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We report long coherence times (up to 300 ms) for near-surface bismuth donor electron spins in silicon
coupled to a superconducting microresonator, biased at a clock transition. This enables us to demonstrate
the partial absorption of a train of weak microwave fields in the spin ensemble, their storage for 100 ms, and
their retrieval, using a Hahn-echo-like protocol. Phase coherence and quantum statistics are preserved in the

storage.
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Quantum memory as a matter-based information storage
medium for itinerant qubits is a powerful ingredient in
quantum technologies. In the optical domain [1-3], it
underpins applications such as quantum repeaters.
Quantum memories suitable for interfacing with super-
conducting quantum processors must operate in the micro-
wave regime, which requires operation at millikelvin
temperatures in a dilution refrigerator. Such devices could
be used to operate a quantum Turing machine architecture
with high internal connectivity and built-in long-term
memory [Fig. 1(a) and Refs. [4,5]] helping to overcome
some of the limitations of present-day superconducting
quantum processors [6—8].

For implementing a microwave quantum memory,
superconducting microwave cavities [9,10] and mechanical
resonators [11,12] have been considered, with storage times
in the millisecond range. Ensembles of electron spins in
solids offer a large number of degrees of freedom well
decoupled from their environment with coherence times
that can reach seconds [13—15], and are thus well suited to
implement a many-mode quantum memory [5,16-18]. For
modularity, it is natural to physically separate the quantum
processor and the spin-ensemble quantum memory, and to
interface them via propagating microwave photons.
Memory operation then consists in absorbing the incoming
photons and releasing them on demand in the same
quantum state [Fig. 1(a)].

A convenient way to interface the spins and the incoming
photons [Fig. 1(b)] is via a superconducting microresonator
[19-32] of frequency @, capacitively coupled to the input
line with an energy damping rate «, and inductively coupled
(with single spin coupling strength g) to an ensemble of N
spins, characterized by its Larmor frequency wg with
inhomogeneous linewidth I'. The resonator serves to
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FIG. 1. Quantum memory. (a) The proposed architecture
consisting of a quantum processor coupled via a coaxial cable
to a quantum memory from electron spins. (b) Circuit imple-
mentation: an ensemble of N electron spins are inductively
coupled to a lumped resonator which is capacitively coupled
to a microwave line. Weak coherent data pulses in our demon-
stration, travel along the lines, are stored by the spin ensemble,
and then released on demand by a control pulse. The coupling
strength of an individual spin to the resonator is gy. (c) Device
setup: The resonator is fabricated on top of the silicon substrate in
a superconducting aluminum thin film to minimize internal
losses. It consists of a capacitor shunted by a 5 ym-wide
inductance wire, to which the spins of bismuth donors implanted
around a depth ~100 nm are inductively coupled. A magnetic
field By is applied along the inductor.
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enhance microwave absorption and reemission by spins,
but also provides a convenient reset mechanism for the
memory, via the Purcell relaxation of each individual spin
at a rate ['p = 4¢3 /x [33-35].

The physics of the memory can be demonstrated using
weak resonant coherent pulses with a small average photon
number. Such microwave pulses with amplitude f;,(¢) are
absorbed by the spins with an efficiency governed by the
ensemble cooperativity C = NI'p/I'. Since the reflected
amplitude is Ss(f) = fin(1)(1 = C)/(1 + C), complete
absorption is achieved for C = 1, which appears as a
necessary condition for a high-fidelity memory (see
Refs. [36,37] and Supplemental Material [38]). The sim-
plest retrieval sequence consists in applying a z pulse to the
spins after a delay 7, which generates an echo of the
absorbed pulse at time 27z. Because this echo is generated
when nearly all spins are in the excited state, it is
unavoidably accompanied by NI'p/I" = C spontaneously
emitted noise photons, thus reducing the memory fidelity
[39]. Therefore a more complex protocol must be used,
involving two 7 pulses and dynamic control of the cavity
frequency, in order to form the echo in the spin ground state
and thus avoid added noise [36,40].

Reaching unit cooperativity requires large spin concen-
trations, but spin-spin interactions then reduce the
coherence time. This proved to be a serious limitation in
previous experiments storing microwaves in spin ensem-
bles [41-45], where the longest storage times demonstrated
reached only of order 100 us. This conflict can be mitigated
by biasing the spins at special magnetic fields where their
dc magnetic susceptibility vanishes, which minimizes spin-
spin interactions, whereas the ac susceptibility and thus
also gy remain nonzero, opening the possibility to reach
C =1 without compromising the coherence time. Such
“clock transition” (CT) or “ZEro-First-Order-Zeeman”
(ZEFOZ) points occur in spin systems where the
electron spin is strongly hybridized with a nuclear spin
by the hyperfine interaction, as in bismuth donors in silicon
[46-49], rare-earth-ion-doped crystals [50,51], and
molecular spins [52].

While all reports of CT coherence time enhancement so
far were measured using bulk-doped samples [48,50-52],
quantum information processing requires nanostructured
devices, which may impact spin decoherence in a nontrivial
way. Here, we demonstrate coherence time enhancement at
a CT for implanted bismuth donors in silicon, coupled to a
superconducting microresonator suitable for a microwave
quantum memory, enabling us to demonstrate the long-term
storage of microwave fields. Bismuth atoms were
implanted around a ~100 nm depth in a silicon substrate
[Fig. 1(c)] that was enriched with the nuclear-spin-free
28Si isotope for longer coherence time [53]. At low
temperature, bismuth atoms trap a conduction electron,
forming the donor systems. The spin Hamiltonian Hg;/# =
(r.S+7,I)-By+AS-T is the sum of the Zeeman

interaction of the electron (nuclear) spin S =1/2
(I =9/2) of the bismuth donor with the applied magnetic
field By (y./27n ~28 MHz/mT and y, /27 ~7 kHz/mT
being the electronic and nuclear gyromagnetic ratios) and
of their hyperfine interaction with a strength
A/2m = 1.475 GHz. The resulting energy levels |F,m)
can be grouped in a low-energy (F = 4) manifold of 9
states and a high-energy (F = 5) manifold of 11 states
[Fig. 2(a)], separated by ~7.38 GHz, m being the eigen-
value of the total angular momentum S, + /, along the field
direction z [46,47]. The operator S, has nonzero matrix
elements between all pairs of states that verify Am = +1.
We note that transitions |4,m) <> |5,m—1) and
4,m — 1) < |5, m) are quasidegenerate. In this work we
are interested in the |4,0) <> |5,—1) and [4,—1) < |5,0)
transitions, which satisfy the CT condition at ~7.338 GHz
and By =27 mT while the transition matrix elements
(4,0[S,|5,—1) = (4,—1]S,/5,0) = 0.25. To describe the
interaction with microwave fields close to resonance, we
model the pair of transitions as independent spin-1/2
systems labeled generically as |0) (/1)) for the ground
(excited) state.

The resonator is designed such that its resonance @y is
close to the CT frequency of 7.338 GHz. Because of the
kinetic inductance contribution to the resonator inductance,
wy/2r decreases with B, reaching 7.336 GHz at 27 mT.
The total energy damping rate x = k. + k; includes the
coupling rate x, = 4 x 10° s~ and the power-dependent
internal loss x; [38], with k;/k ~0.7 for ~1 intracavity
photon and k;/k ~ 0.5 at high power, due to two-level
systems (TLS).

Spin spectroscopy is performed with a custom-built
spectrometer described in more detail in Ref. [54], using
the microresonator for the inductive spin detection, at
T =20 mK so that Aw, > kT. Hahn-echo sequences of
pulses (7/2 — 7 —n — 7 — echo) are sent to the resonator
input at w,. The resulting echo is amplified by a Josephson
traveling wave parametric amplifier JTWPA) at 20 mK
that adds noise close to the quantum limit [55], before
further amplification at higher temperatures and demodu-
lation at room temperature. Figure 2(c) shows the echo
integral A,(B,) around the CT. A spin signal is observed
over a wide range of B, values around the CT, despite the
detuning between @, and the expected donor frequency.
This is explained by the differential thermal contractions of
the resonator thin film with respect to the underlying
substrate, which causes spatial variations of the strain
profile and consequently of the donor hyperfine constant
and the Larmor frequency [56,57]. Based on the measured
lineshape for the first transition near 1.5 mT [inset of
Fig. 2(b)], the echo-signal field dependence of Fig. 2(c) is
semiquantitatively accounted for [38].

The bismuth donor coherence time at the CT is obtained
by measuring A,(z) at By =27 mT [Fig. 2(d)]. An
exponential fit yields 7% = 0.30 s, to our knowledge the

210505-2



PHYSICAL REVIEW LETTERS 125, 210505 (2020)

() (d)

15 : : :

A, (a.u.)

A, (a.u)

0 10 20 30 40
B, (mT)

FIG. 2. Clock transition in bismuth and its characterization.
(a) Energy level diagram |F, m) of electron spins from bismuth at
small magnetic fields. Green lines indicate the four levels
|4,-1),]4,0),]5,-1), and |5,0) involved in the two quaside-
generate CT. (b) The ESR-allowed transition frequency of
bismuth donor spins in silicon between 7.3-7.4 GHz, and the
measured resonator frequency @, as a function of Bj. The CT
with dw/dBy =0 can be seen at B, =27 mT. Inset: zoom
around CT to show degenerate transition and expected strain
broadened spectrum in frequency. (c) Measured echo detected
spectroscopy around the CT (green symbols, left axis), calculated
one (black line, left axis, see Ref. [38]), and two-pulse echo
coherence time Tf versus B (red bars, right axis). (d) Measured
echo area decay at CT (symbols) and corresponding exponential
fit (line) yielding 75 = 0.3 £0.05 s. Magnitude detection is
employed to circumvent phase noise from the measurement
setup. (e) Measured (symbols) and simulated (line) Rabi oscil-
lations at the CT. Each A, is plotted as a function of the amplitude
B of the first pulse. (f) Measured spin relaxation at the CT using
an inversion recovery sequence (symbols), and corresponding
exponential fit (line) yielding 7% =55 £0.5 s.

longest coherence time measured for electron spins close to
an interface. In comparison, the coherence time in a bulk
bismuth-doped silicon sample at another CT was found to
be TE ~ 103 s - um=/[Bi: Si], with [Bi:Si] the donor con-
centration expressed in um™, due to direct flip flops
between donors [48]. This process appears to be suppressed
in our device where it would otherwise limit the coherence
time to only ~25 ms for our [Bi:Si] ~ 4 x 10*um=3, likely
due to locally inhomogeneous strain shifts caused by the
microstructure [58]. If this broadening is smaller than the
cavity linewidth (which seems to be approximately the case
here), it has no impact on the cooperativity C, implying that

long values of 7% may indeed be compatible with a large
cooperativity. Instead of direct flip flops, 7% appears to be
limited by charge noise at the interface between silicon and
silicon oxide [59]. As expected, TY is longest near
By =27 mT, where dw/dB, = 0 [Fig. 2(c), right axis];
for comparison, we measure 75 = 7.5 ms on the |4, —4) <
5,=5) transition at By = 1.4 mT with dw/dBy ~ y,. The
Purcell spin relaxation time 7| = 5.5 s is measured using
an inversion recovery sequence [Fig. 2(f)], yielding a spin-
photon coupling constant g,/27z = 40 Hz. All the experi-
ments described in the following are therefore averaged
with a repetition time of 37; ~ 16 s.

We now demonstrate the coherent absorption and
retrieval of weak microwave pulses by the donors at the
CT. A Gaussian incoming pulse envelope f;,(1) =
pexp[—(t/ty)?] is chosen, with fy = 10 pus larger than
the cavity field decay time 2x~' = 1.5 us. To calibrate
the input pulse intensity in photon number n;, =
[ |Bin(1)|?dt, we compare the measured Rabi nutation of
the donor spins as a function of f [Fig. 2(e)], with
numerical simulations in which all the parameters are
determined experimentally. Next, we determine the ensem-
ble cooperativity by measuring the ratio a”(t)/a’(t) =
1/(1 + C) between the intracavity field a”(r) [a* ()] with
spins polarized (unpolarized). The data shown in Fig. 3(a)
yield C = 3.5 & 1 x 1072, corresponding to a spin density
N/(T'/2x) ~ 10° spins/MHz consistent with the known
sample implantation parameters. Note that a careful
account of the contribution from resonator losses and
TLS was necessary in the analysis [38].

With the knowledge of the cooperativity C, the whole
storage and retrieval protocol can be demonstrated and
quantitatively understood. Because C < 1, we use here the
simple retrieval protocol based on a single 7 pulse, with a
square shape of 2 us duration. For n;, = 240 £ 24 input
photons, {n;, should be absorbed, with { = 4C(x./x) =
434 1.4 x 1072 [38], and {*ny, = 0.45 £0.15 photons
should be reemitted as a Hahn echo. Data shown in
Fig. 3(b) for r = 100 us are in quantitative agreement with
these analytical predictions as well as with a complete
simulation of the experiment.

We then demonstrate long-lived and multimode first-in
(last-out) microwave storage by sending a train of 20 weak
Gaussian pulses with varying phases, and retrieving them
using a single refocusing pulse. The experiment was
performed twice, comparing input pulse intensities of n;, =
240 £ 24 and 24 + 2 photons. As seen in Fig. 3(c), echoes
are retrieved after 100 ms with a well-defined phase. The
retrieved field amplitude is slightly reduced from the
expected value of {f;,, mostly due to spin decoherence
during the storage time, and also for a small part to
resonator phase noise caused by vortices trapped in the
resonator thin film [38]. The recovered intensity corre-
sponds to, respectively, 0.3 4+ 0.1 and 0.03 & 0.01 photons
per echo, ~1073 of the input pulse energy.
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FIG. 3. Storage and retrieval of weak pulses at the clock transition (B, = 27 mT). (a) Measured intracavity field a averaged over 103
repetitions at a repetition rate of 200 ms (spins saturated, dashed curve) and of 16 s (spins polarized, solid curve). (b) Measured (left
panel, 4 x 103 averages) and simulated (right panel) reflected field on resonance (y/Kca — Piy) and echo at a time < TE. The simulation
assumes a spectral density of N/(I'/2x) = 10° spins/MHz and a fixed g,/27 = 40 Hz. For panels (a),(b) there are 240 photons in the
input pulse. (c) Top (bottom): a train of weak microwave fields, containing 240 (24) photons at the input and their retrieval after the
refocusing 7 pulse. The numbering highlights that retrieval maintains the phase relation with respect to the input field. The retrieved
fields are multiplied by ¢! ~ 24, where ¢ = 4C(k¢/x) is the theoretical efficiency of the retrieved field at a time << T%. Note that the

input fields are measured at a frequency shifted by 5 MHz from w,/27 to enable a direct comparison with the retrieved fields.

Finally, we address the question of the quantum
statistics of the echo field. For that, we record a
histogram of integrated output signals acquired during
the echo E, and outside the echo O at a time when all
spins are in their ground state (Fig. 4). Thanks to the
photon number calibration, the average echo amplitude
E-0= {/Nin = 0.5 £0.1 provides an absolute cali-
bration of the horizontal scale in dimensionless (square
root of photon number) units. This enables a comparison
of the measured standard deviations 6y ~ o = 1.5 £ 0.3

expected 6o =+/(g+1)/2 and o=
\/ Tig + C+1)/2 [38], where n;y describes JTWPA
nonideality, mlcrowave losses between the sample and
the amplifier, and added noise by the higher-temperature
amplification chain. We find 7; = 3.5 £ 1.7, a reason-
able value compared to those measured in similar circuit
QED setups. Then, no measurable difference is observed
between oy and o, in agreement with the theoretical
estimate which predicts less than 0.5% difference.
Overall, these measurements prove the consistency
between our photon number calibration protocol and
the statistics of the recovered signal, and they show that
the echo is recovered with negligible added noise, close
to the quantum limit.
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FIG. 4. Noise statistics of retrieved echo. (a) Average of 103
single shot traces of reflected signals acquired with a repetition
rate of 16 s. The input and retrieved field contain 240 and 0.25
photons, respectively. In this run, the internal losses were slightly
larger than in Fig. 3(b), leading to a lower value of { and a lower
echo amplitude. (b) Histograms of signal quadratures before the
refocusing # pulse and on the echo. Each histogram sample is
acquired by integrating signals for 100 us weighted by a
normalized gaussian mode shape describing the echo. Solid
curves are calculated Gaussians of the same area.
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A fully operational quantum memory requires increasing
the ensemble cooperativity by a factor ~30, up to C = 1.
We argue that this can be achieved by simple design
adjustments and without compromising T%. First, ;!
and hence C can be improved by a factor 5-10 by
using magnetic-field resilient superconductors [60,61].
Moreover, it is possible to increase the number of spins
at fixed concentration by using a deeper implantation profile,
up to 1 um as already shown [62], thus increasing C by
another factor ~5. A full quantum memory demonstration
could then be achieved using the two-pulse protocol
proposed in Refs. [36,37], and applied to store quantum
states originating from a transmon-based quantum processor.

In conclusion, we have demonstrated the absorption of
trains of weak microwave pulses consisting of only a few
photons in a hybrid quantum device, their storage for
100 ms, and their phase-coherent reemission without added
noise. Our results illustrate the utility of clock transitions
for efficient quantum memories with long storage times as
well as memory reset via the Purcell effect.
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