et al. 2017).

The third method is the composite spectrum (CS). CS is the
product between the normalized GWPS and ACF. This way, the
peaks present in both GWPS and ACF (possibly related to rota-
tion) are amplified while the signals appearing only in one of the
two methods (for example due to instrumental effects that have
a different manifestation in each analysis) are attenuated. Mul-
tiple Gaussian functions are fitted to the CS following the same
iterative procedure as the one described for the GWPS. PCS is
obtained as the period of the fitted Gaussian of highest ampli-
tude and the uncertainty is its HWHM. The amplitude of this
peak is HCS.

Having three period estimates for each light curve (PGWPS,
PACF, and PCS), S19 computed the respective value for the
photometric activity index S ph (that is to say, one for each
Prot estimation). S ph is computed as defined by Mathur et al.
(2014), being the standard deviation over light curve segments
of 5 × Prot. The final S ph value we provide corresponds to the
average S ph. S ph is corrected for the photon-shot noise follow-
ing Jenkins et al. (2010). For some targets this correction leads to
negative S ph values. Most of the targets in this situation do not

show rotational modulation. For those with rotational modula-
tion and S ph < 0 (a few percent of the targets), S19 applied indi-
vidually a different correction to the photon-shot noise, which
is computed from the high-frequency noise component in the
power density spectrum. We note that the S ph value has only
a physical sense when rotational modulation is detected in the
light curve and, thus, Prot is measured (e.g., Mathur et al. 2014,
Egeland et al., in prep.).

In S19, a first group of stars with reliable rotation periods is
automatically selected when there is a good agreement between
the different period estimates and the heights for PACF and PCS
are larger than a given threshold (see S19 for details; height
thresholds adopted from Ceillier et al. 2017). For the remainder
of the targets (about 60%), in order to decide whether the signal
is related to rotational modulation and to select the correct Prot,
S19 visually inspected the respective light curves, rotation diag-
nostics, and power spectra. During the visual inspection 40% of
the final selected Prot were recovered. There are different prob-
lems causing the measurement of a different Prot in each method-
ology. For example: small amplitudes of the rotational modu-
lation, which translate into small values of S ph, HACF, GACF,
and HCS; presence of instrumental modulations; and strong har-
monic of Prot. Instrumental modulations affect primarily the light
curves obtained with the 55-day and 80-day filters. However, we
note that depending on the Prot value, the correct period may
not be recovered from the 20-day filter. Half of the rotation
period can be wrongly retrieved as Prot (what we call strong har-
monic) when the dominant spots producing the rotational signal
are apart by ∼180◦ in longitude. In our methodology, the GWPS
is the most sensitive to this issue, while the ACF is the least sen-
sitive. The performance of the ACF in these cases is discussed in
detail by McQuillan et al. (2013, 2014). In S19, the decision on
the filter used for the final Prot relies on two criteria: preserving
the instrinsic rotational signal with the S ph value not affected by
filtering, while minimizing the impact of possible instrumental
effects which may not alter the period estimate but may affect
S ph. Typically the 20-day filter is selected for Prot ≤ 23 days,
the 55-day filter is selected for 23 < days Prot ≤ 60 days, and
the 80-day filter is selected for Prot > 60 days. For the rotation
period estimate itself the priority is given to PGWPS. The main
reason for this choice is the conservative uncertainty for PGWPS.

Appendix B: Input parameters

The detailed set of 159 parameters used to train Rot-
Class, PollFlag and PeriodSel is presented in Table B.1.
GWPS_GAUSS_1_i_XX, GWPS_GAUSS_2_i_XX and
GWPS_GAUSS_3_i_XX respectively correspond to the ampli-
tude, the central period and the standard deviation of the ith
Gaussian fitted in the GWPS with the XX-day filter. The same
naming convention has been used for CS_GAUSS_1_i_XX,
CS_GAUSS_2_i_XX and CS_GAUSS_3_i_XX with the CS.
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Table B.1. 159 input parameters used to train the RF classifiers.

ACF_ER_SPH_20 ACF_ER_SPH_55 ACF_ER_SPH_80
BAD_Q_FLAG CS_CHIQ_20 CS_CHIQ_55
CS_CHIQ_80 CS_GAUSS_1_1_20 CS_GAUSS_1_1_55
CS_GAUSS_1_1_80 CS_GAUSS_1_2_20 CS_GAUSS_1_2_55
CS_GAUSS_1_2_80 CS_GAUSS_1_3_20 CS_GAUSS_1_3_55
CS_GAUSS_1_3_80 CS_GAUSS_1_4_20 CS_GAUSS_1_4_55
CS_GAUSS_1_4_80 CS_GAUSS_1_5_20 CS_GAUSS_1_5_55
CS_GAUSS_1_5_80 CS_GAUSS_2_1_20 CS_GAUSS_2_1_55
CS_GAUSS_2_1_80 CS_GAUSS_2_2_20 CS_GAUSS_2_2_55
CS_GAUSS_2_2_80 CS_GAUSS_2_3_20 CS_GAUSS_2_3_55
CS_GAUSS_2_3_80 CS_GAUSS_2_4_20 CS_GAUSS_2_4_55
CS_GAUSS_2_4_80 CS_GAUSS_2_5_20 CS_GAUSS_2_5_55
CS_GAUSS_2_5_80 CS_GAUSS_3_1_20 CS_GAUSS_3_1_55
CS_GAUSS_3_1_80 CS_GAUSS_3_2_20 CS_GAUSS_3_2_55
CS_GAUSS_3_2_80 CS_GAUSS_3_3_20 CS_GAUSS_3_3_55
CS_GAUSS_3_3_80 CS_GAUSS_3_4_20 CS_GAUSS_3_4_55
CS_GAUSS_3_4_80 CS_GAUSS_3_5_20 CS_GAUSS_3_5_55
CS_GAUSS_3_5_80 CS_NOISE_20 CS_NOISE_55
CS_NOISE_80 CS_N_FIT_20 CS_N_FIT_55
CS_N_FIT_80 CS_SPH_ER_20 CS_SPH_ER_55
CS_SPH_ER_80 END_TIME F_07
F_20 F_50 F_7
GWPS_CHIQ_20 GWPS_CHIQ_55 GWPS_CHIQ_80
GWPS_GAUSS_1_1_20 GWPS_GAUSS_1_1_55 GWPS_GAUSS_1_1_80
GWPS_GAUSS_1_2_20 GWPS_GAUSS_1_2_55 GWPS_GAUSS_1_2_80
GWPS_GAUSS_1_3_20 GWPS_GAUSS_1_3_55 GWPS_GAUSS_1_3_80
GWPS_GAUSS_1_4_20 GWPS_GAUSS_1_4_55 GWPS_GAUSS_1_4_80
GWPS_GAUSS_1_5_20 GWPS_GAUSS_1_5_55 GWPS_GAUSS_1_5_80
GWPS_GAUSS_2_1_20 GWPS_GAUSS_2_1_55 GWPS_GAUSS_2_1_80
GWPS_GAUSS_2_2_20 GWPS_GAUSS_2_2_55 GWPS_GAUSS_2_2_80
GWPS_GAUSS_2_3_20 GWPS_GAUSS_2_3_55 GWPS_GAUSS_2_3_80
GWPS_GAUSS_2_4_20 GWPS_GAUSS_2_4_55 GWPS_GAUSS_2_4_80
GWPS_GAUSS_2_5_20 GWPS_GAUSS_2_5_55 GWPS_GAUSS_2_5_80
GWPS_GAUSS_3_1_20 GWPS_GAUSS_3_1_55 GWPS_GAUSS_3_1_80
GWPS_GAUSS_3_2_20 GWPS_GAUSS_3_2_55 GWPS_GAUSS_3_2_80
GWPS_GAUSS_3_3_20 GWPS_GAUSS_3_3_55 GWPS_GAUSS_3_3_80
GWPS_GAUSS_3_4_20 GWPS_GAUSS_3_4_55 GWPS_GAUSS_3_4_80
GWPS_GAUSS_3_5_20 GWPS_GAUSS_3_5_55 GWPS_GAUSS_3_5_80
GWPS_NOISE_20 GWPS_NOISE_55 GWPS_NOISE_80
GWPS_N_FIT_20 GWPS_N_FIT_55 GWPS_N_FIT_80
GWPS_SPH_ER_20 GWPS_SPH_ER_55 GWPS_SPH_ER_80
G_ACF_20 G_ACF_55 G_ACF_80
H_ACF_20 H_ACF_55 H_ACF_80
H_CS_20 H_CS_55 H_CS_80
LENGTH N_BAD_Q Prot_ACF_20
Prot_ACF_55 Prot_ACF_80 Prot_CS_20
Prot_CS_55 Prot_CS_80 Prot_GWPS_20
Prot_GWPS_55 Prot_GWPS_80 START_TIME
Sph_ACF_20 Sph_ACF_55 Sph_ACF_80
Sph_CS_20 Sph_CS_55 Sph_CS_80
Sph_GWPS_20 Sph_GWPS_55 Sph_GWPS_80
Teff kepmag logg

Appendix C: ROOSTER performance with
simulated data

Aigrain et al. (2015) performed a hare and hounds exercise with
simulated data. Several teams participated to the exercise, each
one with their own methodology. The working sample was con-
stituted of 1000 simulated light curves and five 1000-day solar
light curves obtained with the Variability of Solar Irradiance
and Gravity Oscillations (VIRGO, Fröhlich et al. 1995) instru-
ment on board the Solar and Heliospheric Observatory (SoHO,
Domingo et al. 1995). Among the 1000 simulated light curves,

noise from real Kepler observations was added to 750, while the
other 250 were kept noise-free.

The ROOSTER training methodology presented in this paper
was slightly modified to be applied on the simulated data. The
training set was based on the same K and M stars from S19.
However, five stars were removed from the training set because
they were also used as noise sources for the simulated light
curves in Aigrain et al. (2015). RotClass and PeriodSel were
trained without the stellar global parameters (Teff and log g), and
the FliPer values. Furthermore, we also abandon the Kp, bad
quarter flags, number of bad quarters in the light curves, lengths,
start and end date of the light curves. ROOSTER was applied
blindly to mimic the real working situation and the outputs were
compared to the correct rotation periods only at the end.

Table C.1 compares the ROOSTER results to those obtained
by the CEA team in Aigrain et al. (2015). In Aigrain et al.
(2015), a previous version of our rotation pipeline (see Appendix
A for details on the version used in the current study) was used.
For both (noisy and noise-free data), the ROOSTER accuracy
(83.2% compared to 88%) is slightly lower than previously. Nev-
ertheless, ROOSTER provided good rotation periods (that is to
say periods within 10% of the median of the observable periods
Pobs defined in Aigrain et al. 2015) for 73.9% of the noisy light
curves and 80.4% of the noise-free light curves. These results
represent an improvement in comparison with the results from
any method used in the hare and hounds exercise. In 2015, the
CEA team had the best scores, with respectively 68.6% of good
periods provided for noisy light curves and 75.4% for noise-free
light curves.

In the hare and hounds exercise (Aigrain et al. 2015), stars
were flagged as ok if the detected rotation period (also consider-
ing the uncertainty) was good or within the range of observable
periods [Pobs,min, Pobs,max]. A non-ok rotation period is denoted
bad. Following this approach, ROOSTER was able to provide
ok rotation periods for 83% of the noisy light curves and for
90% of the noise-free ones. Indeed, ROOSTER performs better
than any method in the hare and hounds exercise. The compari-
son between ROOSTER periods Prot,ML and the reference values
Pobs is shown in Fig. C.1.

Concerning the solar light curves, ROOSTER detected four
rotation periods among the five. Two of those rotation periods
are within the 25-30 days range and are therefore considered as
correct.

As a final exercise, we decided to flag the light curves for
visual check, similarly to what is described in Sect. 6. Light
curves with a mean classification ratio between 0.4 and 0.8 were
flagged. Additionally, from the subsample for which ROOSTER
provided a period, we flagged (for details, see in Sect. 6):
1. light curves for which Prot,ML might be an harmonic of the

actual rotation period;
2. light curves with Prot,ML > 38 days or Prot,ML < 1.6 days;
3. light curves with a rotation period estimate not belonging to

the proper filter.
This procedure led to 362 light curves being flagged among the
Aigrain et al. (2015) sample of 1005 light curves. 41 of the noisy
light curves and 9 of the noise-free light curves without detected
period would have been proposed for visual inspection. Among
the light curves with detected period, 36 noisy light curves and 7
noise-free light curves with bad period would have been visually
checked. However, the visual check does not guarantee that the
ROOSTER wrong determinations would be corrected.
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Table C.1. Comparison between the 2015 CEA team results in the hare and hound exercise and the ROOSTER results from the simulated data.

Method Noisy Free Solar
% det % good % ok % det % good % ok No. det No. ok

det global det global det global det global
CEA 2015 78 88 68.6 95 74.1 82 92 75.4 99 81.2 2 2
ROOSTER 88.8 83.2 73.9 93.5 83 92.8 86.6 80.4 97 90 4 2

Notes. For each sample (noisy, noise-free and solar), percentage of detected (det) rotation periods is given, followed by percentage of good rotation
periods among the detected rotation period and the full sample. The same percentages are also provided for ok rotation periods. The good and ok
nomenclature in described in detail in Aigrain et al. (2015) as well as in Appendix C.

0 20 40 60 80 100
Pobs (days)

0

20

40

60

80

100

P r
ot

,M
L 

(d
ay

s)

Fig. C.1. ROOSTER retrieved periods Prot,ML versus Pobs from
Aigrain et al. (2015). Good periods are shown in green, ok in blue, and
bad in red. Large circles mark noise-free light curves, while small cir-
cles mark noisy light curves.

Appendix D: Output format and visual check-flags
signification

The standard ROOSTER output files are saved as comma-
separated values (csv) files. The column order of the standard
ROOSTER output files is given in Table D.1, while the signi-
fication of the visual checks flag is summarised in Table D.2.
The flags follow a hierarchical order, that is to say, if there is an

Table D.1. Column order of the output ROOSTER files.

KIC –
label RotClass –
Prot,ML days
Prot,error days
S ph –
S ph,error –
flag for visual check (see Table D.2)
label FlagPoll –
classification ratio Rot –
classification ratio FlagPoll –
flag missing parameters –
Teff K
log g dex

Table D.2. Meaning of visual-check flags in ROOSTER output files.

−1 Prot Corrected by re-attributing filter (no check needed)
0 No check needed
10 Harmonic candidate
12 Instrumental modulation candidate (Prot > 38 days)
14 Filter
16 0.4< classification ratio Rot< 0.8
18 Type 1 CP/CB candidate with Prot > 7 days
20 Prot < 1.6 days
22 Observational length shorter than quarters

overlap of flags, the table will provide solely the first flag to be
considered.
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