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PREDICTION PERFORMANCE OF RADIOMIC FEATURES
WHEN OBTAINED USING AN OBJECT DETECTION FRAMEWORK

Hamza Chegraoui, Amine Rebei, Cathy Philippe, Vincent Frouin

Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France

ABSTRACT

Radiomic features analysis is a non invasive method for dis-
ease profiling. In the case of brain tumour studies, the quality
of these features depends on the quality of tumour segmenta-
tion. However, these segmentations are not available for most
cohorts. One way to address this issue is using object detec-
tion frameworks to automatically extract the area where the
tumour is located in. The purpose of this study is to compare
the quality of bounding-boxes based radiomics with manual
segmentation, with regards to their performance in patient
stratification and survival prediction.

1. INTRODUCTION

Radiomics is the extraction and analysis of high-dimensional
features from clinical images. These features have the poten-
tial to characterise diseases, and improve diagnosis and prog-
nosis [1].

Radiomics have been successfully used for the stratifica-
tion and survival prediction of patients with brain tumours
(and specially glioblastomas) [2]. One key step in radiomic
analysis is the delineation of the tumoral volume of interest
from which radiomic features will be extracted. However,
the delineation of the tumour is not available in clinical rou-
tine care as well as in most clinical trial cohorts since it re-
quires tedious manual work and thus automatic segmentation
is eagerly expected. Most state-of-the-art automatic segmen-
tation methods model tumoral heterogeneity and require the 4
MRI modalities (T1, T1 contrast enhanced, T2 and FLAIR),
a condition not systematically verified in most of clinical co-
horts. Finally, a pathology-independent and automatic tech-
nique of radiomic feature extraction is highly desirable in or-
der to streamline processes and reduce operator biases.

Instead of another refined segmentation, we propose to
study an alternate strategy for the tumor delineation issue con-
sisting in finding bounding-boxes around tumours in images,
as it is yielded by object detection approaches. Finding these
bounding-boxes around the tumours - or tumor detection - is
a simpler problem than a detailed segmentation. We hypothe-
sise that reliable information on the tumour still remains in
radiomics when extracted from a relatively imprecise box-
delineation. Detection methods based on deep-learning tech-
niques have shown wide success on finding multiple objects,

of different classes, on a range of natural images. They have
been shown to be robust across datasets and tasks, meaning
they can be trained on a dataset to detect one type of object
and then used, with minimal retraining, on a different dataset
to detect other kinds of objects.

In this paper, we aim to assess the viability of using ra-
diomic features based on bounding-boxes (BB) as opposed to
segmentation (SEG) of a tumour in the context of glioblas-
toma multiforme (GBM). For this purpose, we will present
and adapt an object detection framework to detect bounding-
boxes around the tumours. In a test dataset, BB and SEG
radiomic features are compared in regards of their prediction
performance in two tasks.

2. MATERIALS AND METHODS

2.1. TCGA-GBM tumor images

The TCGA-GBM dataset [3] was used to assess the per-
formance of the object-detection framework and to con-
duct the survival analysis. This dataset comprises 102
patients, diagnosed for GBM, each with 4-modality (T1,
Tlce, T2, FLAIR) brain MRI volumes. Segmentation has
been performed automatically and then manually corrected
by a neuro-radiologist expert (https://doi.org/10.
7937/K9/TCIA.2017.KLXWJJ1Q). Segmentation anno-
tations comprise the gadolinium-enhancing tumour (ET), the
peritumoral edema (ED), and the necrotic and non-enhancing
tumour core (NCR). For this study, we merged all three an-
notations into a single one and generated the binary masks.

2.2. Tumor Detection

Image pre-processings: For detection purposes, all MRI
images (BRATS and TCGA-GBM) received the same pre-
processing as described for the BRATS 2019 dataset [4],
i.e. re-oriented to LPS (left-posterior-superior) coordinate
system, co-registered rigidly into their respective Tlce vol-
ume, interpolated to the (1 mm?) isotropic resolution and
skull-stripped. In order to discard grey level outliers, the
images were then min-max normalised using the 5 and 95%
percentiles and out-of-range values were capped. These
transformations were applied to training and testing images.
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Object Detection: The YOLO (You Only Look Once)
framework [5] is used to detect objects on natural images.
This is done by dividing the image into a S x S grid. Each
grid predicts B bounding-boxes containing the object. Hyper-
parameters (B = 2, S = 7) were used to detect the tumour
defined as the union of the three annotations ET, ED and NCR
as described above.

In most oncology datasets, images are acquired as part of
routine practice and therefore do not present all MRI modal-
ities expected for each patient. Often, the accessible modal-
ities are the T1, Tlce and either T2 or FLAIR, although it
is not the case in the currently studied dataset. We wanted
to propose a solution to detect regions of interest around tu-
mors applicable to cohorts of rare pathologies that do not have
FLAIR. For this reason, for the detection, we decided to work
only with the T1, Tlce and T2 and discarded the FLAIR for
this step.

The implementation and trained weights of the YOLO
network, available from Ultralytics [6] were used. Transfer
learning was applied using BRATS dataset to fine tune the
model for GBM detection. Because BRATS 2019 contains
individuals from the TCGA-GBM cohort, we made sure to
exclude these subjects from the object detection training and
validation sets. Since YOLO only takes natural images as in-
put, the red channel was fed with the 2D axial T1 images,
the green channel with the 2D axial T2 images, and the blue
channel with the T1ce 2D axial images.

Image post-processing:  Since we used the YOLO
model in a 2D setting, the continuity of the detected mask is
not guaranteed along the axial direction. To tackle this issue,
morphological closing and opening was applied to the 2D de-
tected masks along the axial axis. This post-processing fills
the holes and deletes isolated detected zones and produced
the BB ROIS.

2.3. Classification and survival prediction with radiomics

The bounding-boxes are detected in the TCGA-GBM images
using the finely tuned YOLO network. Using either BB or
SEG ROISs, radiomic features are extracted from the TCGA-
GBM images. The prediction performances are assessed ac-
cording to two tasks: predicting patients’ overall survival and
classifying patients between good/poor prognosis. For the
second task, we divided the patients as follows. We computed
the median survival and its 95 confidence interval (MSCI).
Patients with an overall survival above the upper bound of
the MSCI are labelled with positive prognosis (GOOD). In
the same way, patients with an overall survival below the
lower bound of the MSCI are labelled with negative prog-
nosis (POOR). Patients in MSCI (15 patients) are discarded
during feature selection. To assess the performance, the pa-
tients were divided in a train and test set left apart. A feature
selection is beforehand carried out by a 3 fold cross valida-
tion using train = (training+validation). From the 102 initial

patients, 13 were removed because of the poor (see thereafter)
tumour detection. We compared the SEG and BB approaches
on 89 patients for the survival prediction and on 77 for the
prognosis prediction. Figure [I] summarises all the steps de-
scribed in this section.
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Fig. 1: Steps for features selection and survival prediction

Radiomic features extraction: All native images were
subjected to radiomic feature extraction. First, N4 bias cor-
rection algorithm was applied. Then, an intensity normalisa-
tion was performed using the whitestripe algorithm to stan-
dardise intensity ranges for each imaging modality among all
subjects [7l]. Finally, we used PyRadiomics[8] to extract ra-
diomic features (shape, first and second order) from original
and wavelet-transformed images, resampled to a 2mm? res-
olution, and with a 25 gray level bin size, yielding 3404 ra-
diomic features for each patient.

Features selection: First, highly correlated features and
constant features were removed (~ 2000 features removed).
We select variables sequentially. A variable is discarded if we
have already selected a variable correlated to it (r2 > 0.95).
A feature is considered constant if 2 < 0.0001. Then, the
features were scaled using the z-score. Finally, the k features
that best correlate with the task main pattern were selected. A
t-statistics was computed for each features to test the null hy-
pothesis Hy : ppoor(feature) = ugoop(feature). The
corresponding p-values were used to rank the features. For
both the classification and survival prediction task, we use the
grid search technique to find the optimal number of ranked
features k.

Assessment metrics of the classifier and survival pre-
dictor: We used the random forest implemented in Scikit-
learn [9], with 1000 estimators and gini function as split
criterion, as classifier for the GOOD/POOR prognosis task.
Survival prediction was performed using a Cox proportional
hazard model implemented in the Python lifelines module
[10], with a 0.2 ridge penalty parameter. We scrutinised the



Table 1: Tumour detection results on the TCGA-GBM
dataset. IOU : Intersection Over Union

Recall Precision | IOU
Mean 0.88+.14 | 0.62+.1 | 0.69 £ .12
Median | 0.93 0.64 0.73

performance achievable by the classifiers when radiomics
were generated either from BB or SEG ROIs. In the case of
the GOOD/POOR classifier, we used area under the curves
(AUC) and the balanced accuracy, defined as the average of
recall obtained across the classes. Likewise, we used C-index
for the survival predictor.

3. EXPERIMENTS AND RESULTS

To test our approach, we trained YOLO using BRaTS2019
dataset excluding TCGA-GBM images. Starting from YOLO
networks and weights available in [6], we performed the
transfer learning by training the network on 8211 images
extracted from 126 High Grade Glioma volumes. We trained
the network during 5 epochs.

(a) Tumour on brain

y=60 ¥=-150

(b) bounding-box around the segmented tumour

Fig. 2: Examples of tumour detection (grey line) and ground
truth (dark area).

Tumor detection results:  Figure ] give an example
taken from the TCGA-GBM dataset of the bounding-boxes
detected compared to the ground truth segmentation. All re-
sults shown correspond to the predicted masks after 3D mor-
phological reconstruction. The results are presented in Table
[Il The different metrics used are :

# of tumoral voxels in predicted bbox

Recall =
coa # of tumoral voxels

Precisi # of tumoral voxels in predicted bbox
recision =

# of voxels in predicted bbox

10U — predicted bbox N true bbox

~ predicted bbox U true bbox

We obtained scores aligned with other object detection bench-
marks, which indicates our bounding-box predictions were
successful. We also observed high recall score across all tu-
mour compartments (0.97, 0.81 and 0.96 for ET, ED and NCR
respectively). This means BB radiomic features will report on
almost all the tumour. The recall on the ED is lower compared
to the other parts of the tumours. This is due to the large size
of the oedema compared the the whole tumour (50% of the tu-
mour is oedema) and it is invisible on the T1 and T1ce images.
The precision score is relatively low, but it must be put into
perspective with the average tumour occupancy of 7% of the
brain. Moreover, low precision scores were expected for our
bounding-boxes because our regions are cubic while tumour
shapes are random meshes. Therefore, radiomic features will
also contain a significant amount of peritumoral information.
The aim of this paper comes down to determining the impact
of these added voxels on radiomic features predictive power.

Prediction results: The dataset was split into 70% train-
ing set and 30% testing set. The cross-validation was done
using 3 folds within the train set. Moreover, to assess the sta-
bility of the results, we ran the whole pipeline 50 times with
different train/test configurations.

The compared performance of the predictors with SEG
and BB radiomic features was assessed for the classification
and survival tasks. Table 2] gives a comparison between the
two pathways when followed to classify GOOD and POOR
prognosis individuals. Both types of features show stable re-
sults, with BB having slightly lower performance (not signif-
icant, p = .05).

Table 3] summarises results found for survival prediction.
The two methods exhibit the same stability across validation
and test sets. The results are not significantly different, but
they are not very high to draw a final conclusion.

Finally, as our predictor rely on feature selection in a
high-dimensional space, the stability of the extracted features
set is not guaranteed. On average, we selected 12 features,
while the the optimal number of features ranged from 5 to
20 across all the tests. Most selected features are based on
co-occuring gray level matrix extracted from spatially filtered
images. Both approaches selected variables extracted from
the FLAIR. It must be noted that we did not select the same
features from BB and SEG. Furthermore, correlation analysis
between the two sources of the co-variate shows a strong cor-
relation between most of the intensity based features. Most
of selected features exhibits a strong correlation between the
two sources. It should be noted that shape radiomic features
are never selected either in the bounding-box strategy or in
the segmentation strategy and do not seem to be a reliable
survival predictor. 0.69



Table 2: GOOD/POOR prognosis classification results on 77 patients with 70% train, 30% test and 3-fold CV

AUC Balanced accuracy

cv Test cv Test
BB | 0.73£.06 | 0.61 .06 | 0.67 £.07 | 0.61 .07
SEG | 0.79 £ .05 | 0.62+.09 | 0.76 £ .04 | 0.62 £ .08

Table 3: Survival prediction results on 89 patients with 70%
train, 30% test and 3 fold CV

C-index
CvV Test
BB | 0.65+.04 | 0.54 & .01
SEG | 0.69 4+ .03 | 0.57 &+ .06

4. CONCLUSION

We have shown that a general object detection framework for
natural images tuned with transfer-learning can be used to re-
liably enclose tumours in clinical images. These bounding-
boxes may be used as regions of interest for radiomics, but
also to facilitate automatic segmentation in a second step.
We studied the impact of choosing FLAIR instead of T2 for
the fine tuning of the YOLO network. For the TCGA-GBM
dataset, using only T1, Tlce and FLAIR images, we obtained
very similar bounding-box performances (results not shown).
The 3-channel input of the YOLO architecture does not seem
to hamper the BB detection in a standard oncological MR
dataset, even if this should be further investigated. Our detec-
tion approach exhibited insensitivity in regard of tumour size,
shape and components, which makes it a reliable method. We
think that object detection strategy, which is more robust than
segmentation, is a true alternative to provide ROIs with suffi-
cient quality to achieve radiomics analysis in cohorts of rare
and poorly documented tumours without further tuning. In
this paper, segmentation based radiomics did not show mean-
ingful differences from bounding-boxes features in terms of
prediction performance. Both approaches exhibited similar
performance for stratification and survival prediction in pa-
tients with glioblastoma multiforme. Both approaches dis-
played commonalities in stability of selected features set and
differences in regard of the specific chosen features, which
deserve further investigations. With these results, bounding-
box features’ performance seems to be only slightly below
segmentation’s one; and we believe they are a viable alterna-
tive when segmentation is desired but labels are not available.
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