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ABSTRACT

We present a new summary statistic for weak lensing observables, higher than second order, suitable for extracting non-Gaussian
cosmological information and inferring cosmological parameters. We name this statistic the ‘starlet `1-norm’ as it is computed via the
sum of the absolute values of the starlet (wavelet) decomposition coefficients of a weak lensing map. In comparison to the state-of-
the-art higher-order statistics – weak lensing peak counts and minimum counts, or the combination of the two – the `1-norm provides
a fast multi-scale calculation of the full void and peak distribution, avoiding the problem of defining what a peak is and what a
void is: the `1-norm carries the information encoded in all pixels of the map, not just the ones in local maxima and minima. We
show its potential by applying it to the weak lensing convergence maps provided by the MassiveNus simulations to get constraints
on the sum of neutrino masses, the matter density parameter, and the amplitude of the primordial power spectrum. We find that, in
an ideal setting without further systematics, the starlet `1-norm remarkably outperforms commonly used summary statistics, such
as the power spectrum or the combination of peak and void counts, in terms of constraining power, representing a promising new
unified framework to simultaneously account for the information encoded in peak counts and voids. We find that the starlet `1-norm
outperforms the power spectrum by 72% on Mν, 60% on Ωm, and 75% on As for the Euclid-like setting considered; it also improves
upon the state-of-the-art combination of peaks and voids for a single smoothing scale by 24% on Mν, 50% on Ωm, and 24% on As.
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1. Introduction

Weak gravitational lensing by the large-scale structure repre-
sents a powerful tool for estimating cosmological parameters.
Past, present, and future cosmological surveys, such as the
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS)
(Heymans et al. 2012), the Kilo-Degree Survey (KiDS) (Heymans
et al. 2021), the Dark Energy Survey (DES) (Abbott et al. 2019; To
et al. 2020), Hyper SuprimeCam (HSC) (Mandelbaum & Hyper
Suprime-Cam (HSC) Collaboration 2017), Euclid (Laureijs et al.
2011), and the Rubin Observatory (LSST Science Collaboration
2009), consider it as one of the main physical probes for investi-
gating unsolved questions in current cosmology, such as: what
the properties of the dark components of the universe are,
what the origin of its accelerated expansion is (Riess et al. 1998;
Perlmutter et al. 1999), and what the sum of neutrino masses is
(Lesgourgues & Pastor 2012). It is very well known that, in the
context of weak lensing, second-order statistics as the two-point
correlation function or its Fourier transform (the power spectrum)
do not capture the non-Gaussian information encoded in the non-
linear features of weak lensing data (Weinberg et al. 2013). This
has motivated the introduction of several higher-order statistics,
such as Minkowski functionals (Kratochvil et al. 2012; Petri et al.
2015; Vicinanza et al. 2019; Marques et al. 2019; Parroni et al.
2020), higher-order moments (Petri et al. 2016; Vicinanza et al.
2018; Peel et al. 2018; Chang et al. 2018; Gatti et al. 2020), the
bispectrum (Takada & Jain 2004; Chan & Blot 2017; Coulton
et al. 2019), peak counts (Kruse & Schneider 1999; Kratochvil
et al. 2010; Dietrich & Hartlap 2010; Maturi et al. 2011; Pires
et al. 2012; Hamana et al. 2012; Hilbert et al. 2012; Marian et al.

2012, 2013; Martinet et al. 2015, 2018; Lin & Kilbinger 2015;
Giocoli et al. 2018; Peel et al. 2018; Li et al. 2019), the scattering
transform (Cheng et al. 2020), wavelet phase harmonic statistics
(Allys et al. 2020), and machine learning-based methods (Fluri
et al. 2018a; Peel et al. 2019; Gupta et al. 2018; Rasmussen &
Williams 2005; Ribli et al. 2019; Shirasaki et al. 2019), to account
for non-Gaussian information in cosmological analysis. Focus-
ing on peak counts, it has been shown that this statistic is par-
ticularly powerful in breaking degeneracy between the standard
model and fifth forces in the dark sector (Peel et al. 2018) as well
as in constraining cosmological parameters when employed in a
multi-scale setting (Liu et al. 2015; Lin et al. 2016; Fluri et al.
2018b; Ajani et al. 2020; Zürcher et al. 2020). In particular, Ajani
et al. (2020) have shown that multi-scale peak counts significantly
outperform the weak lensing power spectrum, improving the con-
straints on the sum of neutrino masses

∑
mν ≡ Mν by 63% when

using a starlet filter; multi-scale peak counts were also shown to be
so constraining that the addition of the power spectrum does not
further improve constraints. A very interesting feature of multi-
scale peaks, when they are obtained using the starlet transform
(Starck et al. 2007), is the behaviour of the covariance matrix that
tends to encode all information in its diagonal elements.

Another weak lensing probe of large-scale structure is rep-
resented by cosmic voids, namely under-dense regions of the
large-scale matter field (Colberg et al. 2008; Pisani et al. 2019).
Local minima of weak lensing convergence maps, namely pix-
els with values smaller than their eight neighbouring pixels,
have been proposed as tracers of the matter distribution voids
to infer cosmological parameters, both in a mono-scale setting
(Coulton et al. 2020; Martinet et al. 2021; Davies et al. 2020)
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and in a multi-scale setting (Zürcher et al. 2020). More specifi-
cally, Coulton et al. (2020) found that lensing minima alone are
slightly less constraining than the peaks alone and, in agreement
with Martinet et al. (2021) and Zürcher et al. (2020), that the
combination of the two statistics produces significantly tighter
constraints than the power spectrum.

In this Letter, we propose, for the first time, using the `1-
norm of wavelet coefficients of weak lensing convergence maps.
We show that it provides a unified framework for a joint multi-
scale peak and void analysis and that it takes into account the
information encoded in all pixels of the map.

This Letter is structured as follows: in Sect. 2, we define
the `1-norm. In Sect. 3, we specify the details for the anal-
ysis, defining the summary statistics employed and the corre-
sponding choice of filters and binning. We show how we com-
pute the covariance matrix, show how we build the likelihood,
show the posterior distributions, and define the estimators used
to quantify our results. In Sect. 4, we describe our results, and
we draw our conclusions in Sect. 5. We dedicate Appendix A to
background definitions in weak lensing and to the details of the
simulations. In Appendix B, we discuss features of covariance
matrices.

2. Towards the starlet `1-norm

2.1. Starlet peaks

Multi-scale peak counts can be derived using either a set of
Gaussian kernels of different sizes or a wavelet decomposition,
such as the starlet transform (Ajani et al. 2020). The starlet trans-
form decomposes a convergence map κ of size N × N into a
set W = {w1, . . . ,w jmax , cJ} of J = jmax + 1 bands of the same
size, where jmax is the number of wavelet scales considered, cJ
is the coarse scale, namely a very smoothed version of the orig-
inal image κ, and w j are the wavelet bands at scale 2 j pixels.
A complete description and derivation of the starlet transform
algorithm can be found in Starck et al. (2007, 2016). It was
also shown in Leonard et al. (2012) that the starlet transform
can be interpreted as a fast multi-scale aperture mass decom-
position where the aperture mass kernels have a compact sup-
port and are compensated functions (namely, the kernel inte-
gral is null). Starlet peaks are then derived by considering n
bins with bin edges given by the minimum and maximum val-
ues of each band in W. An interesting advantage of such an
approach is that each wavelet band covers a different frequency
range, which leads to an almost diagonal peak count covariance
matrix (Ajani et al. 2020). This is not the case when a stan-
dard multi-scale Gaussian analysis is applied on the convergence
map.

2.2. Starlet extrema

As mentioned in the introduction, cosmic void analysis is an
alternative to peak analysis for studying convergence maps, and
the combination of the two improves the constraints on cos-
mological parameters. It is interesting to notice how a starlet
decomposition can naturally include a multi-scale void anal-
ysis. Instead of extracting maxima (peaks) in each band, we
can also extract minima (pixels with values smaller than their
eight neighbours), and a joint peak-void multi-scale is there-
fore obtained by extracting wavelet coefficient extrema (min-
ima + maxima). The starlet decomposition therefore provides a
very natural framework for a joint multi-scale peak and void
analysis.

2.3. Starlet `1-norm

A particularity of peak and void statistics is that only a few pixels
are considered, while other high-order statistics, such as bispec-
trum or Minkowski functionals, use all the pixels. In a starlet
framework, we should emphasise that starlet peaks have mainly
positive values and starlet voids negative values due to the prop-
erty of the wavelet function. So instead of counting the number
of peaks or voids in a given bin i defined by two values, Bi and
Bi+1, we could take the sum of all wavelet coefficients with an
amplitude between Bi and Bi+1. If Bi and Bi+1 are positive, this
corresponds to the definition of the set of coefficients S j,i at scale
j and in bin i such that S j,i = {w j,k/Bi < w j,k < Bi+1}, where k is
the pixel index. We can then compute the sum

∑#coef(S j,i)
u=1 S j,i[u].

This can be generalised to positive and negative bins using:

l j,i
1 =

#coef(S j,i)∑
u=1

| S j,i[u] |= ||S j,i||1, (1)

where ||.||1 is the standard `1-norm (i.e. ||x||1 =
∑

k |xk |) and the
index u runs from 1 to the number of pixels in a given bin i at
scale j (i.e. #coef(S j,i)). The quantity l j,i

1 defined in Eq. (1) is
nothing more than the `1-norm of the binned pixel values of the
starlet coefficients of the original image κ map. In the following,
we will name S `1 , the starlet `1-norm, as the set S `1 of all l j,i

1
numbers obtained from the different scales j and bins i.

This approach enables us to extract the information encoded
in the absolute value of all pixels in the map instead of character-
ising it only by selecting local minima or maxima. An interesting
advantage is that it avoids the open issue of how to define a void
(Colberg et al. 2008). It is interesting to notice that this S `1 statis-
tic is also directly related to the density probability function of
the starlet coefficients at different scales.

3. Experiment

3.1. Summary statistics

We provided constraints on the sum of neutrino masses Mν, on
the matter density parameter Ωm, and on the power spectrum
amplitude As by employing five different statistics applied to the
MassiveNus1 simulations (Liu et al. 2018). Three of them are
statistics that are used in weak lensing studies: the power spec-
trum, combined mono-scale peak and void counts, and multi-
scale peak count (using the starlet transform). The two others are
the starlet extrema and the starlet `1-norm S `1 that we introduced
in the previous section.

We computed the summary statistics on maps of the signal-
to-noise field, where we define the signal to noise as the ratio
between the noisy convergence κ convolved with the filter
W(θker) over the smoothed standard deviation of the noise for
each realisation per redshift:

S/N ≡
(W∗ κ)(θker)

σfilt
n

, (2)

where W(θker) can be a single-Gaussian filter or a starlet filter.
Concerning σfilt

n , its definition depends on the employed filter.
For a Gaussian kernel, it is given by the standard deviation of
the smoothed noise maps, while for the starlet case we need to
estimate the noise at each wavelet scale for each image per red-
shift. To estimate the noise level at each starlet scale, we fol-
lowed Starck & Murtagh (1998) and used the fact that the stan-
dard deviation of the noise at the scale j is given by σ j = σe

jσI ,

1 Further details on the simulations are illustrated in Appendix A.
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where σI is the standard deviation of the noise of the image and
σe

j are the coefficients obtained by taking the standard deviation
of the starlet transform of a Gaussian distribution with standard
deviation one at each scale j. For the purposes of this study, we
mimicked the shape noise expected for a survey such as Euclid2

(Laureijs et al. 2011; Euclid Collaboration 2020) as defined in
Appendix A. We performed a tomographic analysis using four
source redshifts, zs = {0.5, 1.0, 1.5, 2.0}, with corresponding
values for the galaxy number density ngal per source redshift bin
ngal = {11.02, 11.90, 5.45, 1.45}.

A: We computed the power spectrum as defined in Eq. (A.8)
on noisy convergence maps filtered with a Gaussian kernel
with smoothing size θker = 1 arcmin. We considered angular
scales with 24 logarithmically spaced bins in the range ` =
[300, 5000].

B: Regarding mono-scale peaks and voids, we computed
peaks (as pixels with values larger than their eight neighbours)
and voids (as pixels with values smaller than their eight neigh-
bours) on noisy convergence maps. The maps were filtered with
a single-Gaussian kernel with smoothing size θker = 2 arcmin,
with 29 linearly spaced bins for peaks between the minimum
and maximum of the map in S/N and 29 linearly spaced bins for
voids between the negative maximum and positive minimum of
the maps in S/N.

C: Starlet peak counts were computed as pixels with val-
ues larger than their eight neighbours. They were computed on
noisy convergence maps filtered with a starlet kernel with four
scales corresponding to [1.6′, 3.2′, 6.4′, coarse], with 29 linearly
spaced bins for each scale between the minimum and maximum
values of each S/N map.

D: Starlet extrema were obtained by combining the peaks
computed on maps with only S/N > 0 contribution with starlet
voids computed on maps with only S/N < 0 contribution. We
used a starlet as we did with (C), with 58 linearly spaced bins
(29 for peaks and 29 for voids).

E: The starlet `1-norm S `1 was computed following Eq. (1)
on noisy convergence maps filtered with a starlet kernel with four
scales. We followed the same process as we did for (C) and (D).

Statistics (D) and (E) are our new proposals. In all statis-
tics where we employed the starlet decomposition, the finest fre-
quency we considered was θker = 1.6 arcmin, corresponding to
the maximum angular scale `max = 2149.

3.2. Covariance matrices

The MassiveNus suite of simulations (described in more detail
in Appendix A) also includes a cosmology with massless neutri-
nos {Mν, Ωm, 109 As} = {0.0, 0.3, 2.1} obtained from initial con-
ditions different from those of the massive neutrino simulations.
We used this additional simulation set to compute the covari-
ance matrix of the observable. The covariance matrix elements
are computed as

Ci j =

N∑
r=1

(xr
i − µi)(xr

j − µ j)

N − 1
, (3)

where N is the number of observations (in this case, the 10 000
realisations), xr

i is the value of the considered observable in the
ith bin for a given realisation r, and

µi =
1
N

∑
r

xr
i (4)

2 https://www.Euclid-ec.org

is the mean of the observable in a given bin over all the realisa-
tions. Furthermore, we took into account the loss of information
due to the finite number of bins and realisations by adopting the
estimator introduced by Hartlap et al. (2007) for the inverse of
the covariance matrix:

C−1 =
N − nbins − 2

N − 1
C−1
∗ , (5)

where N is the number of realisations, nbins the number of bins,
and C∗ the covariance matrix computed for the power spectrum
and peak counts, whose elements are given by Eq. (3). For illus-
tration, we scaled the covariance for an Euclid3 sky coverage by
the factor fmap/ fsurvey, where fmap = 12.25 deg2 is the size of the
convergence maps and fEuclid = 15 000 deg2.

3.3. Likelihood

To perform Bayesian inference and get the probability distribu-
tions of the cosmological parameters, we used a Gaussian likeli-
hood for a cosmology-independent covariance:

logL(θ) =
1
2

(d − µ(θ))T C−1(d − µ(θ)), (6)

where d is the data array, C is the covariance matrix of the
observable, and µ is the expected theoretical prediction as a func-
tion of the cosmological parameters θ. In our case, the data array
is the mean over the (simulated) realisations of all the separate
observables, or, of their different combinations, for our fiducial
model. Cosmological parameters are the ones for which simula-
tions are available, namely {Mν, Ωm, 109 As}, but the same statis-
tics can of course be applied to other parameters if simulations
allow.

In order to predict the theoretical values of all observ-
ables given a new set of values for the cosmological param-
eters {Mν, Ωm, 109 As}, we employed an interpolation with
Gaussian process regression (Rasmussen & Williams 2005)
using the scikit-learn python package. The emulator used
in this Letter is the same as that employed in Li et al. (2019).

3.4. Result estimators

To quantify the constraining power of the different summary
statistics, we employed the following estimators, which are
based on Euclid Collaboration (2020). To have an approximate
quantification of the size of the parameter contours, we consid-
ered the following figure of merit (FoM):

FoM =
(
det (F̃)

)1/n
, (7)

where F̃ is the marginalised Fisher sub-matrix that we estimated
as the inverse of the covariance matrix among the set of cos-
mological parameters under investigation and n is equal to the
parameter space dimensionality. We show the values of the FoM
for our observables in Table 1. To estimate the marginalised 1σ
error on a single parameter θα (which means having included all
the degeneracies with respect to other parameters), we used the
quantity:

σαα =
√

Cαα, (8)

where Cαα are the diagonal elements of the parameter covariance
matrix. We show the values of the σαα for our observables in
Table 2.
3 https://www.euclid-ec.org/
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Table 1. Values of the figure of merit (FoM) as defined in Eq. (7) for different parameter pairs for each observable employed in the likelihood
analysis.

FoM (Mν, Ωm) (Mν, As) (Ωm, As) (Mν, Ωm, As)

Power spectrum 1585 77 1079 2063
Starlet peaks 5904 331 4856 10 147
`1-norm 11 408 619 9126 16 688
Starlet extrema 6967 442 5956 6740
Peaks + voids monoscale 5321 307 4286 6114

Notes. In the last column, we provide the 3D FoM given as the inverse of the volume in (Mν, As, Ωm) space.

Table 2. Values of 1-σmarginalised errors as defined in Eq. (8) for each
cosmological parameter for the different observables.

σαα Mν Ωm As

Power spectrum 0.147 0.005 0.204
Starlet peaks 0.057 0.003 0.064
`1-norm 0.041 0.002 0.051
Starlet extrema 0.040 0.004 0.062
Peaks + voids monoscale 0.054 0.004 0.067

3.5. MCMC simulations and posterior distributions

We explored and constrained the parameter space with the emcee
package, which is a python implementation of the affine invari-
ant ensemble sampler for Markov chain Monte Carlo (MCMC)
introduced by Foreman-Mackey et al. (2013). We assumed a flat
prior, a Gaussian likelihood function as defined in Sect. 3.3,
and a model-independent covariance matrix as discussed in
Sect. 3.2. The walkers were initialised in a tiny Gaussian ball of
radius 10−3 around the fiducial cosmology [Mν, Ωm, 109 As] =
[0.1, 0.3, 2.1], and we estimated the posterior using 120 walk-
ers. Our chains are stable against the length of the chain, and we
verified their convergence by employing Gelman Rubin diagnos-
tics (Gelman & Rubin 1992). To plot the contours, we used the
ChainConsumer python package (Hinton 2016).

4. Results

We now illustrate forecast results on the sum of neutrino masses
Mν, on the matter density parameter Ωm, and on the power spec-
trum amplitude As for a survey with Euclid-like noise in a tomo-
graphic setting with four source redshifts, zs = [0.5, 1.0, 1.5, 2.0].
We compare results for the different observables defined in
Sect. 3.1 and investigate the impact of the choice of the filter
on the covariance matrix.

In Fig. 1, we show the comparison between the constraints
obtained using different summary statistics, as described in
Sect. 3.1. As expected, we see that all higher-order statistics
are more constraining than the power spectrum. The new result
of this Letter is represented by the starlet `1-norm: the inclu-
sion of all pixels enables us to retrieve tighter constraints than
the combination of local minima and maxima (voids + peaks).
Specifically, for all parameter space planes, the `1-norm FoM
values, illustrated in Table 1, are about twice as large compared
to those for the combined local minima and maxima (and more
than seven times larger than the power spectrum FoM values).

In this work, we have also introduced starlet extrema as a
new summary statistic to constrain the parameters. Similarly to
the `1-norm, starlet extrema are computed between the minimum

and maximum S/N value of the map, but they are defined as the
combination of local maxima computed on S/N > 0 and local
minima computed on S/N < 0 (namely, they do not encode the
information present in all pixels). We see that starlet extremum
FoM values are larger than starlet peaks and peaks + voids mono-
scales, suggesting that starlet extrema can be a good multi-scale
higher-order statistic candidate. However, the `1-norm remains
the statistic that performs the best in terms of constraining power
with respect to all the summary statistics we have considered.
In Fig. 2, we show the marginalised constraints on each cos-
mological parameter corresponding to the different observables.
To compare the improvement obtained by employing the differ-
ent statistics, we computed the 1σ marginalised error for each
parameter, as summarised in Table 2. We find that the starlet
`1-norm outperforms the power spectrum by 72% on Mν, 60%
on Ωm, and 75% on As, and the state-of-the-art peaks + voids
for a single smoothing scale by 24% on Mν, 50% on Ωm, and
24% on As. Starlet extrema outperform the power spectrum by
72% on Mν, 20% on Ωm, and 70% on As. We also quantify the
improvement provided by the `1-norm with respect to our pre-
vious study (Ajani et al. 2020), finding that the starlet `1-norm
outperforms starlet peaks by 28% on Mν, 33% on Ωm, and 20%
on As. In Appendix B, we also compare the covariance matrices
obtained when using starlet extrema and the `1-norm, and we
find that starlet extrema present a more diagonal covariance for
the observable.

5. Conclusions

In this Letter, we have proposed using starlet `1-norm statis-
tics on weak lensing converge maps to constrain cosmological
parameters. The measure of multi-scale peak amplitudes can be
seen as a measure of the `1-norm of a subset of positive wavelet
coefficients. Similarly, the measure of void amplitudes can be
seen as a measure of the `1-norm of a subset of negative wavelet
coefficients. Wavelets therefore provide a great framework for
a joint peak and void analysis, in which information from all
wavelet coefficients is included. We therefore propose using a
very simple `1-norm statistic, defined as the sum of the `1-norm
of all coefficients in a given S/N (pixel) bin for each wavelet
scale, as defined in Eq. (1). We investigate the impact of employ-
ing the starlet `1-norm as summary statistics computed on weak
lensing convergence maps to estimate cosmological parameters,
and we find that the `1-norm outperforms the two state-of-the-art
summary statistics, the power spectrum and the combination of
mono-scale peaks and voids, by, respectively, 72% and 24% on
Mν, 60% and 50% on Ωm, and 75% and 24% on As. We have
furthered proposed starlet extrema and compared them to the `1-
norm: in this case as well, the latter performs better in terms
of constraining power, within the current ideal setting, while
the former present the advantage of a more diagonal covariance
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Fig. 1. 95% confidence contour tomography with source redshifts zs = [0.5, 1.0, 1.5, 2.0] and corresponding galaxy number densities ngal =
[11.02, 11.90, 5.45, 1.45]. The dotted black line is the fiducial model: [

∑
mν, Ωm, 109 As] = [0.1, 0.3, 2.1]. Left panel: constraints from the power

spectrum (light blue contours) computed on noisy maps smoothed with a Gaussian filter with θker = 1 arcmin, compared to constraints from the
starlet `1-norm (dark blue contours) computed on noisy maps filtered with a four-scale starlet kernel. Right panel: constraints from the combination
of peaks and voids (magenta contours) computed on noisy maps smoothed with a Gaussian filter with θker = 2 arcmin compared to constraints from
starlet peak counts (green contours), starlet extrema (orange contours), and the `1-norm (dark blue contours), computed on noisy maps filtered
with a four-scale starlet kernel.
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Fig. 2. Marginalised errors for the observables described in Sect. 3.1
on each parameter, showing the 2.5 and 97.5 percentiles with respect
to the fiducial model. They refer to a tomographic setting with z =
[0.5, 1.0, 1.5, 2.0], with the fiducial model set to [Mν, Ωm, 109 As] =
[0.1, 0.3, 2.1]. The last observable refers to mono-scale peaks and
voids, as described in the text.

matrix. We are aware that the statistical power alone is not suf-
ficient to serve as a robust probe for precision cosmology; for
their usage, it will be important to test how these statistics react
in a non-ideal setting and how their performance is impacted by
systematics in the signal. We will dedicate a future study to this
aspect.

We conclude that the new statistic proposed here presents
several advantages in the context of cosmological parameter
inference: it provides a fast calculation of the full void and peak
distribution; it does not rely on a specific definition of peaks and
voids or some arbitrary threshold; it instead encodes information
of the entire pixel distribution without excluding pixels that are
not local minima or maxima; and it leads to tighter constraints,
at least within an ideal setting. The starlet decomposition there-
fore provides a very powerful framework for a joint multi-scale
peak and void analysis.
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Appendix A: Background

A.1. Weak lensing

The effect of gravitational lensing at co-moving angular distance
fK(χ) can be described by the lensing potential,

ψ(θ, χ) ≡
2
c2

∫ χ

0
dχ′

fK(χ − χ′)
fK(χ) fK(χ′)

Φ( fK(χ′)θ, χ′), (A.1)

which defines how much the gravitational potential Φ arising
from a mass distribution changes the direction of a light path.
In this expression, K is the spatial curvature constant of the uni-
verse, χ is the co-moving radial coordinate, θ is the angle of
observation, and c is the speed of light. As we are working under
the assumption of a Lambda cold dark matter (ΛCDM) model,
the two Bardeen gravitational potentials are here assumed to be
equal and the metric signature is defined as (+1, −1, −1, −1). In
particular, under the Born approximation, the effect of the lens-
ing potential on the shapes of background galaxies in the weak
regime can be summarised by its variation with respect to θ. For-
mally, this effect can be described by the elements of the lensing
potential Jacobi matrix,

Ai j = δi j − ∂i∂ jψ, (A.2)

which can be parametrised as

A =

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (A.3)

where (γ1, γ2) are the components of a spin-2 field γ called shear
and κ is a scalar quantity called convergence. They describe,
respectively, the anisotropic stretching and the isotropic mag-
nification of the galaxy shape when light passes through large-
scale structure. Equations (A.2) and (A.3) define the shear and
the convergence fields as second-order derivatives of the lensing
potential:

γ1 ≡
1
2

(∂1∂1 − ∂2∂2)ψ γ2 ≡ ∂1∂2ψ, (A.4)

κ ≡
1
2

(∂1∂1 + ∂2∂2)ψ =
1
2
∇2ψ. (A.5)

The weak lensing field is a powerful tool for cosmological infer-
ence. The shear is more closely related to actual observables
(galaxy shapes), while the convergence, as a scalar field, can
be more directly understood in terms of the matter density dis-
tribution along the line of sight. This can be seen by inserting
the lensing potential defined in Eq. (A.1) inside Eq. (A.5) and
using the fact that the gravitational potential Φ is related to the
matter density contrast δ = ∆ρ/ρ̄ through the Poisson equation
∇2Φ = 4πGa2ρ̄δ. Expressing the mean matter density in terms
of the critical density ρc,0 = 3H2

0/(8πG), the convergence field
can be rewritten as

κ(θ) =
3H2

0Ωm

2c2

∫ χlim

0

dχ
a(χ)

g(χ) fK(χ)δ( fK(χ)θ, χ), (A.6)

where H0 is the Hubble parameter at its present value and

g(χ) ≡
∫ χlim

χ

dχ′n(χ′)
fK(χ′ − χ)

fK(χ′)
(A.7)

is the lensing efficiency. Equation (A.6) relates the convergence κ
to the 3D matter over-density field δ( fK(χ)θ, χ), and it describes

how the lensing effect on the matter density distribution is quan-
tified by the lensing strength at a distance χ, which directly
depends on the normalised source galaxy distribution n(z)dz =
n(χ)dχ and on the geometry of the universe through fK(χ) along
the line of sight. A complete derivation can be found in Kilbinger
(2015) and Schneider et al. (1992).

Convergence power spectrum

To provide a statistical estimate of the distribution of the con-
vergence field, the first non-zero order is given by its second
moment, which is commonly described by the ‘two-point corre-
lation function’ (2PCF) in real space 〈κ(θ)κ(θ′)〉, or by its coun-
terpart in Fourier space, the ‘convergence power spectrum’:

Cκ(`) =
9Ω2

mH4
0

4c4

∫ χlim

0
dχ
g2(χ)
a2(χ)

Pδ

(
`

fκ(χ)
, χ

)
, (A.8)

where Pδ represents the 3D matter power spectrum, directly
related to the matter density distribution δ in Eq. (A.6), of the
weak lensing convergence field. In this study, we computed the
power spectrum of the noisy filtered convergence maps: for a
given cosmology, we added Gaussian noise to each realisation
of κ. To filter the maps, we employed a Gaussian kernel with
smoothing size θker = 1 arcmin and considered angular scales
with logarithmically spaced bins in the range ` = [300, 5000].
We computed the power spectra using LensTools for each of
the 10 000 realisations per cosmology, and then we took the
average over the realisations. We parallelised our code using
joblib4 to accelerate processing due to the large number of
realisations per cosmology.

A.2. Simulations

In this Letter, we used the Cosmological Massive Neutrino Sim-
ulations (MassiveNus), a suite of publicly available N-body
simulations released by the Columbia Lensing group5. It con-
tains 101 different cosmological models obtained by varying the
sum of neutrino masses Mν, the total matter density parame-
ter Ωm, and the primordial power spectrum amplitude As at the
pivot scale k0 = 0.05 Mpc−1 in the ranges Mν = [0, 0.62] eV,
Ωm = [0.18, 0.42], and As × 109 = [1.29, 2.91]. The reduced
Hubble constant h = 0.7, the spectral index ns = 0.97, the baryon
density parameter Ωb = 0.046, and the dark energy equation of
state parameter w = −1 were kept fixed under the assumption of
a flat universe. The fiducial model was set at {Mν, Ωm, 109 As} =
{0.1, 0.3, 2.1}. The complete description of the implementation
and the products is illustrated in Liu et al. (2018). We used sim-
ulated convergence maps as mock data for our analysis. When
dealing with real data, the actual observable was the shear field,
which can be converted into the convergence field following
Kaiser & Squires (1993). We bypassed this step from γ to κ
and worked with the convergence maps that were directly pro-
vided as products from MassiveNus. The maps were generated
using the public ray-tracing package LensTools (Petri 2016)
for each of the 101 cosmological models at five source red-
shifts, zs = {0.5, 1.0, 1.5, 2.0, 2.5}. Each redshift has 10 000
different map realisations obtained by rotating and shifting the
spatial planes. Each κ map has 5122 pixels, corresponding to a
12.25 deg2 total angular size area in the range ` ∈ [100, 37 000]
with a resolution of 0.4 arcmin. We mimicked Euclid-like shape

4 https://joblib.readthedocs.io/
5 http://columbialensing.org
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Fig. A.1. 95% confidence contour tomography with source redshifts zs = [0.5, 1.0, 1.5, 2.0] and corresponding galaxy number densities: ngal =
[11.02, 11.90, 5.45, 1.45]. The dotted black line is the fiducial model: [

∑
mν, Ωm, 109 As] = [0.1, 0.3, 2.1]. Left panel: constraints from starlet

extrema with the full covariance matrix (continuous contours) computed on noisy maps filtered with a four-scale starlet kernel against constraints
from starlet extrema with the only diagonal elements of the covariance matrix (dashed contours). Right panel: constraints from the `1-norm with
the full covariance matrix (continuous contours) computed on noisy maps filtered with a four-scale starlet kernel against constraints from `1-norm
with the only diagonal elements of the covariance matrix (dashed contours).

noise at each source redshift assuming Gaussian noise with mean
zero and variance:

σ2
n =

〈σ2
ε 〉

ngalApix
, (A.9)

where we set the dispersion of the ellipticity distribution to σε =
0.3 and the pixel area is given by Apix ' 0.16 arcmin2.

Appendix B: Diagonal covariances

As recalled in the introduction, Ajani et al. (2020) found that
starlet peak counts have the interesting feature that the corre-
sponding covariance matrix is nearly diagonal. Motivated by
this, we have tested in this work whether this feature is also
maintained for starlet extrema and for the `1-norm. Interest-
ingly, we find that starlet extrema keep this characteristic, while
the `1-norm show more correlations in the off-diagonal term.
This can be seen by looking at Fig. A.1: in the left panel, we
show the constraints for the starlet extrema when using the full
covariance matrix (continuous contours) and compare them with

the starlet extrema when using only the diagonal elements of
the covariance matrix (dashed contours). Analogously, we show
the same comparison for the `1-norm in the right panel. When
using starlet extrema as summary statistics, there is no loss of
information on Mν, and a slight loss of information of 25% on
Ωm and 22% As if we employ a covariance matrix with only
its diagonal elements in the likelihood analysis. Concerning the
`1-norm, it is sufficient to look at the contours to notice how
the contours with only diagonal terms are considerably differ-
ent with respect to the contours obtained with the full covari-
ance matrix: they appear shifted and present a different degree
of degeneracy for (Ωm, As). Hence, considering this result along
with the result from Sect. 4, we conclude that the `1-norm out-
performs starlet extrema in terms of constraining power when
considering the full covariance in the analysis, but presents a less
diagonal matrix than starlet extrema. We conclude that, depend-
ing on the context, the `1-norm could be a convenient choice
when the priority is the constraining power, while starlet extrema
might be more useful when one is interested in speeding up
the analysis or when the covariance matrix can be difficult to
invert.
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