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ABSTRACT

Accurately predicting the survival of patients with cancer has
the potential to substantially enhance and customize the treat-
ment strategies. Integrating and using all the patients’ avail-
able data is essential to make the most accurate predictions.
In this work, we gather clinical, imaging and genetic data
into one mono-block multivariate survival analysis for pa-
tients with primary central nervous system lymphoma (PC-
NSL). As a first step, we select the best features from each
pre-processed dataset. Then we assemble and use the result-
ing block to predict overall survival with a survival random
forest algorithm. The assessment of the proposed method
yielded a C-index of 0.776. We thus conclude that multi-
modal data integration significantly improves prediction per-
formance.

Index Terms— Survival analysis, imaging genetics,
MRI, Brain Tumor

1. INTRODUCTION

Primary CNS lymphoma (PCNSL) is a diffuse large B-cell
lymphoma (DLBCL), occurring in the brain and that never
spreads to the rest of the body. It is a rare tumor that accounts
for ≤ 1% of all lymphomas, and approximately 2% of all
primary CNS tumors [1]. This disease generally follows an
aggressive course and still has very high mortality despite
advances in its treatment.
Recently two important contributions have been made in the
understanding of this disease. On the one hand, a Genome-
wide association study (GWAS) susceptibility study showed
that some SNPs are associated with the onset of PCNSL [2].
On the other hand, retrospective survival analysis studies
showed that different treatments and clinical characteristics
had significant effects on survival [3]. Accurate survival
analysis can be very helpful to personalize treatments. For
example, patients with poorer prognoses might need closer
follow-up and different, more suitable treatment.
To further understand PCNSL tumors, we hypothesize that
the data available in clinical research cohorts could improve
clinical management if they were jointly analyzed. Several

studies showed the predictive power of imaging and/or ge-
netic data [4]. Data integration is a promising approach that
can help reduce uncertainty from classic clinical prognosti-
cations by providing an automatic, data-driven process that
gives accurate and consistent results.
In this study, we apply such methods for the first time on a
cohort of patients with PCNSL built by the French national
Lymphoma Oculo-Cerebral (LOC) Network. We use con-
catenated clinical, imaging and genetic data, with the aim
of improving survival prediction performance compared to
typical clinical-only predictions.

2. MATERIAL

2.1. Patients and clinical block

In the LOC cohort, genotyping data were produced for 346
immunocompetent HIV-negative patients with PCNSL [2],
among whom 250 patients had a brain MRI scan at diagnosis
available to us. Furthermore, clinical data comprising age,
sex, treatment, disease progression and Karnofsky score are
available. The Karnofsky score is a way to measure the gen-
eral health status and the ability of cancer patients to perform
ordinary tasks. It ranges from 0 meaning death, to 100 mean-
ing life with normal activity and no complaints. This score is
used by the physicians for prognosis and will constitute, with
the age and sex, the baseline predictor.
For the 148 patients (80 males) for which we have complete
pre-processed data that passed all quality checks (clinical,
genetic and at least one MR image), the median age is 66
years and the median survival time is 1157 days (3 years and
2 months), ranging between 36 and 7923 days (21 years and
8 months).

2.2. Imaging block

Although the rarity of the cancer makes the LOC cohort out-
standing, brain MRI data are quite non-homogeneous. MRIs
were acquired at diagnosis on systems with very diverse field
strengths (1, 1.5 and 3 T) at 40 sites. The tumors were manu-



ally segmented by a neurologist.
For each of the 250 patients with MRI, between 1 and 4
images are available, for a total of 753 MRI scans and
an average of 3 different MR sequences per patient. The
following sequences were studied: T1-weighted (T1w),
contrast-enhanced T1-weighted (ceT1w) with gadolinium,
T2-weighted (T2w), T2-weighted fluid-attenuated inversion
recovery (FLAIR). The images were bias-corrected then their
intensity was normalized using the hybrid white stripe method
[5]. At each step of the pre-processing pipeline, quality check
was performed and patients with poor merit metrics were
eliminated. Since the dataset does not contain all modalities
for all patients, we considered the most frequently available
ones and study the ceT1w images (148), the FLAIR images
(104) and the patients for whom both are available (104).
For each image, we used the support of the segmented tumor
and radiomic features were extracted from each corrected
image using the python package PyRadiomics [6], includ-
ing Shape-based (8 features/image), first-order statistics (18)
and second-order statistics (75). In total 845 radiomics fea-
tures were extracted from the images: 101 from the original
and 93 × 8 from the eight wavelet-derived images using the
Coiflet wavelet. These features were then standardized using
a z-score and highly correlated features (correlation threshold
0.99) were eliminated.

2.3. Genotyping block

Genotyping data was acquired from blood samples as de-
scribed in [2] and imputed, yielding the identification of 5
SNPs associated with PCNSL risk. These SNPs were linked
to 5 genes: EXOC2, ANO10, PVT1, BACH2 and HLA-DRA.
All SNPs with genomic location matching these genes, as
well as those located within 1 megabase upstream and down-
stream to account for their regulatory regions, were extracted.
This block of genotyping data was then pruned using the
PLINK software [7] to select SNPs in approximate linkage
equilibrium with each other and to avoid strong colinearity
(using VarianceInflationFactor=10 and windowSize=40, and
WindowStep=10). For each of these SNPs, we derived two
variables: the allelic dosage (0/1/2) as well as the dominant
component (0/1). The SNPs with the same value across all
patients were further discarded, leading to a total number of
45045 SNPs (90090 variables).

3. METHODS

3.1. Machine Learning procedure

The patients of the three-block dataset were classically di-
vided into a TRAIN set (80%) and a TEST set. The averages
on the distributions of age, survival and sex were kept roughly
identical between the TRAIN and TEST sets (values differ by

less than 5% between the different train/test splits). The ge-
netic and imaging blocks went independently through a fea-
ture selection step using a 3-fold cross validation (CV) proce-
dure on the TRAIN set - each fold being divided into a train-
ing and a validation subsets, defining a nested CV). For each
block, in the nested CV framework, a univariate Cox propor-
tional hazard model was first fit for each feature separately in
order to rank them according to their C-index. An exhaus-
tive grid search[8] for the optimal number of features k in the
multivariate survival model chosen was then performed. The
features selected from imaging and genetic blocks, as well as
the clinical data, were then concatenated and used for the fi-
nal performance calculations in the TRAIN and TEST sets.
(Figure 1).

Fig. 1. Data integration process.

3.2. Survival Analysis

To predict the overall survival, we used the random survival
forests, as implemented in scikit-survival [9]. Random sur-
vival forests are dedicated to right-censored survival data
analysis and show good performance in dealing with high di-
mensional data by performing feature selection while remain-
ing robust to outliers and noise[10]. The results depending on
the random starting point, the performance scores were then



averaged over 10 runs with fixed and reproducible random
states. To estimate the prediction performance, we use Har-
rell’s concordance index. The C-index (concordance index)
is related to the area under the ROC curve. It estimates the
probability that, in a randomly selected pair of cases, the case
that fails first had a worst predicted outcome. As such, the
concordance index focuses on the predictions ranking rather
than on predictions themselves and accounts for censored
data. To study the importance of the features used for the
prediction, the permutation feature importance weights were
computed. The permutation feature importance is defined to
be the decrease in a model score when a single feature value
is randomly shuffled.

4. RESULTS

In this section, we compare overall survival prediction per-
formance of imaging-genetics model versus a simpler model
based on immediately available clinical data.

4.1. Clinical Data

Training a random survival forest estimator on 80% of the co-
hort (118 patients) yields an average C-index of 0.69± 0.011
when the estimator is tested on the remaining 20% (see Table
1). Using the feature importance permutation, the weights for
age, Karnofsky score and sex were 0.076 ± 0.0027, 0.089 ±
0.0032 and 0.034 ± 0.0022, respectively. Actually, a model
fitted only with age and Karnofsky score yields the same C-
index of 0.69± 0.008 on average.

4.2. Prognostic Imaging Features

Joint features selection using the algorithm described in sec-
tion 3.1 with both imaging modalities resulted in 24 features,
comprising 2 features from FLAIR images (Mean Absolute
Deviation and GLDM Low Gray Level Emphasis). Using
these features, a C-index of 0.67 ± 0.018 is obtained (Table
1). Based on permutation importance procedure, The most
important features are the FLAIR GLDM Low Gray Level
Emphasis (0.036± 0.0031) and the ceT1w GLDM Large De-
pendence Low Gray Level Emphasis (0.033± 0.0038).

For the 148 ceT1w images taken alone, 7 radiomic fea-
tures were selected: 3 second-order features and 4 wavelet-
filtered features. Using these features, the average C-index
over 10 runs is 0.561 ± 0.014. The two most important fea-
tures were the wavelet LLL GLDM Small Dependence Low
Gray Level Emphasis with a weight of 0.054±0.0026 and the
wavelet HLL GLCM Cluster Shade with a weight of 0.052±
0.0039.

For the 104 FLAIR images taken alone, 37 features were
selected including 33 features extracted from the wavelet-
filtered images, surface to volume ratio, the GLCM Infor-
mational Measure of Correlation (IMC) 2, the GLDM Large

Dependence High Gray Level Emphasis and the GLDM
Small Dependence Low Gray Level Emphasis. The average
C-index is 0.564 ± 0.012. By far the most important feature
is wavelet LHL GLCM Maximal Correlation Coefficient with
a weight of 0.042± 0.0029, while the second more important
one (wavelet HHL GLDM Dependence Variance) weighs
0.025± 0.0013.

C-index Clinical Imaging Genetic

Train 0.89± 0.001 0.89± 0.001 0.94± 0.001
Test 0.69± 0.011 0.67± 0.018 0.71± 0.014

Table 1. Survival prediction performance of each mono-
block models. Mean C-indices and standard deviations over
10 runs.

4.3. Prognostic Genetic Features

At the end of the pre-processing pipeline, the genetic dataset
contains 450045 SNPs, with two measurements for each
SNPs : the allelic dosage (encoding A) and the dominant
component (encoding D). We relied on the feature selection
step (section 3.1) and the natural feature selection in the
random forest algorithm to decide which one of these 2 mea-
surements is the most appropriate.
The feature selection step yielded 2478 genetic features. It
should be noted that the SNPs associated with the susceptibil-
ity of PCNSL identified in [2] do not appear to be prognostic.
The selected features lead to an average C-index of 0.71±
over 10 runs. The 4 most important ones are located on chro-
mosome 6 (Table2). Two of these SNPs are related to the
MAP3K7 gene, with dominant component. This gene is not
one identified by [2] but is situated downstream of BACH2.
Its protein controls cell functions such as apoptosis and reg-
ulates TNF, (Tumor Necrosis Factor). Its dysregulation is
associated with Alzheimer’s disease[11] and cancers. Inter-
estingly, mutations in MAP3K7 have been associated with
DLBCL oncogenesis by regulating the NF-κB pathway[12].

Weight Chr Position SNP Nearest Encoding(bp, hg19) Gene

0.0200± 0.0073 6 91296420 rs282070 MAP3K7 D
0.0191± 0.0059 6 1054796 rs73716742 LINC01622 D
0.0188± 0.0056 6 90616785 rs398184 GJA10 A
0.0187± 0.0108 6 91241659 rs205345 MAP3K7 D

Table 2. Permutation weights and gene annotations for the 4
best SNPs. A : Allelic dosage, D : Dominant component.

4.4. Data integration

Compared to the classic clinical predictive model, the imag-
ing data alone are less efficient and the genetic data alone
performs a bit better but maybe not significantly.



When concatenating the clinical and the 24 imaging fea-
tures, the performance over the clinical data does not improve
significantly, with an average C-index of 0.704 ± 0.019. Ac-
tually, a model based on the 3 best imaging features and the
clinical data is enough to reach the same performance (Ta-
ble 3). Interestingly, integrating the clinical and the 2478
genetic features improves the performance, with a C-index
of 0.77 ± 0.019. As with imaging data, this result can be
obtained using only the best 781 features, the rest having no
impact on performance once the clinical data is factored in.
Adding imaging data to the clinical-genetic block does not
significantly improve the performance, with a C-index of
0.776± 0.018.
In an integrative point of view, only the genetic data bring an
additive predictive value to the baseline model.

C-index
Clinical Clinical Clinical

Imaging
Imaging Genetic Genetic

Train 0.90± 0.001 0.93± 0.001 0.93± 0.001
Test 0.704± 0.019 0.77± 0.019 0.776± 0.018

Table 3. Survival prediction performance of different inte-
grated models. Mean C-indices and standard deviations.

5. CONCLUSION

The results presented in this work are two-fold. First, we
compared the performance obtained by concatenation of
blocks of clinical, imaging and genetic data to predict the
survival of PCNSL patients. We showed that an integrative
approach surpassed clinical predictions significantly. While
a good performer on its own, the imaging block performance
was shown to be mostly redundant with the genetic and clini-
cal blocks. This could be remedied by improving the dataset
quality and further correcting multisite effects. This work
will have to be replicated in other similar studies.
Second, studying the genetic performance showed that SNPs
predicting the susceptibility to PCNSL did not necessarily
correlate with its clinical evolution. Nonetheless, the selected
SNPs yield a predictor with a significant performance uplift
over the one with clinical data only. This performance may
be improved when we include all the genetic data available,
without focusing on the susceptibility genes. Further investi-
gations on molecular implications of our findings may lead to
patients stratification improvement and to a potential applica-
tion in personalized treatments of PCNSL.
This work showed that the joint use of the three blocks of
clinical, imaging and genotyping data allows us to train a
better predictor than with clinical data alone. Yet, the identi-
fication and interpretation of important predictor variables is
hindered when blocks are trivially concatenated. Therefore,
as a perspective, a multi-block approach [13] could be applied

on these data, with various structured sparse constraints, de-
pending on the nature of each block.
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