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ABSTRACT

Context. Galaxy imaging surveys observe a vast number of objects, which are ultimately affected by the instrument’s point spread
function (PSF). It is weak lensing missions in particular that are aimed at measuring the shape of galaxies and PSF effects represent
an significant source of systematic errors that must be handled appropriately. This requires a high level of accuracy at the modelling
stage as well as in the estimation of the PSF at galaxy positions.
Aims. The goal of this work is to estimate a PSF at galaxy positions, which is also referred to as a non-parametric PSF estimation and
which starts from a set of noisy star image observations distributed over the focal plane. To accomplish this, we need our model to
precisely capture the PSF field variations over the field of view and then to recover the PSF at the chosen positions.
Methods. In this paper, we propose a new method, coined Multi-CCD (MCCD) PSF modelling, which simultaneously creates a PSF
field model over the entirety of the instrument’s focal plane. It allows us to capture global as well as local PSF features through the
use of two complementary models that enforce different spatial constraints. Most existing non-parametric models build one model per
charge-coupled device, which can lead to difficulties in capturing global ellipticity patterns.
Results. We first tested our method on a realistic simulated dataset, comparing it with two state-of-the-art PSF modelling methods
(PSFEx and RCA) and finding that our method outperforms both of them. Then we contrasted our approach with PSFEx based on
real data from the Canada-France Imaging Survey, which uses the Canada-France-Hawaii Telescope. We show that our PSF model is
less noisy and achieves a ∼22% gain on the pixel’s root mean square error with respect to PSFEx.
Conclusions. We present and share the code for a new PSF modelling algorithm that models the PSF field on all the focal plane that
is mature enough to handle real data.

Key words. methods: data analysis – techniques: image processing – cosmology: observations – gravitational lensing: weak

1. Introduction

Current galaxy imaging surveys, such as DES (Jarvis et al.
2016), KIDS (Kuijken et al. 2015), and CFIS (Ibata et al.
2017), as well as future surveys, such as the Vera C. Rubin
Observatory’s LSST (Tyson et al. 2006), the Euclid mission
(Laureijs et al. 2011), or the Roman Space Telescope, require
an estimated determination of the instrument’s point spread
function (PSF). For some scientific applications, such as weak
gravitational lensing (Kilbinger 2015), low-surface brightness
studies (Infante-Sainz et al. 2019), or analyses of diffraction-
limited images in crowded stellar fields (Beltramo-Martin et al.
2020), the PSF must be reconstructed with a high level of
accuracy. A preliminary approach is to derive a PSF model
using available information about the instrument, whereupon
the model parameters are then chosen by fitting observed stars
in the field to yield a PSF model. This has been widely
used for the Hubble Space Telescope (HST) as in the case
of TinyTim software (Krist et al. 1995), although it was later
shown that a relatively simple PSF estimation based on the
data, which does not assume a model for the instrument,
provides better fits to stars with regard to both photometry
and astrometry measurements (Hoffmann & Anderson 2017).
Furthermore, such a solution cannot readily be applied to

? Code available at https://github.com/CosmoStat/mccd

ground-based observations, where the atmosphere plays an
important role and adds a stochastic aspect to the PSF. Other
methods, based on imaging-data only, use unresolved stars in
the field as direct measurements of the PSF, reconstructing
an accurate PSF from these observed stars. A very impres-
sive range of methodologies have been proposed in the past
to perform this task: Moffat modelling (Bendinelli et al. 1988),
polynomial models (Piotrowski et al. 2013; Bertin 2011), prin-
cipal component analysis (Jee et al. 2007; Schrabback et al.
2010; Gentile et al. 2013), sparsity (Ngolè et al. 2015), neu-
ral networks (Herbel et al. 2018; Jia et al. 2020a,b), and opti-
mal transport (Ngolè & Starck 2017; Schmitz et al. 2018). The
PSFEx software (Bertin 2011) is the most widely used. The
resolved components analysis (RCA) method (Ngolè et al. 2016;
Schmitz et al. 2020) was proposed within the framework of the
Euclid space mission to deal with PSFs that are both undersam-
pled and spatially varied in the field. Cameras are often mosaics
of several charge-coupled devices (CCDs), but all the above-
mentioned methods can only build one PSF model per CCD,
with the exception of the approach used by Miller et al. (2013),
and the recently proposed approach by Jarvis et al. (2021). Since
the models they build within each detector are independent from
each other, it is difficult to capture global patterns of variation in
the PSF. For example, upon observing PSFEx’s shape residuals
maps from the DES Year 1 results (Fig. 8 in Zuntz et al. 2018),
we can see global patterns.
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Table 1. Important variables used in this article.

Variable Description

Observational model
H PSF field
F Degradation operator
uk

i 2-dimensional position of star i in CCD k
nk

star Number of observed stars in CCD k
N Number of observed stars in all the CCDs
nk,i Noise realisation of star i in CCD k
yk,i Square star observation stamp i on CCD k
ny Number of pixels on one dimension of yk,i

D Downsampling factor
yk,i 1-dimensional column representation of yk,i

Yk Matrix stacking all the star observations yk,i

PSF model
Ĥk PSF model estimation of the observed stars Yk

rk, r̃k Local and global number of eigenPSFs
S k , S̃ Local and global eigenPSF matrices
Ak , Ãk Local and global weight matrices
αk , α̃ Local and global spatial constraint weights
V>k , Πk Local and global spatial constraint dictionaries
KLoc
σ , KGlob

σ Local and global denoising parameters
(ek,i, ak,i) RCA graph constraint parameters
wk,i , w̃i Local and global weight vectors for

The sparsity inducing term
Φ Sparsity inducing transform

PSF recovery
φ Radial Basis Function (RBF) kernel
NRBF Number of elements used to estimate the

RBF interpolant
(λi)

NRBF
i=1 RBF interpolation weights

Ak(NRBF) Weight matrix composed by the NRBF closest
Stars of a given target position

Ak,u, Ãk,u Local and global interpolated weight columns
For a target position u

Ĥ(u) Recovered PSF at position u

In this paper, we present a new method based on RCA that
can capture large patterns spreading across several or all CCDs.
We compare the results with both RCA and PSFEx based on sim-
ulations and real data. Section 2 reviews these two existing meth-
ods, while the proposed MCCD methods are described in Sect. 3.
Experiments on simulated images are shown in Sect. 4 and tests
on real data are presented in Sect. 5. We give our conclusions in
Sect. 7. In addition, Table 1 provides a glossary of variables used
throughout this article.

2. PSFEx and RCA

PSFEx (Bertin 2011) is a standard and widely-used software1.
RCA (Ngolè et al. 2016) is a more recent method that was devel-
oped with the Euclid Visible Imager’s PSF in mind in order to
deal with the undersampling of the observed star images. The
software is also freely available2. It is important to remark that
these two approaches rely solely on the observed data: they are
blind with respect to the optical system involved in the image
acquisition process.

1 https://github.com/astromatic/psfex
2 https://github.com/CosmoStat/rca

2.1. The observation model

Let us define H(u) as the PSF field involved in our problem.
It is a continuous function of a two-dimensional position, u =
(x, y), which, in principle, could be image coordinates based on
the camera’s CCD pixels or could also be celestial coordinates
such as right ascension and declination. Throughout this paper,
we assume that this PSF field accounts for the contribution of all
effects from optical aberrations and diffraction to atmospheric
distortions.

Our observation model consists of images, Ik, the pixels in
one CCD chip, k, which contains nk

star noisy stars at positions,
uk

i . We define a ‘stamp’ as a square small image cutout centred
on a single star. Each star observation stamp, i, on the CCD’s k
can be written as:

yk,i = F
(
H(uk

i )
)

+ nk,i, (1)

where ni,k accounts for a noise image that we will consider to
be white and Gaussian, and F is the degradation operator. Three
main effects are taken into account in this operator: (i) the dis-
crete sampling into a finite number of pixels, namely an image
stamp of ny × ny pixels; (ii) a sub-pixel shift that depends on
where the centroid of the image is placed with respect to the
pixel grid; and (iii) a downsampling that affects the pixels in the
stamp by a factor of D leaving a D ny×D ny stamp. For example,
to handle the Euclid mission sampling rate (Cropper et al. 2013),
a factor D = 1/2 is required to achieve Nyquist sampling rate.
Henceforth, and throughout this article, we use a unitary value
for D.

We write each of these stamps into a one-dimensional col-
umn vector and, therefore, Yk = [yk,1 · · · yk,nk

star
] is the matrix

containing all the observed stamps in CCD’s k. It contains nk
star

columns and D ny × D ny rows. Finally, we concatenate all CCD
matrices and obtain Y = (Y1 · · · YK).

2.2. PSFEx

For a given exposure, this method builds one independent model
for each CCD. It was designed as a companion software for
SExtractor (Bertin & Arnouts 1996), which builds catalogues
of objects from astronomical images. Each object contains sev-
eral measurements that PSFEx then uses to describe the variabil-
ity of the PSF. Each selected attribute follows a polynomial law
up to some user-defined maximum polynomial degree d. The
model for CCD k can be written as:

ĤPS FEx
k = S kAk, (2)

where Ak has m rows corresponding to the number of polyno-
mials used, and nk

star columns corresponding to the number of
observed stars used to train the PSF model. The matrix, S k, is
learned during training and has n2

y rows (the number of pixels in
each image), and m columns.

For example, if d is set to 2 and the attributes chosen are
the pixel coordinates (x, y), each column i of the Ak matrix
corresponding to the star i at location uk

i = (xk
i , y

k
i ) is ak

i =

[1, xk
i , y

k
i , (xk

i )2, (yk
i )2, xk

i yk
i ]T . The number of monomials m cor-

responding to a maximum degree d can be computed as (d +
1)(d + 2)/2.

The training of the model amounts to solving an optimisation
problem that takes the form:

min
∆S k


nk

star∑
i=1

∥∥∥∥∥∥∥∥
yk,i − F

(
(S 0,k + ∆S k)ak

i

)
σ̂i

∥∥∥∥∥∥∥∥
2

2

+ ‖T∆S k‖
2
F

 , (3)
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where σ̂i represents the estimated per-pixel variances, and T is
a scalar weighting. The matrix S k is decomposed as S 0,k + ∆S k,
where the first term corresponds to a first guess of the PSF. The
optimisation is carried out on the difference between this first
guess and the observations. The second term in Eq. (3) acts as
a Tikhonov regularisation which, in this case, favours smoother
PSF models.

Finally, the PSF recovery at one galaxy position, u j, is
straightforward and can be done by using the learned S k matrix
and directly calculating a vector, âk, j, corresponding to the
monomials of the chosen attributes. The recovered PSF is then
computed as

ĥPSFEx
k, j = S k âk, j. (4)

2.3. Resolved components analysis

The RCA method is based on a matrix factorisation scheme.
It was first presented in Ngolè et al. (2016) and later evaluated
on Euclid image simulations in Schmitz et al. (2020). As with
PSFEx, this method also builds independent models for each
CCD within an exposure and is able to handle under-sampled
images. Any observed star i from CCD k is modelled as a linear
combination of PSF features, called eigenPSFs in the following,
as

ĥRCA
k,i = S k ak,i, (5)

where S k is the matrix composed of the eigenPSFs, ak,i a vec-
tor containing the set of linear weights, and ĥRCA

k,i is the recon-
structed PSF.

The modelling is recast into an optimisation problem where
the S k and Ak matrices are estimated simultaneously. The prob-
lem is ill-posed due to the undersampling and the noise, mean-
ing that many PSF fields can reproduce the observed stars. In
order to break this degeneracy, the RCA uses a series of reg-
ularisers during the optimisation procedure to enforce certain
mild assumptions on the PSF field: (i) the low-rankness of the
solution, enforced by setting the number of eigenPSFs learned,
N, to be small; (ii) the positivity of the reconstructed PSFs; (iii)
the sparsity of the PSF representation on an appropriate basis;
and iv) the spatial constraints that account for imposing a certain
structure within the Ak matrix. This last constraint is imposed
by a further factorisation of Ak into αkVT

k . The computation of
the VT

k matrix is addressed in Sect. 3.4. Finally, the PSF model
reads:

ĤRCA
k = S kαkVT

k , (6)

and the optimisation problem that the RCA method solves is:

min
S k ,αk

{
1
2

∥∥∥∥Yk − F
(
S kαkVT

k

)∥∥∥∥2

F

+

N∑
i=1

‖wk,i � Φsk,i‖1 + ι+(S kαkV>k ) + ιΩ(αk)
}
, (7)

where wk,i are weights, Φ represents a transformation allowing
the eigenPSFs to have a sparse representation, � denotes the
Hadamard product, ι+ is the indicator function of the positive
orthant, and ιΩ is the indicator function over a set Ω defined to
enforce the spatial constraints.

The PSF recovery at a position u j is carried out by a radial
basis function (RBF) interpolation of the learned columns of the

Ak matrix, issuing a vector, ak, j. In this way, the spatial con-
straints encoded in the Ak matrix are preserved when estimating
the PSF at galaxy positions. Finally, the reconstructed PSF is:

ĥRCA
k, j = S k âk, j. (8)

3. A new family of MCCD methods

The MCCD methods we propose in this study are aimed at
exploiting all the information available in a single exposure,
which requires the handling of all CCDs simultaneously. The
main advantage of this approach is that we can build a more
complex model since the number of stars available for train-
ing is much larger as compared to a model based on individual
CCDs. We aim to construct a model that is capable of captur-
ing PSF features following a global behaviour, in spite of the
fact that the PSF field is discontinuous at CCD boundaries. The
main reason behind this discontinuity effect is in the misalign-
ment between various CCDs. Methods such as PSFEx or RCA,
which process each CDD independently, avoid the discontinu-
ity problem through construction, but have difficulties capturing
global patterns of PSF variability that occur on scales larger than
a single CCD. The main idea behind our MCCD approach is to
include both a global model that provides a baseline estimation
of the PSF and a local model that provides CCD-specific correc-
tions.

3.1. The MCCD data model

In a typical wide-field setting, the PSF field, H , exhibits a cer-
tain regularity that we translate into spatial correlations of the
PSFs. The model we build for a specific CCD k is the matrix
Ĥk ∈ R

n2
y×nk

star , which is composed by the concatenation of the
estimations of the different stars encountered in that CCD. Each
postage stamp column of length, n2

y , corresponds to the model
for a specific flattened star from the nk

star stars present in CCD k.
The PSF field at star positions is reconstructed as a lin-

ear combination of PSF features, called eigenPSFs, which are
learned from the observations. As previously stated, we want to
have both a global and a local component for the model, so we
need different eigenPSFs for each component. Hence, the model
is based on a matrix factorisation scheme as follows:

Ĥk = S k Ak︸︷︷︸
Local: ĤLoc

k

+ S̃ Ãk︸︷︷︸
Global: ĤGlob

k

, (9)

where S k ∈ R
n2

y×rk contains rk local eigenPSFs and S̃ ∈ Rn2
y×r̃

contains r̃ global eigenPSFs. The matrices, Ak ∈ R
rk×nk

star and
Ãk ∈ R

r̃×nk
star , correspond to the local and global weights of the

linear combinations, respectively. We can see that for a given
CCD k, the final model, Ĥk, is made up of the sum of the contri-
butions of the local, ĤLoc

k , and global, ĤGlob
k , models.

Now, let us build a single model for all the K CCDs in the
focal plane. We start by building a single matrix containing all
the PSF models by concatenating the model Ĥk for each CCD as
follows:

Ĥ =
(

Ĥ1 · · · ĤK

)
, (10)

where Ĥ ∈ Rn2
y×N and N =

∑K
k=0 nk

star is the total number of stars
in one camera exposure. Then we can concatenate the different
eigenPSF matrices, k, into a single matrix:

S =
(

S 1 · · · S K S̃
)
, (11)
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where S ∈ Rn2
y×r and we concatenated the global eigenPSF

matrix, S̃ , at the end. This leaves a total of r =
∑N

k=1 rk + r̃
columns for the S matrix. We can follow a similar procedure
to define A as a block matrix:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AK
Ã1 Ã2 · · · ÃK


, (12)

where A ∈ Rr×N and 0 is used for matrices made up of zeros. The
last row of the A block matrix is composed by the global model
weights Ãk. Having already defined the Multi-CCD matrices, Ĥ,
S and A, we can write the final model as:

Ĥ = S A, (13)

where we include all the CCDs. Expanding it leads to a formula,
as shown in Eq. (9), for each CCD.

3.2. Inverse problem and regularisation

The estimation of our model, summarised in the matrices S
and A of Eq. (13), is posed as an inverse problem. Given the
observation and MCCD data models presented above, this prob-
lem amounts to the minimisation of ‖Y − F (S A)‖2F , where ‖·‖F
denotes the Frobenius matrix norm. This problem is ill-posed
due to the noise in the observations and to the degradation oper-
ator, F , meaning that there are many PSF models that would
match the star observations. In order to break this degeneracy, we
enforce several constraints, based on basic knowledge of the PSF
field, which we use to regularise our inverse problem. Similarly
to the ones exploited in the RCA method (Schmitz et al. 2020),
we use the following constraints: (i) Low-rankness of the model;
(ii) Positivity of the model; (iii) Sparsity in a given domain; (iv)
Spatial variations. We give a more detailed description of these
in Appendix A. These constraints are used by both parts of our
model, namely, the global and the local components.

As mentioned above, the spatial constraint is enforced by fur-
ther factorisation of the coefficient matrices, A. However, since
we want to enforce different properties for the global and the
local contributions, the factorisation used differs for each case.

3.3. Global model

We want the global component to provide a baseline estimation
of the PSF and for that we propose that the coefficients fol-
low a polynomial variation of the position. The global coeffi-
cient matrix, Ãk, is factorised into Ãk = α̃Πk, where α̃ ∈ Rr̃×r̃

is a weight matrix and Πk ∈ R
r̃×nk

star contains each considered
monomials evaluated at global star positions. The dimension, r̃,
is determined by the maximum allowed degree in the polyno-
mials: for all monomials of degree less than a given d, we have
r̃ =

(
d+2

2

)
=

(d+1)(d+2)
2 . For example, for d = 2 (i.e. r̃ = 6), we

have:

Πk =



1 · · · 1
xk,1 · · · xk,nk

star

yk,1 · · · yk,nk
star

x2
k,1 · · · x2

k,nk
star

xk,1yk,1 · · · xk,nk
star

yk,nk
star

y2
k,1 · · · y2

k,nk
star


, (14)

where (xk,i, yk,i)1≤i≤nk
star

are the global pixel coordinates of the
observed stars distributed in the kth CCD. The global compo-
nent of the model for a specific CCD k are as follows:

ĤGlob
k = S̃ α̃ Πk. (15)

It is important to mention that despite our choice, throughout this
paper, to use position polynomials for building the global space
constraint, the model is not necessarily restricted to that choice.
The Πk matrix could be constructed using other parameters of
the observations in order to facilitate the capture of other depen-
dencies and could also follow other types of functions.

3.4. Local model

It is possible to define different types of local models. In this
paper, we discuss three options that depend on how we enforce
the local spatial constraint. More specifically, they depend on
how we factorise the local Ak matrix in the relation:

ĤLoc
k = S k Ak. (16)

Nevertheless, the MCCD framework does not restrict us to these
three options and it is possible to define other local models. It
is worth remarking that all the framework and optimisation pro-
cedures are maintained throughout the different flavours of the
MCCD algorithms. The main difference is the way the spatial
constraints are enforced in the local and global models.

3.4.1. MCCD-RCA

One motivation for the local model is to provide CCD-specific
corrections and to do so, our first choice is RCA’s spatial con-
straint strategy which leads to the MCCD-RCA algorithm. The
motivation for this choice is the capability of the RCA spatial
constraint to handle different types of PSF variations. On the
one hand, it can capture smooth variations over the CCD and
on the other hand, it can account for localised changes that affect
a reduced number of PSFs. If the PSFs were sampled on a reg-
ular grid, this would mean capturing variations occurring at dif-
ferent spatial frequencies. Unfortunately, the PSF locations do
not coincide with a regular grid but on what could be seen as
a fully connected undirected weighted graph where the weights
can be defined as a function of the distance between the differ-
ent nodes (PSF locations)3. However, the RCA spatial constraint
exploits the graph harmonics in order to capture the different PSF
variations. These harmonics are represented by the eigenvectors
of the graph’s Laplacian matrix (Chung 1997), which depend
on how we define the graph’s weights. A parametric function
of the PSF distances can serve as the graph’s weights, as in
Schmitz et al. (2020), and the selection of the function’s param-
eters can be done following Ngolè et al. (2016). For each local
model (i.e. each CCD in the mosaic), we define rk graphs, each
corresponding to one of the rk local parameters. For each graph,
we can extract the mk most useful eigenvectors of its Lapla-
cian matrix and present all of them as the columns of the matrix
VRCA

k ∈ Rnk
star×rkmk . In this way, we can write:

ARCA
k = αRCA

k V> RCA
k , (17)

3 A graph G can be defined as a pair (V, E), where V is the set of ver-
tices and E the set of edges that connects the different vertices. In our
case, each star position constitutes a vertex and there is one edge for
each pair of vertices. The edges have no preferred direction and its value
depends on the distance between the two vertices it connects.
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where αRCA
k ∈ Rrk×rkmk is a weight matrix that is used to

enforce the spatial constraints. In other words, the sparsity of
ARCA

k ’s rows in the dictionary V> RCA
k . Full details are available

in Ngolè et al. (2016) and Schmitz et al. (2020).

3.4.2. MCCD-POL

The second local model, referred to as MCCD-POL, follows a
polynomial spatial constraint. Similar to PSFEx, we factorise the
the local weights into two matrices as follows:

APOL
k = αPOL

k ΠPOL
k , (18)

where ΠPOL
k has the same form as the matrix in Eq. (14), with the

difference that in this case, the positions are represented in local
coordinates of its corresponding CCD k. As with d in the global
model, a parameter is chosen to define the maximum order of the
polynomial used.

3.4.3. MCCD-HYB

The third option consists of using the two local models we
presented above, namely, the RCA and polynomial, to work
together in an hybrid algorithm we will refer to as MCCD-HYB.
The idea behind it is that the addition of the polynomial space
constraint could help the original graph constraint to capture
the different features found. In this case, we factorise the local
weights with block matrices as:

AHYB
k = αHYB

k V> HYB
k =

(
αRCA

k 0
0 αPOL

k

) (
V>k

ΠPOL
k

)
, (19)

where αPOL
k and ΠPOL

k are the matrices defined in the polynomial
version and αRCA

k and V>k are the matrices defined in the original
MCCD-RCA algorithm.

Finally, generically including the spatial constraints in
Eq. (9), we get the following description of our model for a spe-
cific CCD:

Ĥk = S kαkV>k + S̃ α̃Πk, (20)

which we can also write in a global form, Ĥ = SαV>, where
Ĥ and S have already been defined in Eqs. (10) and (11), and
where α and V> are the following matrices:

α =


α1 0 · · · 0

0
. . .

...
... αN 0
0 · · · 0 α̃

 , V> =



V>1 0 · · · 0

0 V>2
...

...
. . . 0

0 · · · 0 V>N
Π1 Π2 · · · ΠN


.

(21)

3.5. Optimisation problem

Combining the regularisations enumerated in Sect. 3.2 and the
data model described in Sect. 3.1, we can construct the opti-
misation problem in an elegant way by reformulating Eq. (7).
However, we can split the optimisation problem into a more

convenient form:

min
S 1,...,S N ,S̃
α1,...,αN ,α̃

{ N∑
k=1

(
1
2
‖Yk − Fk(S kαkV>k + S̃ α̃Πk)‖2F+

rk∑
i=1

‖wk,i � Φsk,i‖1 + ι+(S kαkV>k + S̃ α̃Πk) + ιΩk (αk)
)

+

r̃∑
i=1

‖w̃i � Φs̃i‖1 + ιΩ̃(α̃)
}
. (22)

In the previous equation, the columns of Yk ∈ R
D2n2

y×nk
star are the

stars distributed in the kth CCD sensor, Fk is the degradation
operator, wk,i and w̃i are weight vectors, Φ is a transform that
allows a sparse representation of our eigenPSFs, and Ωk and Ω̃
are sets to enforce sparsity and normalisation of the rows of αk
and α̃, respectively. The indicator function of a set C is written
as ιC(·), that is equal to 0 if the argument belongs to C and +∞
otherwise. For example, ι+ is the indicator function over the pos-
itive orthant. More explicitly, the sets Ωk and Ω̃ are defined the
following way:

Ωk = {αk | ∀i ∈ {1, . . . , rk}, ‖(α>k )i‖0 ≤ ηk,i ∧ ‖(αkV>k )i‖2 = 1},
(23)

Ω̃ = {α̃ | ∀i ∈ {1, . . . , r̃}, ‖(α̃>)i‖0 ≤ η̃i ∧ ‖(α̃Πk)i‖2 = 1}, (24)

where (ηk,i)1≤i≤rk and (η̃i)1≤i≤r̃ are appropriately chosen integers,
and ‖·‖0 is the pseudo-norm `0 that returns the number of non-
zero elements of a vector. So we are enforcing, in the global case,
the row i ∈ {1, . . . , r̃} of α̃ to have at most η̃i non-zero elements.
An interpretation could be that we are forcing each eigenPSF to
follow a small number of positional polynomials as Ã’s rows will
be sparsely represented over the Πk matrices.

The Φ transform used throughout this paper is the starlet
transform (Starck et al. 2011). We enforce the sparsity on the
different decomposition levels excluding the coarse scale. The
`1 term promotes the sparsity of the eigenPSFs with respect to Φ
while the weights wk,i and w̃i regulate the sparsity penalisation
against the other constraints and should be adapted throughout
the optimisation algorithm depending on the noise level.

The second term in each of the Ω sets (e.g. ‖(αkV>k )i‖2 = 1)
was not mentioned in the regularisation Sect. 3.2, but they are
needed to avoid a degenerated solution, for example ‖S k‖F → ∞

and ‖Ak‖F → 0, due to the usual scale indeterminacy when doing
a matrix factorisation. To avoid this, we normalise the Ak and
Ã columns. This translates to forcing the normalisation of the
eigenPSF weights contributing to model each observed star. This
does not mean that the eigenPSF weights will be the same for
each star, but that the norms of the weight vectors are equal.

3.6. Algorithm

The optimisation in Eq. (22) is non-convex as we are facing
a matrix factorisation problem. To overcome this situation we
use an alternating minimisation scheme where we optimise one
variable at a time, iterating over the variables as studied in
Xu & Yin (2013) or Bolte et al. (2014). In consequence, we can
at most expect them to converge towards a local minima. The
main iteration is performed over the different variables occur-
ring in Eq. (22), first over the global S̃ , α̃ and then over the local
S 1, α1, . . . , S K , αK .

The method is shown in Algorithm 1, which contains the
four main optimisation problems derived from the alternating
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scheme. There exists a wide literature on minimisation schemes
involving non-smooth terms, specifically proximal methods
(Parikh & Boyd 2014), which we can exploit in order to han-
dle the four cases. Notably, we use the algorithm proposed by
Condat (2013) for problems (II), (III), and (IV). For problem (I),
we use the method proposed by Liang et al. (2018) which is an
extension of the well-known FISTA algorithm (Beck & Teboulle
2009). Even though the `0 pseudo-norm is non-convex and,
therefore, not adapted to the general scenario of the aforemen-
tioned algorithms, we can alleviate this issue by combining the
application of its proximal operator and a given heuristic.

With regard to the algorithm’s initialisation, we start by a
preprocessing where we reject stars that are strong outliers in
terms of shape or size. We run the shape measurement algorithm
mentioned in Sect. 4.4 on the training stars and discard those that
are several sigmas away from nearby stars. At this moment, we
can assign a specific weight for each training star. There are three
available options: (i) to use a unitary weight for each training
star; (ii) to use a weight provided by the user; (iii) to compute a
weight ωi as a function of the star’s signal-to-noise-ratio (S/N)
based onωi ∝ S/Ni/(S/Ni+median(S/N)) and bound to a specific
interval to avoid bright stars from dominating the optimisation.

Next, we continue with all the local eigenPSFs set to zero, as
seen in line 4 of Algorithm 1; and the α̃ matrix set to the iden-
tity, favouring the specialisation of each global eigenPSF to one
specific monomial. By following this procedure, we are training
a global polynomial model that fits the stars as best as it can.
Later on, the local models work with the residuals between the
observed stars and the global model, trying to capture variations
missed in the previous step.

There are four iteration loops in Algorithm 1. In line 8, this
is the main iteration, and in line 15, the iteration over the CCDs
for the training of the local model. The other two iterations on
lines 9 and 14 correspond to a refinement of the estimation. Our
objective is to correctly estimate the global and the local con-
tributions for the model and to do this, we alternate the min-
imisation between the global and the local contributions, which
we call outer minimisation. On top of that, each of these two
contributions include an inner alternating minimisation scheme
as we are performing a matrix factorisation for the local and for
the global models. For example, we are simultaneously minimis-
ing over S k, αk for the local model and over S̃ , α̃ for the global
model. We want to refine this inner minimisation, meaning that
the optimisation of the two variables separately approaches the
joint optimisation of both variables. To accomplish this, we need
to go through a small number of iterations, which are described
by the n superscript variables, before continuing the iteration of
the next alternating scheme. The optimisation strategy can be
seen as a compound alternating minimisation scheme consider-
ing the outer and the inner alternations. More information about
the optimisation strategy can be found in Appendix D.

3.7. PSF recovery

Once the training of the model on the observed stars is com-
plete, we can continue with the problem of estimating the PSF
field at galaxy positions. We call this problem PSF recovery.
Gentile et al. (2013) conducted a study on PSF interpolation
techniques and Ngolè & Starck (2017) proposed a sophisticated
approach based on optimal transport theory (Peyré & Cuturi
2018). We will follow a RBF (Radial Basis Function) interpola-
tion scheme with a thin plate kernel4, as in Schmitz et al. (2020),

4 Where the kernel is defined as φ(r) = r2 ln(r).

Fig. 1. Example of the interpolation procedure involved in the PSF
recovery.

due to its simplicity and good performance. This choice comes
with the assumption that the influence of each observation does
not depend on the direction but only on the distance to the target
which is well described by the RBF kernel.

The RBF interpolation of a function f on a position u works
by building a weighted linear combination of RBF kernels (φ(·))
centred in each of the available training star positions ui. The
interpolation function reads

f̂ (u) =

NRBF∑
i=1

λiφ (‖u − ui‖) , (25)

where (λi)
NRBF
i=1 are the linear weights that need to be learnt and

NRBF is the number of elements used to estimate the interpolant.
In order to learn the weights, we force the exact reconstruction of
the interpolant on the known positions, that is f̂ (ui) = f (ui)∀i ∈
{1, . . . ,NRBF}. By fixing the aforementioned constraint we have
a system of NRBF equations with NRBF unknown that are the λi
weights. Once the system is solved, it is just a matter of evaluat-
ing the interpolant on the desired position u following Eq. (25).

At this point, we need to choose the function f over which
we go on to interpolate. A straightforward choice would be to use
the reconstructed PSFs at the training positions as the f (ui). Nev-
ertheless, this would not take into account the specificities and
structure of our model. Following the discussion in Sect. 4.2 of
Schmitz et al. (2020), we use the learnt Ak and Ãk matrices. They
encompass all the spatial distribution properties of the learned
features, that is, our eigenPSFs; thus it is natural for our frame-
work to use these values as the function to interpolate.

We continue with a brief explanation of the interpolation pro-
cedure. For one given target position u in CCD k, we consider
the NRBF closest observed stars to that position that also belong
to the CCD k. We call Ak(NRBF) to the Ak matrix composed only
with the columns of the aforementioned NRBF stars. We want to
estimate the interpolated column vector Ak,u. For this, we use a
RBF interpolation scheme for each row of the Ak(NRBF) matrix.
The elements of the row t represent the ( f (t)(ui))

NRBF
i=1 evaluations

and the element A(t)
k,u represents the interpolated value f̂ (t)(u). The

same procedure is repeated for each row of the Ak(NRBF) matrix
so as to obtain the column vector Ak,u. This is illustrated in Fig. 1.
We repeat the procedure with the global component matrix, Ãk,
in order to obtain Ãk,u, another column vector with the interpo-
lated values. At this point, we note that we handle the global and
the local contributions independently. Once we have calculated
the two interpolated vectors, the reconstructed PSF is obtained
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Algorithm 1 Multi-CCD Resolved Components Analysis

Initialisation:
1: Preprocessing()
2: for k = 1 to K do
3: Harmonic constraint parameters (ek,i, ak,i)1≤i≤rk → V>k , α(0,0)

k

4: 0n2
y×rk
→ S (0,0)

k
5: end for
6: Global coordinates→ Πk, α̃(0,0) (α̃(0,0) = I)
7: 0n2

y×r̃ → S̃ (0,0)

Alternate minimisation:
8: for l = 0 to lmax do Algorithm’s main iterations

9: for n = 0 to nG do Global alternating iterations
10: Noise level, α̃(l,n) → update W̃ (l,n)

11: S̃ (l+1,n+1) = arg minS̃ {
∑K

k=1
1
2‖Yk − Fk(S (l,0)

k α(l,0)
k V>k + S̃ α̃(l,n)Πk)‖2F +

∑
i ‖w̃

(l,n)
i � Φs̃i‖1} (I)

12: α̃(l+1,n+1) = arg minα̃{
∑K

k=1
1
2‖Yk − Fk(S (l,0)

k α(l,0)
k V>k + S̃ (l+1,n+1)α̃Πk)‖2F + ιΩ̃(α̃)} (II)

13: end for

14: for n = 0 to nL do Local alternating iterations
15: for k = 1 to K do CCD iterations
16: Noise level, α(l,n)

k → update W (l,n)
k

17: S (l+1,n+1)
k = arg minS k

{ 12‖Yk − Fk(S kα
(l,n)
k V>k + S̃ (l+1,nG)α̃(l+1,nG)Πk)‖2F

+
∑

i ‖w
(l,n)
k,i � Φsk,i‖1 + ι+(S kα

(l,n)
k V>k + S̃ (l+1,nG)α̃(l+1,nG)Πk)} (III)

18: α(l+1,n+1)
k = arg minαk

{ 12 ‖Yk − Fk(S (l+1,n+1)
k αkV>k + S̃ (l+1,nG)α̃(l+1,nG)Πk)‖2F + ιΩk (αk)} (IV)

19: end for
20: end for

21: end for

following the MCCD data model as can be seen in the next equa-
tion

Ĥ(u) = S̃ Ãk,u + S kAk,u . (26)

We found that restricting the NRBF neighbours to a single CCD
for the global components gives better results. This might be due
to the fact that the global components are able to capture some of
the discontinuities from one CCD to another and, therefore, the
interpolation is degraded when using stars from different CCDs.
The number of neighbours NRBF should be chosen as a function
of the available number of stars per CCD in the training set and
as the RBF kernel chosen. Henceforth, and given the training set
we handle in this study, NRBF is set to 20.

4. Numerical experiments

4.1. Data

The simulated data set we create to evaluate MCCD set is
based on a Canada-France Imaging Survey (CFIS)5 MegaCam6

exposure from the Canada-France-Hawaii Telescope (CFHT). It
contains 2401 stars distributed along 40 CCDs over a field of
view of ∼1 deg2 as shown in Fig. 2. Each CCD consists of a
matrix of 2048 by 4612 pixels with some given gaps between
the different CCDs. The horizontal gap length consist of ∼70
pixels while vertical gaps contain ∼425 pixels.

5 http://www.cfht.hawaii.edu/Science/CFIS/
6 http://www.cfht.hawaii.edu/Instruments/Imaging/
MegaPrime/

10 arcmin

Fig. 2. Star positions in CFHT’s MegaCam used for the simulated
dataset. The positions were taken from a real CFIS exposure.

4.2. Training set

Our simulation pipeline considers a Moffat PSF profile with
normalised flux drawn using the Galsim software7 (Rowe et al.
2015) for each position in the exposure. To simulate the PSF
shape variation, we used two radial analytic functions which

7 https://github.com/GalSim-developers/GalSim
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Fig. 3. Shape measurement results of the simulated test star catalogue following the analytical ellipticities.

define our ground truth shape ellipticities distortions. Shearing
stars leads naturally to a size variation. Figure 3 shows the result-
ing e1, e2 and size maps. Our pipeline performs the following
steps:
1. Simulate Moffat stars with a size fixed to the mean size mea-

sured in the real exposure.
2. Shear the simulated stars as a function of their position using

the two analytical functions.
3. Apply a random sub-pixel shift following a uniform distribu-

tion centred on zero.
4. Apply a binning to get a 51×51 pixel image, with a pixel size

equivalent to CFIS MegaCam’s maps, that is, 0.187 arcsec.
5. Add a constant white Gaussian noise to the images,

with standard deviation σ, derived from the desired S/N
level

S/N =
‖y‖22
σ2 p2 , (27)

where y is the image postage stamp consisting of p2 pixels.
Each experience will consist of a constant S/N value, as we
later see, which is drawn from the set {10, 30, 50, 70}.

Since PSFEx was designed as a companion software to
SExtractor, we need to follow a different procedure to gener-
ate the simulated data. We first need to process our simulations
with SExtractor, so that the catalogue produced can be used
as inputs for PSFEx. To accomplish this, we mimic a complete
CCD so that SExtractor is able to process it. We create star
images as we already described for the MCCD method but with-
out noise as it will be added later. Then we distribute them on a
mock image of 2048× 4612 pixels. The corresponding positions
will be the pixel coordinates that are presented in Fig. 2. Once
the mock image is created, we add the noise value according to
the desired S/N to the whole image. When the mock image is
created, we run SExtractor in order to have a star catalogue
that PSFEx can use as input.

4.3. Testing data set

For the testing, we want to observe how well the different models
capture the ellipticity maps when trained on real star positions.
Therefore, the positions in each CCD are taken from a regular
grid of 20× 40 and considering that the total amount of CCDs is
40, we finally obtain a total of 32 000 stars with which to test our
model. These stars are simulated following the same ellipticity
maps (see Fig. 3), without any sub-pixel shift and without any
noise. The goal is now to use the training data (i.e. simulated
observed stars) to learn the model, and then to predict the PSFs

at positions of test stars. As we have the ground truth at these
positions, without noise and sub-pixel shift, it is easy to get a
robust evaluation of model predictions.

4.4. Quality criteria

In order to correctly assess the performance of our PSF mod-
elling algorithm, we consider several criteria:

– Pixel root mean square error (RMSE): calculated between
the pixel images of the recovered PSFs and the noiseless test
stars. The expression of the pixel RMSE is the following:

YRMS
pix =

√
〈(Y∗ − Ŷ)2〉 =

 1
Nn2

y

N∑
i=1

n2
y∑

j=1

(Yi, j − Ŷi, j)2


1
2

, (28)

where Yi, j is the pixel j of test star i that has a total of n2
y

pixels, N is the total number of test stars, Ŷi, j is the estimation
of the test star’s pixel and 〈·〉 denotes the mean over all the
elements in the array.

– Shape (ellipticity) error: We estimate the ellipticities of
reconstructed stars using the adaptive moments’ elliptic-
ity estimator from Galsim’s HSM module (Hirata & Seljak
2003; Mandelbaum et al. 2005). The shape and size defini-
tions can be found in Appendix B. For each of the ellipticity
components, the RMSE is calculated as:

eRMS =
√
〈(e∗ − ê)2〉 =

 1
N

N∑
i=1

(ei − êi)2


1
2

. (29)

– Size error: We use the measurements from HSM and the def-
inition in Appendix B to compute the following RMSE:

R2,RMS =

√
〈(R2,∗ − R̂2)2〉 =

 1
N

N∑
i=1

(R2
i − R̂2

i )2


1
2

. (30)

– Moment residual maps: To visualise the shape and size
errors, we plot these quantities as a function of their posi-
tion on the focal plane.

When comparing two methods, we define the relative gain with
regard to the metric, m, of method 1 with respect to the method
2 as:

G1/2(m) =
m2 − m1

m2
× 100%. (31)
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4.5. Model parameters

Based on experiments with simulated and real data, we have cho-
sen the following parameters

– PSFEx: we use the following configuration:
PSF_SAMPLING 1.0
PSF_SIZE 51,51
PSFVAR_KEYS XWIN_IMAGE,YWIN_IMAGE
PSFVAR_GROUPS 1,1
PSFVAR_DEGREES 2
PSFVAR_DEGREES refers to the maximum polynomial
degree, and, XWIN_IMAGE and YWIN_IMAGE, to the win-
dowed centroid positions in pixel coordinates. The PSFEx
software8 does not include publicly an interpolation method,
so we use an available PSFEx interpolation module9.

– RCA: we set r equal to eight local components, the denois-
ing parameters KRCA

σ to 1, and the other parameters to their
default value from its official repository10.

– MCCD: we use the same parameters as RCA for the local
component and a maximum polynomial degree of eight for
the global components. The denoising parameters KLoc

σ and
KGlob
σ are set to 1 for the local and the global contributions.

The MCCD parameters that most affect its behaviour are men-
tioned above. Their choice greatly relies on the training data set
used. Depending on the number of stars available and the com-
plexity of the instrument’s PSF, it may be preferable to adopt a
more complex model by augmenting the number of local com-
ponents, r, and the maximum polynomial degree. However, if
the stars are not enough to constrain the model, we may end
with a model that overfits the training stars. A proper selection
of the denoising parameters can control the bias-variance trade-
off in the estimation. A high value of the denoising parameter,
namely, 3, leads to an extremely denoised model. It will contain
a high estimation bias that can be related with a model that can-
not capture some spatial variations and fine details of the PSF.
On the contrary, if the denoising parameter is close to zero, the
only denoising performed by the MCCD is due to the low-rank
constraint and therefore the estimations can be rather noisy.

4.6. Results

4.6.1. Comparison between PSFEX, RCA and MCCD-RCA

The first results can be seen in Figs. 4 and 5, where we com-
pare the PSFEx, RCA, and MCCD-RCA algorithms. We observe
that MCCD-RCA outperforms the other methods, with an aver-
age pixel RMS improvement over PSFEx of 51% and ellipticity
RMS improvement ranging from 15% for stars with S/N 10 to
36% for a S/N of 70. The RCA is almost as good as MCCD-
RCA for the pixel error, but does not provide good results for the
other metrics. This behaviour can be explained by the fact that
the model strongly deteriorates for some CCDs, giving extreme
ellipticities and sizes values. These deteriorations of the model
are not strong enough to produce a large pixel error but causes
much more significant errors on the moments. We include in
Appendix C RCA’s R2 residual map that shows the catastrophic
failure in the modelling of some CCDs.

We can see on the right column of the residual maps in Fig. 5
that PSFEx’s ellipticity residuals follow the global pattern from
the dataset. This means that the ellipticity is not captured in the
model, showing some of the difficulties found when modelling

8 https://www.astromatic.net/software/psfex
9 https://github.com/esheldon/psfex
10 https://github.com/CosmoStat/rca

a global ellipticity pattern using independent models for each
CCD. The MCCD-RCA algorithm, which builds up a model for
the whole focal plane, does a better job in capturing the global
ellipticity pattern. The MCCD-RCA’s residuals are smaller and
less correlated with the pattern of the dataset. With regard to
the third row of Fig. 5, where the size of the simulated PSFs
is practically constant, we observe that the MCCD-RCA has
slightly larger errors when the training star density is low, as in
the bottom-right corner (see Fig. 2).

4.6.2. Comparison between MCCD-POL, MCCD-RCA, and
MCCD-HYB

The comparison between the MCCD-POL, MCCD-RCA, and
MCCD-HYB methods is shown in Fig. 6. First, we notice that
MCCD-POL presents poor performance in most of the metrics.
This indicates that the local polynomial model is not able to
capture the PSF variations that are left over from the differ-
ence of the global model and the observed stars. Hence, even
if MCCD-POL has a lower pixel error than PSFEx (see Fig. 4),
it has greater ellipticity errors. Capturing these PSF variations
properly is essential for obtaining good ellipticity performances.
The MCCD-RCA and MCCD-HYB have similar behaviours,
but MCCD-HYB uses a mixed approach of a polynomial and
graph-based local model outperforms the original MCCD-RCA
method in terms of ellipticity components. The average gain in
both components of MCCD-HYB with respect to MCCD-RCA
is around 18%, proving the utility of using the hybrid approach.
This suggests that there are some features related to the PSF
shape that can be captured by a simple polynomial model and
not by the graph-based model alone. Examples of global and
local eigenPSF from the MCCD-HYB model can be seen in
Appendix C.

4.7. Comparison of computing resources

The MCCD methods take ∼2.9× more CPU-time than PSFEx
when compared on the same machine. We evaluate it on the
fitting and validation procedures, that is, the estimation of the
PSF model and the recovery of PSF at test positions. A relevant
detail is that the PSFEx package is coded in the C programming
language, while the MCCD methods are completely coded in
Python.

5. UNIONS/CFIS experiments

In this section, we compare the MCCD-HYB method with
PSFEx using real data from the Ultra-violet Near-Infrared Opti-
cal Northern Sky (UNIONS) survey, which is a collaboration
between the Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS) and CFIS. We use the r-band data from
the latter.

5.1. Dataset

We analysed a subset of around 50 deg2 from the whole CFIS
survey area that, in total, will eventually span 5000 deg2. It corre-
sponds to the subset named W3 described in Erben et al. (2013),
and includes 217 exposures. Each CCD from each exposure has
been processed independently with SExtractor. The stars were
selected in a size-magnitude diagram, in the magnitude range
between 18 and 22, and a Full-Width Half Maximum (FWHM)
range between 0.3 and 1.5 arcsec. In order to validate the PSF
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Fig. 4. RMSE on pixels, shape, and size metrics as a function of stars S/N for the three main methods. The RMSE are plotted with solid lines and
the gain of the methods with respect to PSFEx are plotted with dashed lines.

models, we randomly split the stars into a testing and a training
dataset, trying to estimate the first set of stars while constructing
our model only with the second. The training dataset is com-
posed of 80% of the detected stars and the test dataset of the
remaining 20%. We consider a fixed threshold on the number of
training stars per CCD, meaning that if the number of training
stars in a given CCD is less than 30, we discard the CCD. The
star density of the training dataset is presented in Fig. 7. The
ellipticity and the size of the training stars can be seen in Fig. 8.
Each bin represents the mean shape measurement over all the
stars with a centroid located within the bin.

5.2. Model parameters

The setup of PSFEx for this experiment is similar to the one
used for the simulated images, which can be found in Sect. 4.5.
The MCCD-HYB method uses a maximum global polynomial
degree of 3, with 16 local components and the denoising parame-
ters Kσ set up to 0.1. In order to compare the star images with the
different methods (PSFEx and MCCD-HYB), the models need
to match the flux as well as the centre of the star. Hence, after
estimating a PSF model at a given star location, the PSF is nor-
malised and shifted to match the star. For this purpose, we use
the same intra-pixel shift and flux estimation methods for both
PSF models: (i) we estimate the star and the PSF centroids, (ii)
we calculate the shift needed by the PSF to match the star and
construct a shifting kernel, and (iii) the PSFs are convolved by

their corresponding shifting-kernel. To match the flux, we calcu-
late an α parameter for each test star and PSF that corresponds
to the argument that minimises the function, f (α) = ‖I1 − αI2‖2,
where I1 and I2 are the star and the PSF, respectively.

5.3. Metric on real data: the Qp criteria

Performing a comparison between two PSF models with real
data is an arduous task since we do not know the shapes and
pixel values of the observed stars. However, subtracting our esti-
mated model from an observed star (i.e. pixel residual) should
lead to a residual map containing only noise if the model is per-
fect. The probability of having our model correlated with the
noise is extremely small. Therefore, from this point of view,
the method with the smallest pixel RMS residual error can be
considered as the best. Using all the test stars ys and our esti-
mates ŷs, we calculate the pixel RMS residual error: Err =√

1
NiNs

∑
s
∑

i(ys,i − ŷs,i)2, where Ns is the number of stars and
Ni is the number of pixels we consider in a given image when
we use a 10 pixel radius circle from the centre of the residual
images. The noise standard deviation σnoise is calculated from
the stars only using the pixels outside the aforementioned circle.
For a perfect modelling, we would have Err ≈ σnoise, and we
define the Qp1 metric as:

Qp1 =
(
Err2 − σ2

noise

)1/2
. (32)
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Fig. 5. Moment residual maps comparing the MCCD-RCA algorithm on the left and the PSFEx algorithm on the right. They are obtained by
subtracting the model’s and the test star’s measured shape and size metrics and plotting them on their corresponding position over the focal plane.
The S/N value of the star dataset is 50.

We next introduce two metrics to quantify how noisy the mod-
els are. The variance of the PSF model for the test stars s reads
σ2

s = [Var(ys − ŷs) − σ2
noise(ys)]+, where Var(·) is a usual vari-

ance estimator, the operator [·]+ sets to zero negative values and
σ2

noise(ys) is the noise variance estimation for a single star. We
present the Qp2 and Qp3 metrics in the following equations:

Qp2 =

 1
Ns

∑
s

σ2
s

1/2

, Qp3 =

 1
Ns

∑
s

(σ2
s − Q2

2)2

1/4

. (33)

The Qp2 metric represents the modelling error expectation
for a given star and the Qp3 metric indicates the fluctuation of the

modelling error. A perfect PSF model would give values close to
zero for the three metrics.

5.4. Results

The main results of the experiment are synthesised in Table 2,
where the Qp criteria are given. In the Qp1 column, we can
observe a 22% gain of the MCCD-HYB method with respect
to PSFEx. From Qp2 and Qp3 metrics, we also conclude that the
MCCD-HYB model is considerably less noisy than the one from
PSFEx.

In order to explore potential remaining structure in the resid-
uals, we stack together the residuals for all 534 test stars from a
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Fig. 6. Comparison of the performance of MCCD-POL, MCCD-RCA, and MCCD-HYB methods in terms of the RMSE on the pixels, the shape
and the size metric of the star’s S/N. The RMSE are plotted on a solid line and the gain of the method with respect to PSFEx is plotted on dashed
lines.

Fig. 7. Star density of all the training dataset with respect to their posi-
tion on the MegaCam’s focal plane. We have on average 1560 training
stars per exposure.

random exposure. These are shown, along with the stacking of
the test stars themselves, in Fig. 9. We can see that PSFEx has
a sharper stacked error compared to MCCD-HYB. This could
indicate that our algorithm is better at capturing the size of the
PSF, as the peak of the residual is directly related to it. Con-
sidering that there is no trace of shifting errors and that we are
calculating the flux optimally, a greater mismatch in the size of
the PSF equals to a greater peak pixel error on the residual. The

third row presents the mean of the stacked absolute value of the
residuals for both of the PSF models so that the residuals can
not cancel themselves. We observe the same behaviour described
above with the PSFEx pixel error distribution being sharper but
more centred. It is also possible to notice the higher noise PSFEx
has when compared to the MCCD-HYB model.

Figure 10 presents examples of star image reconstructions
by the two different PSF models, PSFEx and MCCD-HYB, and
their corresponding residuals. The proposed method yields a
near noiseless model when compared to PSFEx, as can clearly
be seen on the top-left and bottom-right stars of Fig. 10, where
the stars have low S/N of 19.3 and 4.2, respectively. Both models
share a good estimation of the bottom-right star, which comes a
low-stellar-density region of the focal plane (the bottom-right
corner, as can be seen in Fig. 7). On the bottom-left star of
Fig. 10, we observe a similar type of error as that appearing in
Fig. 9.

It is difficult to derive conclusions of different PSF model
performances based on the shape measurement of noisy stars
due to its high stochasticity. Nevertheless, driven by the com-
ments from DES Y1 (Zuntz et al. 2018) on the residual mean
size offset from the PSFExmodel, we conducted a study with our
data. We measured the size from the training stars and from both
calculated PSF models, PSFEx and MCCD-HYB, and then com-
puted the residual. The RMS residual size of the ∆R2/R2 value
gave 4.82 × 10−2 for PSFEx and 4.02 × 10−2 for MCCD-HYB.
This represents a 16% gain of our proposed algorithm.

A27, page 12 of 18

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039584&pdf_id=6
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039584&pdf_id=7


T. Liaudat et al.: Multi-CCD point spread function modelling

Fig. 8. Ellipticities and size maps measured on the training stars of our
CFIS dataset.

Figure 11 presents in the left column the histogram of the
residuals and in the right column the histograms of the size met-
rics. We notice that the MCCD-HYB algorithm has a sharper
residual size around zero. The figure also includes the mean of
the residuals for each PSF model. This shows that both models
tend to overestimate the size of the PSF. However, the MCCD-
HYB model presents a 30% gain in the mean residual size with
respect to PSFEx, indicating a smaller bias in the shape.

6. Reproducible research

In the spirit of reproducible research, the MCCD-RCA algo-
rithm is to be publicly available on the CosmoStat’s Github11,

11 https://github.com/CosmoStat/mccd

Table 2. Qp criterion using all test stars of the W3 dataset from CFIS.

Method Qp1 Qp2 Qp3

PSFEx 15.56 8.13 14.31
MCCD-HYB 12.14 6.68 10.86
GainPSFEx 22% 18% 24%
Noise Std. Dev. (σnoise) 15.83

Notes. The gain of the MCCD-HYB with respect to PSFEx and the noise
standard deviation are also presented.
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Fig. 9. Stacked star profile from all 534 test stars in a random CFIS
exposure (id. 2099948) (top), corresponding stacked residuals after sub-
traction by the PSFEx (middle left) or MCCD-HYB (middle right) PSF
models. The bottom row includes the stacked absolute value of the resid-
uals.

including the material needed to reproduce the simulated expe-
riences. The MCCD PSF modelling software will be included in
the CFIS shape measurement pipeline Guinot et al. (in prep.).

7. Conclusion

In this work, we present a family of non-parametric PSF (Point
Spread Function) modelling methods coined MCCD, includ-
ing its best-performing extension MCCD-HYB, which are built
upon the existing Resolved Component Analysis (RCA) method
and are capable of constructing PSF models that span all the
charge-coupled devices (CCDs) from an instrument’s focal plane
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We present four test stars with the estimated PSF models and the corresponding residuals. Top-left star: a star extracted from the top-left cor-
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HYB.

at once. Naturally, the use of more stars for the training allows us
to build more complex models that can capture evasive features.
Our model is composed of global components, spanning all the
CCDs, and local components that are CCD-specific. By using
this structure, we can better capture global patterns and features
that might be lost when using only a local model like in RCA or,
the widely used algorithm, PSFEx.

The method was first tested with a set of simulated PSFs
following a real star spatial distribution over MegaCam’s focal
plane, an instrument from the Canada-France-Hawaii Tele-
scope(CFHT). Its use leads to better performance in all the eval-
uated metrics when compared to PSFEx. We then tested the
method on a set of real CFIS images, an imaging survey based
on CFHT, in order to confirm that it can handle real data. Our

method achieves a smaller pixel root mean square (RMS) resid-
ual than PSFEx and the estimated model is considerably less
noisy.

The performance gain of the MCCD methods over PSFEx
is higher when using our simulated dataset than when using the
real dataset. This can be explained by the fact that our simulated
dataset shows more intricate variations in the PSF than the real
data does and MCCD is better at capturing such strong varia-
tions.

The proposed method can naturally handle more complex
PSF profiles, such as those expected from space-based instru-
ments. The RCA method was tested with Euclid-like simulated
PSFs and has demonstrated a better performance than PSFEx
(Ngolè et al. 2016; Schmitz et al. 2020). Therefore, we expect to
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have an even superior performance in this scenario with MCCD.
Thanks to its formulation, it can also handle super-resolution,
making it suitable for undersampled data.

Despite the good performance of the method, there is still
room for improvement. A natural straightforward extension for
the MCCD algorithms would be to replace the denoising strat-
egy by one more suited for the specificities of the PSFs we work
with. This could be accomplished by using a deep neural net-
work as the denoiser (Ronneberger et al. 2015; Ye et al. 2018).
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Appendix A: RCA regularisations

In this section, we provide more detailed descriptions for each
regularisation that we use in our local RCA model:
1. Low rank: PSF variations can be explained by a small num-

ber of eigenPSFs. This constraint can be enforced by the
proper choice of two parameters, the number of local, rk, and
global, r̃, eigenPSFs. These parameters are directly linked
with the complexity of the model we are addressing for each
given case and its selection naturally depends on the PSF
field we will be facing. It is important to allow the model a
certain complexity so that it can correctly capture the PSF
field’s variations but it should not be much more complex
as the model will tend to overfit the noisy observations and,
therefore, lose its generalising power for estimating the PSF
in galaxy positions.

2. Positivity: the reconstructed PSFs Ĥ should only contain
non-negative pixel values.

3. Sparsity: the observed PSFs are structured images; a way to
promote our model to follow this structured behaviour is to
enforce the sparsity of the eigenPSFs in an appropriate basis.

4. Spatial constraints: the regularity of the PSF field H means
that the smaller the distance between two PSFs positions
ui, u j the smaller the difference between their representations
should be H(ui),H(u j). This regularity can be achieved by
enforcing constraint in the coefficient matrices Ak, Ãk; for
example, the line l of Ak corresponds to the contribution of
eigenPSF l to the nk

star stars in CCD k located in positions

(ui)
nk

star
i=1 . The closer the positions, the closer the coefficient

values should be.

Appendix B: Shape and size definitions

The ellipticity parameters and the size are defined in terms of
the moments of the surface brightness profile I(x, y) following
(Hirata & Seljak 2003):

µ̄ =

∫
µ I(x, y) w(x, y) dxdy∫
I(x, y) w(x, y) dxdy

, (B.1)

Mµν =

∫
I(x, y) (µ − µ̄) (ν − ν̄) w(x, y) dxdy∫

I(x, y)w(x, y) dxdy
, (B.2)

where µ, ν ∈ {x, y} and w(x, y) is weight window to avoid noise
related issues. The size is defined as:

T = R2 = Mxx + Myy, (B.3)

and the ellipticities are defined as:

e = e1 + ie2 =
(Mxx − Myy) + i 2Mxy

T
. (B.4)

The adaptive moment measurement from HSM gives σ as output
which relates to our size metric as R2 = 2σ2.

Appendix C: Additional figures

In this appendix, we include the additional figures, Figs. C.1
and C.2.

Fig. C.1. Residual ∆R2/R2 map of the RCA algorithm of stars with a
S/N of 50. The CCDs where the RCA model is having degeneracies
that can be clearly spotted on the map.
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Fig. C.2. Example eigenPSFs extracted from the MCCD-HYB PSF
model trained on the simulated dataset with a S/N of 70. The local
eigenPSFs were extracted from the graph’s spatial constraint of a cen-
tral CCD. It can be seen from the eigenPSFs that the global model is
specialising on the shape of the PSF while the local model specialises
on capturing its ellipticity. It is also worth to mention that the first global
eigenPSF found on the first row provides the baseline isotropic PSF the
model uses. (a) Global eigenPSFs. (b) Local eigenPSFs.
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Appendix D: Optimisation methods

In this appendix, we include details on the practical resolution
of the four optimisation problems seen in Algorithm 1. For more
information about proximal operators and proximal algorithms,
we refer to Parikh & Boyd (2014) and Beck (2017).

D.1. Problem (III)

As in most of the optimisation problems, the algorithm used
depends on the objective function we work with. In this case,
we use the primal-dual algorithm 3.1 in Condat (2013)12. The
main motivation resides in the nature of the constraints we use
when optimising over S k, as we face one smooth and two non-
smooth terms, and a linear operator. The optimisation algorithm
aims at solving the following problem:

Find x̂ ∈ arg min
x∈X

[F(x) + G(x) + H(L(x))] , (D.1)

where: (i) F is convex, differentiable and its gradient is L-
Lipschitz continuous; (ii) G and H are proximable functions
that should have closed form proximal operators; (iii) L is
a bounded linear operator; and (iv) the set of minimisers of
the aforementioned optimisation problem is nonempty. It is
straightforward to identify the different functions in the optimi-
sation of the local S k matrix which match the formulation of
Eq. (D.1). Following the notation we use throughout the paper,
let Fk(x = (S 1, . . . , S N , S̃ , α1, . . . , αN , α̃)) = 1

2‖Yk − Fk(Ĥk)‖2F ,
with Ĥk = S kαkV>k + S̃ α̃Πk, and G(S k) =

∑
i ‖wk,i � Φsk,i‖1.

Let H(S k) = ι+(S k) and the linear operator L be L(S k) =

S kα
(l)
k V>k + S̃ (l)α̃(l)Πk. For the moment, we consider Φ to be the

identity.
To solve the algorithm, we need the proximal operator of

H∗, the adjoint function of H, the proximal operator of G, and
the gradient of F with its Lipschitz constant.

Starting with H, the proximal operator of H∗ can be calcu-
lated directly using the proximal operator of the function H itself
by means of the Moreau decomposition (Beck 2017, Theorem
6.44). The proximal operator of an indicator function over a set
C is the orthogonal projection over that set. Therefore, we note
[X]+ the projection of X ∈ Rn×m onto the positive orthant, that is,

proxι+(·)(X) = [X]+ → [Xi, j]+ =

{
Xi, j ifXi, j ≥ 0,
0 otherwise.

(D.2)

Continuing with G, the proximal operator of the `1 norm is
the soft thresholding operator which can be defined component-
wise, for x, λ ∈ R, as

SoftThreshλ(x) = (|x| − λ)+sign(x) =


x − λ, x ≥ λ,
0, |x| < λ,
x + λ, x ≤ −λ.

(D.3)

We name L∇S k F(·) the Lipschitz constant of F’s gradient. The next
equations resume what we need to use the chosen optimisation
algorithm:

∇S k F(S k) = −F ∗k (Yk − Fk(Ĥk))Vkα
>
k , (D.4)

L∇S k F(·) = ρ(F ∗k ◦ Fk)ρ(αkV>k (αkV>k )>), (D.5)

proxτG(·)([sk,i] j) = SoftThreshτ[wk,i] j ([sk,i] j), (D.6)

12 We use the implementation found in the python package https://
github.com/CEA-COSMIC/ModOpt from Farrens et al. (2020).

proxσH∗(·)(X) = X − (X)+, (D.7)

where the proximal operator of G is defined component-wise,
the notation [sk,i] j represents the element j of the i column vec-
tor of matrix S k, F ∗k is the adjoint operator of Fk, and ρ(·) is
the spectral radius13 that we calculate using the power method
(Golub & Van Loan 1996). For the algorithm’s parameters τ and
σ, based on Theorem 3.1 from Condat (2013), we use:

τ =
1

αL∇S k F(·)
, σ =

αL∇S k F(·)

2‖L‖2op
, (D.8)

where ‖ · ‖op is the operator norm (Aliprantis & Border 2007)
and α is a parameter we set to 3/2. Being L a bounded linear
operator we can calculate ‖L‖op as

√
ρ(L∗L) being L∗ its adjoint

operator.
We now consider the case where Φ is not the identity, but

it is orthonormal, ΦT Φ = I. We can adapt the soft threshold-
ing operator in order to cope with the G term. This would be
sk → ΦT SoftThreshτwk (Φsk). When using undecimated wavelets
as the starlets, the orthonormal condition is not met. Neverthe-
less, they are tight frames whose Gram matrix is close to the
identity which means that the presented formulation will be a
good approximation. We refer to Starck et al. (2015) for more
information on wavelets.

D.2. The remaining optimisation problems

We deal in a similar way with the problems (II) and (IV) from
Algorithm 1 using the same optimisation method proposed in
Condat (2013). On the other hand, for problem (I), we use the
optimisation algorithm in Liang et al. (2018). This is due to the
fact that we are neglecting the positivity constraint as we account
for it when optimising over the other variables. In order to use
these algorithms we need to compute the gradients of the differ-
entiable term of each problem as follows:

∇S k Fk(x) = −F ∗k (Yk − Fk(Ĥk))(αkV>k )>, (D.9)

∇αk Fk(x) = −S >k F
∗

k (Yk − Fk(Ĥk))Vk, (D.10)

∇S̃ F(x) =

N∑
k=1

∇S̃ Fk(x) =

N∑
k=1

−F ∗k (Yk − Fk(Ĥk))(α̃Πk)>, (D.11)

∇α̃F(x) =

N∑
k=1

∇α̃Fk(x) =

N∑
k=1

−S̃ >F ∗k (Yk − Fk(Ĥk))Π>k , (D.12)

where F =
∑N

k=1 Fk = 1
2 ‖Y − F (H + S̃ α̃Π)‖2F . Concerning the

global optimisation over S̃ and Ã, we need to consider all the
CCDs when computing the gradient. So we can reformulate the
global formulas as:

∇S̃ F(x) = − F ∗(Y − F (Ĥ))(α̃Π)>, (D.13)

∇α̃F(x) = − S̃ >F ∗(Y − F (Ĥ))Π>. (D.14)

An approximation for the Lipschitz constants of the different
gradients can be calculated as:

13 The spectral radius can be defined as ρ(B) = max{|λ1(B)|, . . . , |λn(B)|}
where λi(B) are the eigenvalues of the matrix B.

A27, page 17 of 18

https://github.com/CEA-COSMIC/ModOpt
https://github.com/CEA-COSMIC/ModOpt


A&A 646, A27 (2021)

LS k = ρ(F ∗k ◦ Fk)ρ(αkV>k (αkV>k )>), (D.15)

Lαk = ρ(F ∗k ◦ Fk)ρ(S >k S k)ρ(V>k Vk), (D.16)

LS̃ = ρ(F ∗ ◦ F )ρ(α̃Π(α̃Π)>), (D.17)

Lα̃ = ρ(F ∗ ◦ F )ρ(S̃ >S̃ )ρ(Π Π>), (D.18)

where ρ(·) is the spectral radius.
Finally, we also need the proximal operator of the indicator

function over the unit-ball ιB(·), where B = {x ∈ Rn | ‖x‖2 = 1}.
It can be computed as:

proxιB(·)(x) =
x
‖x‖2

. (D.19)

D.3. Sparsity enforcement parameters

There are two moments when we enforce sparsity during the
optimisation. First, when we denoise the eigenPSFs by the use
of the `1 norm as in Eq. (22). The w weights are set depending
on a noise estimation of the observed images, and the parame-
ters KLoc

σ and KGlob
σ . The noise standard deviation is estimated

using the median absolute deviation. The higher the Kσ parame-
ters are set, the higher the thresholding and the denoising will be.
Second, when we enforce the spatial constraints through α spar-
sity. In this case, we follow the sparsity enforcement proposed in
Ngolè et al. (2016).
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