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Abstract. A model for the emission of point defects by point defect sinks is proposed

for object kinetic Monte Carlo simulations. Local equilibrium of point defects in the

vicinity of sinks is ensured by construction, even if elastic interactions are taken into

account for the diffusion of point defects. The emission of vacancies by dislocation

segments is treated in detail and validated numerically. The model is then used

to simulate the annealing of a vacancy Frank loop in a system containing surfaces.

Results are in overall good agreement with analytical formulas, which are based on

the approximation of instantaneous equilibration of the vacancy field during the loop

evolution process. For small loops the shrinkage is so rapid that this quasi-static

approximation is no more valid.
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Introduction

Many physical effects in materials are driven by thermal point defect generation

and diffusion. For example, annealing of point defect clusters (vacancy/interstitial

dislocation loops [1, 2], cavities [3], etc.) in metallic materials often involves thermal

vacancy generation. Emission rate of point defects depends on the type of point defect

clusters but also on their size, leading to the well-known Ostwald ripening mechanism

theorized for dislocation loops [4, 5] and cavities [6, 7]. Diffusional creep [8, 9] and

climb-driven creep [10, 11] are other phenomena which finely depend on emission rates

of grain boundaries or dislocations.

Object kinetic Monte Carlo (OKMC) is an efficient tool to simulate point defect

diffusion and microstructure evolution at the grain scale. Contrary to atomistic

kinetic Monte Carlo (AKMC), which handles all atomic sites of the system, in OKMC

only defects are explicitly modeled. This framework is particularly convenient to

model systems containing point defects, point defect clusters and dislocations under

irradiation [12, 13], especially at low temperature where point defect emission by

sinks (dislocations, surfaces, point defect clusters, etc.) can be neglected. Indeed the

migration of irradiation-induced point defects in the matrix followed by their absorption

by sinks is simulated faithfully, by performing the successive atomic jumps in the matrix

depending on the local stress state [14, 15, 16, 17].

However, the lack of intrinsic energetic model, as those used in AKMC simulations,

renders emission of point defects cumbersome to simulate. For a given point defect,

emission rates must be specified independently for each sink that generates this kind

of point defect by thermal activation. In the OKMC framework, the emission rate is

usually governed by the binding energy of point defects to sinks [18, 19, 13]. However,

there is some uncertainty as to the location where the point defect is emitted and the

expression of the emission rate. Two main approaches have been proposed. The first one

consists in placing the defect “close” to the sink, typically at one atomic jump length,

the emission rate being proportional to the surface area of the sink absorption region.

Another, simpler, possibility is to use the emission rate derived in mean field methods,

and to place the defect randomly in the simulation box [20]. However, both approaches

cannot guarantee in general that the concentration of point defects close to the sink,

resulting from the balance between absorption and emission, is in agreement with its

theoretical value given by the local equilibrium assumption [21]. This is fundamentally

due to the fact that the emission term is not constructed to ensure this local equilibrium

of point defects. Recently, an emission model was proposed for dislocations [22], based

on the seminal work of Friedel [23]. It takes into account the local stress, so it is more

general than the approximation of binding energy, which is usually assumed to be an

intrinsic property of the sink. Unfortunately, the ability of this model to enforce a correct

local equilibrium concentration of point defects has not been numerically demonstrated.

In this article a simple yet accurate method is proposed to define emission rates in

OKMC, which ensures local equilibrium around sinks. It is the case even if diffusion
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is biased by local and applied stresses. The method can be applied to any kind of

sink (surface, grain boundary, dislocation, cavity, etc.). In Section 1 the method is

exemplified with the case of a dislocation segment. In section 2 an example involving

a dislocation loop and a surface is shown and the potentialities of the method are

discussed.

1. Emission model for OKMC simulations

In this section the emission model is derived for the emission of vacancies by a dislocation

segment. The OKMC method used here is first briefly reminded. The local equilibrium

concentration near a dislocation is then recalled. In the third subsection it is shown

how to impose this concentration in an OKMC framework. Finally the numerical

implementation and validation of the emission model are presented.

1.1. OKMC simulations

OKMC is a useful method to simulate the time evolution of a system containing point

defects and sinks [18, 24]. The simulation box size can be as large as a few hundreds

of nm, which makes it possible to consider realistic microstructures with surfaces, grain

boundaries, etc. As any KMC method, OKMC uses a database of known transition

rates at a given time t to determine the next state of the system and the required

increment of time ∆t to perform the chosen transition, following the residence time

algorithm [25, 26]. In the present simulations, transitions are of two kinds: the jump of

a vacancy from one stable position to another one and the thermal creation of a vacancy

by a sink. The determination of transitions corresponding to the thermal generation of

a defect is the objective of this work.

Transitions corresponding to atomic jumps are simple to consider. The new state

of the system is obtained by moving the chosen point defect from its current position

r by the jump vector hj corresponding to the selected jump j (j = 1, . . . , z where z is

the total number of jumps for a point defect). The associated jump frequency is

ω·→j(r) = ν0 exp

(
−∆E·→j(r)

kBT

)
, (1)

where ν0 is an attempt frequency and ∆E·→j is the activation energy, given by

∆E·→j(r) = Em + Eint,sad
·↔j (r + hj/2)− Eint,sta(r). (2)

In this equation Em is the migration energy in the bulk, without any effect of stress,

Eint,sta(r) and Eint,sad
·↔j (r+hj/2) are the interaction energies of the defect with the local

elastic field at its initial stable position and at the saddle position, respectively. Although

the saddle is not required to be located halfway between the two stable positions, this

notation is used for clarity. The subscript “· ↔ j” is to mention that the interaction

energy at saddle position from r to r+hj is assumed to be the same as the interaction
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energy from r + hj to r. Point defects like vacancies or self-interstitial atoms (SIAs)

are conveniently described by their double force tensor P [27], so the interaction energy

reads

Eint,sta(r) = −P sta
kl εkl(r) (3)

Eint,sad
·↔j (r) = −P sad,j

kl εkl(r), (4)

where ε(r) is the strain tensor at the location of the point defect (summation over

repeated indices is implied). Since vacancies are isotropic at their stable position in

body centered and face centered cubic lattices, there is only one variant of this defect

at stable position and therefore a single value of P sta. It is not the case for the saddle

configuration, that is why P sad depends on the jump considered. For SIAs, it is necessary

to use the dipole tensor corresponding to the stable configuration considered.

In the following OKMC is used in an “off-lattice” mode: although point defects

perform atomic jumps in the directions given by the lattice orientation, they are

not necessarily created at true lattice positions. This approach is more handy when

disruptions of the perfect lattice are present due to, for example, dislocations. Using

the true lattice positions would require storing them, which would increase the memory

footprint and complexity of the code. The off-lattice OKMC mode can be viewed as

a way to simulate the evolution of defects based on continuous diffusion models [28].

Local defect concentrations can be extracted from OKMC simulations by recording the

time spent by all defects in a small volume and dividing it by the total time of recording

and by the volume. However, there are no concentration variables in OKMC, contrary

to continuous models, so OKMC simulations do not require to mesh the system to

determine its time evolution. The memory footprint in OKMC simulations is therefore

often much lower.

1.2. Local equilibrium concentration near a dislocation

Local equilibrium around a sink results from the fact that the sink can both absorb and

emit point defects efficiently. The local equilibrium concentration around a dislocation

can be obtained by requiring that there is no change in the free energy of the solid

when a point defect is emitted by the dislocation. The sum of the work of the osmotic

and Peach-Köhler forces must therefore be zero [29]. In the case of vacancies, for a

dislocation of Burgers vector b and sense ξ, it leads to

Ceq,loc
v (r) = Ceq

v exp

(
−E

int,sta(r)

kBT

)
exp

(
[(b · σ)× ξ] · (b× ξ)

|b× ξ|2
Ω

kBT

)
. (5)

In this equation Ceq
v is the equilibrium concentration of vacancies in absence of internal

and applied stresses, σ is the stress field on the dislocation and Ω is the atomic volume.

The equilibrium concentration can be written

Ceq
v =

1

Ω
exp

(
− Ef

v

kBT

)
, (6)
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where Ef
v is the formation energy of a vacancy. In body centered and face centered

cubic lattices the dipole tensor of a vacancy in its stable configuration is simply

Pij = K∆V r
v δij, with K the bulk modulus, ∆V r

v the relaxation volume and δij the

Kronecker delta. The interaction energy becomes

Eint,sta(r) = (pa + pi(r))∆V r, (7)

where pX = −σii/3 is the pressure and label X refers either to the applied stress (X = a)

or internal stress (X = i). For an isolated dislocation, sufficiently far from it pi is

negligible. If in addition, the external applied stress corresponds to a pure hydrostatic

pressure, Equation (5) takes the well known form [29]

Ceq,loc
v = Ceq

v exp

(
−p

a(∆V r
v + Ω)

kBT

)
. (8)

1.3. Imposing the equilibrium concentration in OKMC near a dislocation

In this section we want to determine an emission rate of defects which ensures that

local equilibrium concentration is obtained close to the sink. We consider the case of

vacancies, which only have a single variant at stable position. The following approach is

easily generalized to a defect with several variants, such as SIAs. Let us consider a small

volume δV around a position r close to a dislocation. It is assumed to be small enough

so that the concentration is approximately constant over δV . The local concentration in

δV , noted Cv(r) can be extracted from OKMC. Its equivalent evolution equation reads:

dCv(r)

dt
= Gv(r)−

z∑
j=1

ω·→j(r)Cv(r) +
z∑
j=1

ωj→·(r)Cv(r + hj)ηj. (9)

Similarly to Eq. (1), ωj→·(r) is the jump frequency from neighbour site j, located at

r + hj:

ωj→·(r) = ν0 exp

(
−∆Ej→·(r)

kBT

)
, (10)

with

∆Ej→·(r) = Em
v + Eint,sad

·↔j (r + hj/2)− Eint,sta(r + hj). (11)

The factor ηj takes two different values : ηj = 1 if r + hj is in the matrix and ηj = 0 if

r + hj is in the capture region of the dislocation. Gv is a creation rate to impose local

equilibrium concentration. This creation rate remains to be determined.

At equilibrium, Equation (9) becomes:

Gv(r)−
z∑
j=1

ω·→j(r)Ceq,loc
v (r) +

z∑
j=1

ωj→·(r)Ceq,loc
v (r + hj)ηj = 0. (12)

Since Ceq,loc
v is known owing to Eq. (5), the creation rate necessary to impose local

equilibrium concentration is determined by Eq. (12). This expression can be simplified
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if it is assumed that the factor related to the Peach-Köhler force is the same for r and

all positions r + hj. This is usually a good approximation, which cannot be made for

Eint,sta(r) due to the sharp variation of εij(r) close to the dislocation. Equation (12)

becomes

Gv(r) =

[
z∑
j=1

ω·→j(r)Ceq
v exp

(
−E

int,sta(r)

kBT

)
−

z∑
j=1

ωj→·(r)Ceq
v exp

(
−E

int,sta(r + hj)

kBT

)
ηj

]
×

exp

(
[(b · σ)× ξ] · (b× ξ)

|b× ξ|2
Ω

kBT

)
. (13)

Inserting Eqs. (1)-(2) and (10)-(11) in Eq. (13) leads to

Gv(r) = ν0C
eq
v exp

(
− Em

v

kBT

)[ z∑
j=1

exp

(
−
Eint,sad
·↔j (r + hj/2)

kBT

)
(1− ηj)

]
×

exp

(
[(b · σ)× ξ] · (b× ξ)

|b× ξ|2
Ω

kBT

)
(14)

This equation deserves some comments:

• The emission rate at a given location is zero if there is no jump from this location

to the capture region of the dislocation (ηj = 1 for all neighbours). The emission is

therefore limited to a region around the dislocation. For a dislocation whose capture

region is a cylinder of radius rc, the emission region is bounded by a cylinder of

radius re = rc + dmax, where dmax is the maximum jump distance.

• The number of jumps which connect the point defect to the capture region varies

as the point defect approaches the dislocation core. The variation of (1−ηj) from 0

to 1 leads to sharp spatial variations of the emission rate. Therefore it is necessary

to evaluate the emission rate at several locations to obtain a good balance between

emission and absorption (statistically, with off-lattice OKMC all locations outside

the capture region are explored by point defects). In practice, it is done by meshing

the emission region and evaluating the emission rates on the mesh.

• The emission rate does not depend on the interaction energy at stable point. In

other words, for an isotropic defect at stable point, such as a vacancy, the emission

rate is independent of its relaxation volume. It depends on the interaction energy

at saddle point of the jumps from the emission location to the capture region of the

dislocation. This is at variance with the approach derived by McElfresh et al. [22],

which depends only on the interaction energy at stable point, through Ceq,loc
v .

• The emission rate does not depend on the supersaturation level, as it should be [23].

1.4. Numerical implementation of the emission model

As mentioned in the previous section, the emission model requires meshing the emission

region around the sink. For a straight dislocation, it has the natural cylindrical
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symmetry (Fig. 1). The emission rate inside an elementary emission volume is given by

Pi = Gv(ri)Vi, (15)

where i refers to the considered volume and Vi = 1/2(r1 + r2)(r2 − r1)∆θ∆l =

1/2(r1 + r2)∆r∆θ∆l. The position ri is chosen in the middle of the emission volume.

rcre

ξ

∆θ

∆l

r1

r2

∆r

Figure 1. Schematics of the emission region around an edge dislocation segment. An

elementary emission volume is shown in blue, the emission point is given by the blue

dot.

In the present approach, emission occurs everywhere along the dislocation segment.

In fact, point defects can be emitted only at jogs, so the model corresponds to a

dislocation saturated with jogs. This approximation is more satisfactory at high

temperature, high supersaturation or subsaturation of point defects [30, 31] or, for

example, if the dislocation segment is located in some parts of a rounded dislocation loop

which are known to be heavily jogged [1]. It may also represent a more general situation

with lower jog density but fast pipe diffusion. In this case the climb of dislocations is

limited by the diffusion of point defects in the bulk and dislocations maintain local

equilibrium concentration of defects all along their line [32].

The values of ∆l, ∆θ, and ∆r should be sufficiently small to ensure a correct local

equilibrium concentration around the dislocation segment. Although the discretization

could in principle be chosen arbitrarily small, increasing the number of emission volumes

may impair the numerical efficiency of the code. It is thus interesting to identify optimal

values of the parameters on a test case.

For this purpose we consider a dislocation dipole, as shown in Fig. 2-(a). Parameters

are typical of aluminum (Tab. 1) and the strain field generated by the dipole is calculated
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Table 1. Material parameters for Al used in this study.

Parameter Symbol Value Reference

Lattice parameter a0 0.405 nm

Atomic volume Ω a30/4 = 0.0167 nm3

Poisson’s ratio ν 0.35 [17]

Shear modulus µ 26 GPa [17]

Maximum jump distance dmax a0/
√

2 = 0.286 nm

Capture radius of dislocations rc 0.57 nm

Core width (for strain field

calculation)

a 0.05 nm

Burgers vector b 1/3[111]

Formation energy Ef
v 0.67 eV [33]

Migration energy Em
v 0.605 eV [17]

Attempt frequency ν0 1013 Hz

Elastic dipole for vacancies at

stable position

P sta
v

−3.238 0 0

0 −3.238 0

0 0 −3.238

 eV [17]

Elastic dipole for vacancies at

saddle position (jump in [110]

direction)

P sad
v

−2.866 −0.080 0

−0.080 −2.866 0

0 0 1.000

 eV [17]

Intrinsic stacking fault energy γ 0.166 J m−2 [29]

using isotropic elasticity. The Burgers vector is ±1/3[111], corresponding to a Frank

partial dislocation. This choice is motivated by the study of the next section, which

focuses on the evolution of vacancy Frank loops. Several orientations of crystallographic

axes are considered by rotating the lattice around the [111] direction by an angle α. This

allows us to investigate whether all segments of a Frank dislocation loop are properly

handled by the method.

Emission rates are shown in Fig. 2-(b,c) for two values of α (α = 0 and α = 90°).
They vary significantly from one emission volume to another one. This variation is

explained by two different factors. The first one is the different number of atomic jumps

from the center of emission volumes into the capture region of the dislocation segment.

Only these jumps contribute to the emission rate (Eq. (14)). This explains why, for

example, emission rates are higher close to the dislocation. The second factor is the

value of the interaction energy at saddle position. Since the strain field varies sharply

around the dislocation and the values of dipole tensors at saddle position depend on

the jump direction, the emission rate is also highly dependent on the emission volume

considered.

These two factors also explain the difference of emission rates when α is varied.

We note that when α changes, the jump directions change and the values of interaction

energies are also modified. Even if the energy is calculated at the same location for two

values of α, the interaction energy is not the same since the dipole tensor at saddle point,

which is not isotropic, must be rotated according to the rotation of the crystallographic
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axes.

Figure 2. Schematics of the dislocation configuration used to determine optimal

discretization parameters and examples of emission rates. (a) Simulation box

containing the two Frank partial dislocations. The angle α can be varied to rotate

the crystallographic axes, while keeping the same dislocation configuration in the box.

(b,c) Emission rates of dislocation segments for two values of α (α = 0 and α = 90°),
for the dislocation identified by a green cylinder in (a). Each dislocation contains two

segments of 2 nm and the discretization parameters are ∆l = 0.5 nm, ∆θ = 16.4° and

∆r = 0.06 nm. Points where emission rates are calculated are shown by a sphere in

each emission volume.

To evaluate the local equilibrium concentration, the following simulation setup is

used. Initially the OKMC box contains only the two dislocations and the temperature is

set to 700 K. Vacancies start to be emitted by the dislocations so their number increases

in the box, until it reaches a stationary value. From this time the vacancy concentration

is recorded and averaged. An estimate of the standard error of the mean is obtained by

a block average technique [34]. Since the two straight dislocations are the only sinks in

the box and no external stress is applied, the average concentration in the box should

correspond to the equilibrium concentration (Eqs. (6) and (8), with pa = 0).
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Results are shown in Fig. 3 for three different discretizations. Even with a very

fine discretization along the tangential direction (21 points, ∆θ = 8.6°), results are

not very accurate if only a single emission volume is used along the radial direction

(∆r = 0.29 nm). Using five discretization points (∆r = 0.06 nm) improves significantly

the agreement with Eq. (6), even with as low as 11 discretization points along the

tangential direction (∆θ = 16.4°). Adding more points along the radial direction

(∆r = 0.02 nm) proves useless in the present case. In the following we will use the

parameters ∆θ = 16.4° and ∆r = 0.06 nm. Concerning the discretization length along

the dislocation line ∆l, a generic value cannot be given, since it depends on the local

curvature of the dislocation. However, a value of the order of a few angstroms has

proved to be small enough for the cases studied. Here, ∆l = 0.5 nm has been adopted.

In this specific calculation, the number of emission volumes has a negligible influence

on the computation time. This is because the sink does not evolve and emission rates

are calculated only once at the beginning of the simulation. However, in the general

case of evolving sinks, emission rates must be recalculated every time a point defect is

emitted or absorbed. The computation time of this step varies linearly with the number

of emission volumes.

The emission model described in this work can be easily applied to other types of

sinks: grain boundaries, surfaces, cavities, etc. In each case, a small emission region of

width dmax must be defined around the sink. Emission rates are given by expressions

similar to Eq. (14). For instance, the Gibbs-Thomson effect must be included in the

emission rate of a cavity. Apart from the discretization, which must be adapted to each

geometry, the method remains essentially the same. Although emission of point defects

has been assumed to occur over the whole surface of the sink, more complex situations

could be envisaged. For example, as a first approximation jogs in dislocation lines may

be introduced in the formalism by enabling absorption and emission of point defects

only at particular locations [30, 31].

2. Application of the emission model: Annealing of dislocation loops in

finite systems

Annealing of dislocation loops has been studied experimentally [1, 35, 36, 37, 2] and

numerically [38, 39, 40, 41]. The driving force for the loops’ evolution is their line

tension and their surface tension if they are faulted. Here we consider the annealing of

a single vacancy Frank loop in a system containing free surfaces in the three directions.

This condition may represent, as least in a qualitative manner, the annealing of a loop

in a thin foil geometry more often observed experimentally. The choice of the free

surfaces in the three directions instead of only one is made to be more representative of

the geometries used to derive analytical expressions. For a dislocation loop of radius r

with a surface at infinity, the shrinking rate has been obtained by solving the diffusion

equation around the toroidal sink [42, 43]. The following assumptions are made:

• The effect of stress field on diffusion is neglected.
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0 25 50 75 100 125 150 175
α (°)

1.0

1.2

1.4

1.6

1.8

x
eq v

×10−5

theoretical value (Eq. 6)
∆θ = 8.6°, ∆r = 0.29 nm
∆θ = 16.4°, ∆r = 0.06 nm
∆θ = 16.4°, ∆r = 0.02 nm

Figure 3. Atomic fraction of vacancies in a box containing two straight dislocations,

as a function of angle α (see Fig. 2). Values ∆θ = 8.6° and 16.4° correspond to a

number of emission volumes equal to 21 and 11 respectively. The number of emission

volumes in the radial direction is 1, 5 and 11 for values of ∆r equal to 0.29, 0.06 and

0.02 nm respectively.

• The diffusion of vacancies is sufficiently fast to ensure equilibrium with the surface

at each time, so the steady-state concentration profile can be used to estimate the

vacancy flux to or from the loop.

• The kinetics is diffusion-limited, so the dislocation loop and surfaces maintain local

equilibrium of point defects in their vicinity.

If in addition r � rc, the shrinking rate is approximately given by

dr

dt
=

2π

ln
(

8r
rc

)Ω

b
Dv

(
Ceq
v − Ceq

v exp

(
−fcl(r)Ω

bkBT

))
, (16)

with fcl the climb force which reads

fcl(r) = − µb2

4π(1− ν)r
ln

(
8r

a

)
− γ. (17)

The first term in the parenthesis of Eq. (16) is due to the surfaces at infinity, which

impose Cv = Ceq
v . The second term corresponds to the local equilibrium concentration
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close to the loop. In Eq. (17), γ is the intrinsic stacking fault energy and a is the core

width defined in the non-singular theory of dislocations of Cai et al. [44]. The diffusion

coefficient of the vacancy is Dv = νa20 exp (−Em
v /kBT ).

Equations similar to (16) have been used successfully to reproduce experimental

results of annealing of loops in aluminum [35]. In particular, it was shown that a

model based on the emission of vacancies at jogs could only reproduce a part of the

experimental results, whereas a model based on diffusion-limited kinetics as in Eq. (16)

could account for the complete annealing process. This indicates that dislocation loops

in aluminum are efficient sinks [32, 30] and validates the assumption of local equilibrium

concentration of point defects all along their core. Recent calculations on straight

dislocations in aluminum tend to confirm this conclusion [31, 45].

Some previous works [46, 47] suggest that this expression can be generalized for

a finite system with an outer spherical boundary of radius Rext where Ceq
v is imposed,

leading to

dr

dt
=

2π

ln
(

8r
rc

) 1

1− 2π

ln ( 8r
rc

)
r

2Rext

Ω

b
Dv

(
Ceq
v − Ceq

v exp

(
−fcl(r)Ω

bkBT

))
. (18)

In the following the loop is described as a torus in the OKMC code, in agreement

with the analytical approach. This description is adopted for the generation of the strain

field and for the emission model, leading to a toroidal meshing. The loop could also have

been described as a collection of straight dislocation segments, but this discretization

in straight lines could introduce spurious effects on results, making this approach less

faithful to the analytical one. The temperature is set to 500 K for all simulations.

As in the previous section, the toroidal discretization is first validated by comparing

the concentration in a box containing a loop but no surface to the theoretical one (second

term of Eq. (16)). Periodic boundary conditions are used in a box of size 50×50×50 nm3.

The loop can emit vacancies but its size is kept constant. As shown in Fig. 4, with the

parameters used in the previous section, the agreement with the theoretical value is very

good, even for loops as small as 1.5 nm.

We now consider a system with free surfaces in the three directions of space. The

emission model presented in this work for dislocation segments has been adapted to

surfaces, by meshing a slice close to each surface. The strain field generated by the loop

in the finite system is taken the same as in the infinite medium. For the smallest system

(50 nm) and the largest loop (radius of 5 nm), the maximal surface tractions created

by the loop are about 28 MPa. A rough estimate of the modification of migration

barriers due to this stress is σ∆V r
v ≈ 1 meV. Such energy changes are too small to have

an appreciable influence on the point defect kinetics. This is in line with a previous

study, where stresses of several hundreds of MPa have been shown to be necessary to

modify the defect kinetics in Al at 300 K [48]. Since stress effects on diffusion decrease

as temperature increases, this validates the approximation of infinite medium for the

elastic solution in the present conditions.
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Figure 4. Local equilibrium atomic fraction of vacancies close to a vacancy Frank

loop at 500 K. The OKMC value is obtained by averaging the number of vacancies in

a box of size 50× 50× 50 nm3 containing a single dislocation loop.

The system is first equilibrated with a constant-size loop. Once vacancy

concentration has reached its steady state value, the loop radius is no more constrained

and the vacancy loop starts shrinking due to its line and surface tensions. This is the

starting point of the simulations shown in Fig. 5, for three system sizes (50, 100 and 200

nm). Each result is the average of 100 independent simulations, except close to the final

time if some loops have already disappeared. A simulation is stopped when the loop is

too small for a toroidal discretization to be used. Here it occurs as soon as r ≤ 1.2 nm.

In this case it is assumed that the loop disappears so quickly that it can be included as

a zero size loop in the calculation of the average radius for the next output time steps.

This is why on average, the radius can be lower than 1.2 nm. However, it should be

kept in mind that this approximation leads to a slight underestimation of the average

radius.

The overall agreement between OKMC and the analytical result for an infinite

system (Eq. (16)) is correct for small times, for l = 100 and 200 nm. However, if the

system’s size is smaller (l = 50 nm), the initial slope is clearly different. In all cases, the

OKMC results depart from the analytical solution when the loop becomes small. This
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discrepancy is more obvious for small systems. Using the approximate solution for a

finite system (Eq. (18)) improves significantly the agreement with OKMC. The difference

between OKMC and the analytical solution becomes independent of the system’s size,

which validates Eq. (18) as a generalization of Eq. (16) for finite systems.
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Figure 5. Evolution of a loop in a cubic system of edge’s length 50, 100 and 200

nm, with free surfaces. OKMC results are obtained by averaging loop sizes over

100 simulations, except for the last iterations where some loops already disappeared.

Solutions for an infinite and a finite system correspond to the integration of Eqs. (16)

and (18) respectively.

Eqs. (16) and (18) assume that the vacancy concentration field remains at

equilibrium at each time. Recently it has been shown that for vacancy loops in

tungsten, the time for vacancy equilibration is shorter than the characteristic time for

loop evolution [41], which validates this hypothesis. This means that vacancies have time

to diffuse in the system, before the equilibrium vacancy concentration profile changes

appreciably due to a change in the microstructure. This quasi-static approximation

has been shown to be more justified for large loops, which induce smaller concentration

changes as they evolve.

The model presented here does not assume that the microstructure is quasi-static.

Therefore it can be used to check if this approximation is always valid. As can be seen

in Fig. 6-(a,b), while the analytical formula for a finite system reproduces accurately

the OKMC result for a loop of radius 5 nm, it fails for a loop of radius 2 nm. This may

point to an effect of the concentration field transient. A first answer is given by the

average concentration in the system, which is recorded during the loop evolution. As

discussed previously, the toroidal discretization requires a loop radius larger than 1.2 nm,

otherwise the simulation is stopped. For subsequent output time steps, the simulation

does not contribute anymore to the average vacancy concentration but it contributes as

zero to the average radius, so there is no more rigorous link between the average radius

and the average concentration. To avoid any misinterpretation, the concentration is

not displayed as soon as some simulations have stopped (Fig. 6-(c,d)). In addition to
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the instantaneous vacancy concentration, an equilibrium vacancy concentration can be

obtained at each output time step by running OKMC simulations with the loop size

kept constant and taken as the average size at this time step.
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Figure 6. Evolution of a cubic system of size 100 nm containing a vacancy Frank

loop of initial radius 2 or 5 nm. (a,b) Loop radius given by OKMC and by analytical

solutions (Eqs. (16) and (18)). (c,d) Vacancy atomic fraction. The equilibrium value

in OKMC is obtained at each timestep by setting the loop size to its value given in

Figs. (a) and (b) and running the code with fixed loop radius.

The instantaneous and equilibrium values are shown in Fig. 6-(c,d). They are close

to each other for r = 5 nm, whereas for r = 2 nm the equilibrium value is systematically

above the instantaneous value. The source of this discrepancy is visible in Fig. 7,

where the instantaneous vacancy concentration profiles are compared to the equilibrium

concentration profiles at the same time and to the initial equilibrium profiles. For a loop

of size r = 5 nm, the instantaneous profile coincides with the equilibrium profile. Close

to the loop of size r = 2 nm, the concentration profile is the same as the equilibrium

one, while far from the loop it is superimposed on the initial equilibrium profile. This



Enforcing local equilibrium of point defects near sinks in OKMC simulations 16

0 10 20 30 40 50
distance to the loop center (nm)

10−7

10−6

10−5

10−4

10−3

x v

(a)

r = 5 nm, t = 1.05 × 10−2 s
Instantaneous pro�le at t
Equilibrium pro�le (initial)
Equilibrium pro�le at t

0 10 20 30 40 50
distance to the loop center (nm)

10−7

10−6

10−5

10−4

10−3

x v

(b)

r = 2 nm, t = 1.22 × 10−4 s

Figure 7. Vacancy atomic fraction profile as a function of the distance to the loop

center, for two different loop radii (r = 5 nm and r = 2 nm), at times t = 1.05×10−2 s

and t = 1.22× 10−4 s respectively, corresponding to iteration 15 in Figs. 6-a and 6-b.

The initial equilibrium profile and the equilibrium profile at time t are also shown.

shows that the quasi-static approximation is not valid in this case: vacancies cannot be

emitted and migrate sufficiently far to build up the equilibrium profile before the local

concentration near the loop changes appreciably.

Conclusion

In this work a model for emission of point defects by point defect sinks, suitable for object

kinetic Monte Carlo (OKMC) simulations, has been presented. Local equilibrium near

sinks is ensured by construction, whatever the level of description of point defects. In

particular, it remains valid even if the effect of local stress on point defect diffusion is

accounted for. The derivation and implementation of the model have been detailed for

dislocation segments, but it can be generalized to other types of sinks (surfaces, grain

boundaries, cavities, loops, etc.). The shrinkage of a single loop in a system containing

surfaces has been modeled. Results are in good agreement with analytical formulas

from the literature. In addition, since the OKMC framework does not require that the

point defect concentration field is at equilibrium, it has been possible to verify to which

extent this assumption is valid.
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