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Abstract: The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of
which result from the conversion of structurally and functionally diverse cytoplasmic proteins into
prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and
arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies.
Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which
generates small self-templating seeds, or propagons. The exact molecular nature of propagons and
how they are faithfully transmitted from mother to daughter cells despite spatial protein quality
control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies de-
tectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the
protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+]
do not fully correlate with the infectivity measured during growth by the mean of protein infection
assays. We also discovered that significant amounts of infectious Sup35p particles are exported via
extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner.
In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable
vehicle for their transmission to the bud.

Keywords: yeast; prion; SUP35; [PSI+]; extracellular vesicles; exosomes; protein aggregation; protein
quality control

1. Introduction

Prions are self-replicating misfolded conformations of proteins that cause dominant
and heritable epigenetic traits in mammals, filamentous fungi and yeasts [1–5]. Over the
past few decades, many prions have been described in the yeast Saccharomyces cerevisiae
(Table 1). [PSI+], [URE3] and [PIN+], which correspond to the prion forms of Sup35p, Ure2p
and Rnq1p, respectively, are the most extensively studied (reviewed in [6–10]). A common
feature shared by most of these prion proteins is their ability to assemble into highly ordered
self-replicating β-rich aggregates, most often of an amyloid nature [6,7,10]. Prion assembly
into fibrils occurs by nucleated polymerization. This process can be reproduced in vitro
using purified recombinant proteins [7,8,11–15]. Newly synthesized monomers switch to an
assembly-competent conformation and are recruited at the ends of pre-existing homologous
aggregates (Figure 1) [7,8]. The large conformational landscape of prion proteins leads to
the formation of distinct strains with different seeding propensities and prion phenotypes
(Figure 1) [16–19]. These high-molecular prion assemblies are dynamic and are engaged and
remodeled by molecular chaperones (e.g., Hsp104, Hsp70, Hsp40), proteolytic systems and
other components of the protein quality control machinery (Figure 1) (reviewed in [7,8,10,20]).
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Table 1. Amyloid-based prions in the yeast Saccharomyces cerevisiae (adapted from [8,10,21]).

Prion Protein Protein Function Prion Phenotypes References

[PSI+] Sup35p translation terminator
factor (eRF3)

reduced function results in increased nonsense
suppression; impaired growth; growth advantage

under stress conditions; increased
chronological lifespan §

[3,22,23]

[URE3] Ure2p nitrogen regulation (poor
nitrogen sources repression) loss of function; slow growth [1,5]

[PIN+] Rnq1p unknown induction of [PSI+] or [URE3] formation [24]

[OCT+] Cyc8p transcription repression impaired mating
and sporulation [25]

[SWI+] Swi1p chromatin remodeling;
transcription regulation

poor growth on
non-fermentable carbon sources [26]

[MOT3+] Mot3p transcription regulation acquisition of multicellular growth forms (biofilms) [27]

[MOD+] Mod5p tRNA isopentenyltransferase fluconazole resistance; slow growth [28]

[LSB+] Lsb2p actin nucleation inhibition thermal stress-induced [PIN+] activity [29]
§ Depending on the prion strain and environmental or genetic conditions, some prion-associated phenotypes can de deleterious or
advantageous to yeast [7,30–36]. Non amyloid-based epigenetic elements were also reported in yeast (e.g., [BETA], [ISP+], [SMAUG+],
[GAR+] [37–40]).

Figure 1. Sup35p assembles into structurally distinct fibrils leading to phenotypically distinct [PSI+] strains. Native Sup35p
(green circle) can switch to alternate conformations (blue rectangle, grey triangle) that follow different assembly pathways to
form structurally distinct fibrillar assemblies. The equilibrium between soluble monomers, oligomers and larger aggregated
and fibrillar species is governed by protein folding and protein quality control systems (red squares, triangles and circles),
comprising, for instance, molecular chaperones, the 26S proteasome or members of the endosomal–autophagic pathway.
Structurally diverse Sup35p assemblies drive the formation of phenotypically distinct [PSI+] strains. These are scored on
adenine-limiting plates using a genetic tool based upon the extent of nonsense suppression of the ade1–14 allele: [PSI+]
colonies appear white or pink and are prototrophic for adenine, whereas [psi-] prion-free cells form red colonies and are
auxotrophic for adenine [41].

The faithful transmission of prions from mother cells to daughter cells or mating
partners is mediated by cytosolic diffusible particles named propagons [42] (Figure 2).
The exact molecular nature of propagons is currently not known, as prion aggregates are
heterogeneous in size and composition in vivo [6,9,43].
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Figure 2. Hypothetical model of vesicle-mediated transmission of prion particles in the context of bud formation and spatial
quality control. Yeast prions self-replicate by the conversion of newly synthesized soluble monomers to a prion conformation
and their subsequent incorporation within high-molecular-weight prion assemblies (solid blue arrow). Unidentified prion
species or “propagons” (hexagons) are cytoplasmically transmitted to the daughter cell where they initiate a new round
of prion self-replication (solid blue arrow). Cytosolic prion particles are engaged by components of the spatial protein
quality control (SPQC; red hexagons), such as molecular chaperones and proteolytic machineries, which ensure that most
aggregates are not transmitted to the daughter cells. In addition, crowding at the mother–daughter cells junction, due to
the presence of the septin ring (green dashed lines), nucleus, actin cables, vesicles and organelles (e.g., mitochondria,
endoplasmic reticulum (ER); purple circles) may prevent effective transmission of “naked” propagons. Yeast prions are
packaged within vesicles that are exported across the cell wall (depicted as a thick dashed line to highlight its dynamic
nature) and to the extracellular medium. Vertical transmission of yeast prions could be mediated by propagons packaged
within intracellular vesicles. These vesicles may be transported on actin cables to the bud where their content would be
released in the cytosol to initiate a new cycle of prion self-replication. Periplasmic vesicles could also mediate the transport
of propagons by diffusion in the periplasm and reinternalization in the bud (ER: endoplasmic reticulum; SPQC: spatial
protein quality control). In both cases, vesicle-encapsulated propagons may escape SPQC, resulting in efficient and faithful
prion transmission [6,43].

[PSI+] stands out among other yeast prions as it is by far the most studied and
best characterized prion at the genetic, cellular, biochemical and structural levels [7,43].
We showed that the size and infectivity of Sup35p prion particles changes dramatically
during growth, depending on the metabolic status of the cells [44]. We previously reported
that infectious Sup35p prion particles are packaged within vesicles with a diameter ranging
from ~30 to 100 nm and exported in the extracellular space [6,43,45]. Extracellular vesicles
(EV) are secreted by most prokaryotic, archaeal and eukaryotic cells, even those protected
by a cell wall, such as yeasts, fungi or Gram-positive bacteria [6,43,46]. In glucose-limiting
conditions, surprisingly high amounts of infectious Sup35p prion particles are exported
into the periplasm via periplasmic vesicles (PV) [43,47]. Such behavior was described
for gluconeogenic enzymes, which are secreted into the periplasm via vacuolar import
and degradation (VID) vesicles, and then internalized and degraded in the vacuole upon
glucose replenishing [48–50]. These vesicles were shown to originate from intracellular
vesicle clusters (IVC), organelles that were recently proposed to synthesize EV-associated
cargo proteins in yeast [48,51]. The packaging of Sup35p within vesicles may occur at IVC
in actively dividing cells, although we did not observe Sup35p degradation upon feeding
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glucose-starved cells with fresh glucose [47]. PV and EV differ in terms of size and protein
cargo, and their secretion is differentially regulated by glucose availability [47].

In the present review, I discuss the issues that I believe remain unexplained by current
models of [PSI+] propagation and present my views about how vesicle-encapsulated prion
particles may not only shed light on the molecular nature of propagons but also provide
plausible answers to those issues.

2. Questions Raised by Current [PSI+] Prion Propagation Models

Most laboratory [PSI+] prion strains were selected for their remarkably high mitotic
stabilities and form phenotypically homogeneous colonies [3,18,52–54]. In our hands,
mitotically stable [PSI+] variants are not detrimental to their recipient cells, as these grow
at the same rate as isogenic [psi-] counterparts [53]. Furthermore, [PSI+] cells exhibit a
prolonged chronological lifespan, which could be due to higher Sup35p levels persisting
in postdiauxic shift cells [44,53,55]. Prion loss can however occur at varying yet very low
frequencies, depending on the genetic background and the prion variant, resulting in the
appearance of rare sectored colonies or prion-free cells in liquid cultures [3,18,52–54].

Both experimental and mathematical modeling approaches defined important propagon
characteristics [9]. The most sophisticated of these models rightfully take into account the
respective size, growth rate and age of mother and daughter cells [9,52,54]. Propagons must
reach a minimal critical size of ~4–30 Sup35p molecules for proper prion maintenance and
propagation [52,56,57]. Yeast cells contain ~100–1000 propagons, and mother cells contain
more aggregates than daughters [52,54,58]. The partition of propagons during cell division
is passive and occurs via the distribution of cytoplasm [54].

Bud formation and cell division are highly regulated processes [59,60]. A double
ring of septin is assembled to separate the emerging bud from the mother cell, and the
division site is crowded with macromolecules, such as the dividing nucleus, organelles
(e.g., mitochondria, endoplasmic reticulum, peroxisomes), actin cables and vesicles [61,62]
(Figure 2). Furthermore, cell division is asymmetric: mother cells retain most aging deter-
minants, including misfolded and aggregated proteins, oxidatively damaged organelles
(e.g., mitochondria, vacuole) or extrachromosomal rDNA circles; in turn, the daughter
is “rejuvenated” and essentially free of aging determinants that might reduce its lifes-
pan [63]. Spatial quality control mechanisms and antiprion systems ensure that protein
aggregates are sequestered within protein inclusions (e.g., insoluble protein deposit (IPOD),
juxta nuclear quality control compartment (JUNQ)) or cleared by proteolytic machineries
(e.g., proteasome, autophagy) in the mother cell [64,65].

Hence, that an individual yeast cell contains a defined number of propagons in
equilibrium with both monomers and larger aggregates, some of which are passively
transmitted to the emerging bud, does not quite add up with these antiaging protecting
mechanisms [10,64–66]. Because propagons contain the structural information required
to propagate the prion conformation, they should be recognized as misfolded abnor-
mal species by antiprion systems and either cleared or addressed to protein inclusion
sites [10,64–66]. Due to their high numbers and small sizes, propagons may escape qual-
ity control mechanisms and diffuse through the mother–bud junction despite crowding.
Because one prion particle was deemed sufficient to allow prion propagation [58], such a
transmission mechanism would be sufficient to allow prion maintenance during multiple
cell divisions. Nevertheless, because protein quality control mechanisms are very efficient,
especially in young cells, we would expect higher [PSI+]-loss frequencies than the ones
we previously observed [53]. It is noteworthy that [PSI+], [URE3] and [RNQ1] variants
with low mitotic stabilities were described [18,67–70]. Hence, I speculate the existence of
alternative propagon transmission pathways that could strengthen the stability of some
prion variants over hundreds of generations (see below) [6,43].
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3. What We Can Learn about the Molecular Nature of Propagons Using EV

Purified recombinant full-length Sup35p assembles into amyloid fibrils [11,12,71–73].
In our hands, using negative staining electron microscopy (EM), Sup35p fibrils appear to
be ~25 nm wide, up to several micrometers long, rigid and twisted, with a high tendency
to bundle (Figure 3) [12]. Using negative staining, cryo-EM and scanning transmission EM
(STEM), Steven and colleagues reported that full-length Sup35p fibrils show a thin ~8 nm
wide backbone surrounded by a diffuse ~65 nm wide cloud of globular C-domains [73].
In agreement with a β-rich amyloid structure, STEM mass-per-unit-length data suggested
that the fibril core consists of 1 subunit per 4.7 Å [73]. Given that the size of yeast cells is
~5–10 µm, it is unlikely that Sup35p assembles into micrometer-long fibrils within [PSI+]
cells. The only evidence for the presence of Sup35p fibrils resembling those seen in vitro
within cells was obtained using overexpressed tagged versions of the prion domain of
Sup35p (Sup35NM) [74]. These constructs formed large dot-like and ring-like structures
packed with aligned fibrillar bundles, which were ~25 nm wide with a center-to-center
spacing of ~34 nm and several micrometers or ~100 nm long, respectively [74]. Transient
ring, dot and thread-like structures were described by others in the process of de novo
prion formation upon overexpression of GFP-tagged Sup35NM [75–77]. However, there is
no evidence that full-length Sup35p forms such large structures in its natural context.
Indeed, we and others reported that [PSI+] cells expressing a fully functional full-length
Sup35GFP from the SUP35 genomic locus show a speckled fluorescence pattern that differs
from the large foci obtained with other nonphysiological constructs [44,78,79].

Figure 3. Electron micrographs of negatively stained (A) recombinant full-length Sup35p fibrils as-
sembled in vitro, (B) extracellular vesicles (EV) purified from yeast culture medium and (C) periplas-
mic vesicles (PV) extracted from the yeast periplasm (scale bar: 200 nm) [12,45,47].
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[PSI+] formation is a very rare event that can be induced by transient overexpression of
Sup35p or that of its prion domain Sup35NM [18]. In both cases, however, [PSI+] formation
de novo requires the presence of the prion-inducing [PIN+] prion, which corresponds to
the prion form of Rnq1p, a protein of unclear function, although other aggregation-prone
proteins such as polyglutamine-containing polypeptides can substitute for it [24,80–82].
The underlying mechanism is unclear: Rnq1p aggregates could act as “decoys” keeping
molecular chaperones and other antiprion systems busy, or they could act as an “aggrega-
tion platform” that favors Sup35p conversion to a prion form [83]. Recombinant Sup35p
fibrils are infectious, meaning that they trigger [PSI+] formation when introduced inside
[psi-] recipient cells [84,85]. Importantly, [PSI+] induction using transformation of recombi-
nant Sup35p fibrils bypasses the need for [PIN+] (this is also true when cell extracts from
[PSI+] cells are used as infectious material [44,86,87]). Fibrils obtained under different
experimental conditions reproducibly induce distinct [PSI+] strains in a concentration-
dependent manner, suggesting they can directly recruit and template endogenous Sup35p
monomers to generate self-replicating propagons [84,85]. However, given the extremely
high conversion rates achieved in protein transformation assays [84,86–88], recombinant
fibrils may also act as [PIN+]-like factors by sequestering critical antiprion determinants.
Addressing this issue experimentally is difficult, as the protein transformation procedure
relies on polyethylene glycol-induced fusion of spheroplasts that are subsequently regener-
ated and cultivated for ~20 generations to form colonies on selective plates. These colonies
undergo a second round of replication on plates, allowing the scoring of [psi-] and [PSI+]
colonies. Hence, the intracellular fate (e.g., chaperone-mediated fragmentation, clearance,
specific subcellular localization) and immediate consequences (e.g., interactions with cellu-
lar factors, seeding of Sup35p aggregation) of the transforming material are eventually lost
by dilution cell division after cell division [84,86,87,89]. Hence, it is difficult to conclude to
which extent recombinant fibrils resemble propagons and behave as such when introduced
within recipient cells.

Liebman and colleagues reported the purification of SDS-resistant particles from
[PSI+] cells expressing hexahistidine-tagged Sup35p [56]. Using negative staining EM,
they showed that these particles have the aspect of ~20 nm barrels composed of
~4–20 Sup35p molecules associated with molecular chaperones, mainly Hsp70-family
members [56]. These barrel-like structures, which could be small amyloid fragments,
often associated to form ~100–200 nm detergent-labile bundles [56]. Purified Sup35p ag-
gregates induced [PSI+] in protein transformation assays; when treated with SDS, the infec-
tivity increased, suggesting that the ~20 nm barrel-like Sup35p polymers are the infectious
unit [56]. In agreement with these results, we showed that the size, amount and infectious
properties of SDS-resistant Sup35p particles changes during growth and according to the
metabolic status of the cells [44,47]. This could be due to growth phase-dependent changes
in the association of Sup35p prion particles with molecular chaperones and/or in their
organization in higher order aggregates, as suggested by fluorescence microscopy data [44].

We showed that Sup35p prion particles are exported to the extracellular medium
via extracellular vesicles (EV) [45]. The size of these vesicle-encapsulated SDS-resistant
Sup35p prion particles was the same as those in cell extracts from exponentially growing
cells [45]. Importantly, the infectivity of cytosolic and EV-encapsulated Sup35p prion
particles, assessed by protein transformation assays at comparable Sup35p levels, was the
same [45]. Thus, we hypothesized that the infectious particles packaged within vesicles
could be actual propagons [6,43]. For the sake of comparison, I here estimated the average
volume of Sup35p-containing EV, which were ~50–100 nm in diameter, and that of the
barrel-like SDS-resistant and larger SDS-labile Sup35p assemblies described by Liebman
and colleagues [45,56] (Figure 4). It is evident that while EV could contain one or several
SDS-resistant Sup35p particles, they are too small for larger aggregates [56] or fibrillar
bundles [74] (Figure 4). We cannot however exclude that Sup35p prion particles undergo
molecular rearrangements or condensation upon packaging within vesicles or that larger
amyloid fragments stick to the vesicle surface or bind to peripheral vesicle proteins. Pu-
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rifying Sup35p prion particles from vesicles and comparing them to those isolated from
cytosolic extracts would be of great interest to characterize infectious Sup35p particles at
the molecular level. Such an endeavor could be facilitated by using strains expressing
hexahistidine-tagged Sup35p [56] and under growth conditions where large amounts of
Sup35p-containing vesicles are easily extractable from the yeast periplasm [47].

Figure 4. Average volumes of vesicles, detergent-resistant Sup35 polymers and larger Sup35p aggregates. The average
volume of extracellular or periplasmic vesicles, considered for simplicity to be perfect spheres, was estimated based on the
average diameter (~50–100 nm) of Sup35p-containing vesicles [6,45,47]. The volume of SDS-resistant Sup35p polymers and
associated proteins (e.g., molecular chaperones, green hexagons) was calculated based on the ~20 nm barrel-like structures
previously detected by electron microscopy [56]. The volume of the larger Sup35p aggregates was estimated by considering
the association of three to four of these barrel-like structures [56].

4. Vesicle-Encapsulated Propagons May Overcome Spatial Quality Control during
Bud Formation

According to our own observations and those reported in the literature, yeast pri-
ons exhibit a wide range of mitotic stabilities. Intrinsic properties of each prion variant,
the genetic background of the yeast strains carrying the prions, as well as metabolic and
environmental factors affect the transmission of propagons [18,19,53,68–70,90]. As dis-
cussed above, because of overlapping protein quality control, antiprion and antiaging
systems, prion loss is expected to occur, albeit at low frequencies at each cell division, par-
ticularly in young cells [10,64–66]. However, the mitotic stabilities of several [PSI+], [URE3]
or [PIN+] variants are on par with those of chromosomes or centromere plasmids: even
after extended cultivation periods or hundreds of generations, prion-free cells or sectored
colonies seldom appear. Whereas antiprion systems may be mostly efficient in ridding
cells of harmful prion variants [10], neutral or beneficial prions may be poorer substrates
for such systems. As discussed above, extracellular or periplasmic vesicles are physically
able to contain and carry small SDS-resistant infectious prion particles (Figure 4) [45,47,56].
Using protein transformation assays, we showed that these vesicles were able to induce
[PSI+] in [psi-, pin-] cells, indicating that they contain Sup35p propagons [45,47]. Prior to
their export in the periplasm or the extracellular space, these vesicles may accumulate
as IVC [51] and constitute a pool of “hidden” infectious Sup35p prion particles [45,47].
In light of these findings, we proposed a prion propagation model that takes into account
their packaging within vesicles (Figure 2) [6,43]. We believe the very high mitotic stabil-
ity of some prion variants could be accounted for by a vesicle-mediated mother-to-bud
transmission [6,43]. Secretory vesicles deliver the macromolecules and enzymes that are
required to build the plasma membrane and cell wall of the emerging yeast bud [61].
Small mobile prion-containing vesicles could join this flow of vesicles transported across
the bud neck and deliver prion particles to daughter cells [43]. The polarized transport
of vesicles, as well as organelles, from mother to daughter cells depends on actin cables
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(Figure 2) [91]. Remarkably, yeast prion formation was shown to depend upon components
of the actin cortical cytoskeleton and the endocytic–vacuolar pathway [92–95]. Further-
more, the transport of prion amyloid aggregates to the insoluble protein deposit (IPOD)
inclusion sites relies on an actin cable-based recruitment machinery that also involves
vesicular transport [96]. Hence, prion-containing vesicles could join the flow of secretory
vesicles trafficking to the bud, ensuring efficient and stable transmission of propagons
at each cell division (Figure 2). Vesicles would serve as a cloak, protecting propagons
from the action of molecular chaperones, proteolytic machineries and other spatial quality
control and antiprion systems [43]. Periplasmic vesicles may avoid molecular crowding
and “checkpoint” controls at the bud neck and simply diffuse to daughter cells where they
could be reinternalized depending on growth conditions and the metabolic state of the
cells (Figure 2) [43].

The existence of this vesicle-based prion transmission mechanism still needs further
experimental proof, and some issues, in particular regarding prion curing, need to be
addressed. Millimolar concentrations of guanidine hydrochloride, which inactivate the
Hsp104 disaggregase, cure most yeast prions [97]. Hsp104, in cooperation with Hsp70
and Hsp40 family members (e.g., Ssa1p, Sis1p), plays an essential role in the propagation
of most yeast prions by remodeling large aggregates into smaller species [23,41,98–101].
Hsp104 also plays key roles in asymmetric segregation of protein aggregates and has been
shown to interact with endocytic vesicle-associated proteins involved in the sequestration
of protein aggregates [102–107]. How can guanidine hydrochloride inactivation of Hsp104
rid cells of vesicle-encapsulated prions? [PSI+] curing takes at least four to six generations
before the first [psi-] cells are detected in the population [54,108,109]. During this lag
time, the number of propagons decreases to a point where daughter cells fail to receive
any remaining prion particle [54]. Hsp104 inactivation causes a shift toward larger prion
aggregates, which are in equilibrium with propagons [110]. As the number of cytosolic
propagons decreases, their incorporation within vesicles should logically decrease as well.
Furthermore, extracellular vesicles were shown to carry Hsp104, Sis1p and Ssa1p [45,51].
These molecular chaperones may engage and associate with propagons [56] within the
vesicles, an activity that could be prevented by the guanidine hydrochloride treatment.

5. Concluding Remarks

Our recent reports suggest the cause-and-effect relationship between macroscopic
hallmarks of [PSI+] (e.g., SDS-resistant Sup35p particles, fluorescent Sup35GFP foci) and
[PSI+] propagons is not as straightforward as previously thought [44,47,53]. In this and
previous reviews, we discussed how EV could help us to access the true physical nature of
yeast prions’ transmissible entities or propagons [6,43]. Deciphering the mechanisms of
spatiotemporal selection and packaging of prion particles inside vesicles is of great interest
not only for the yeast prions field but also for human biology [6,43]. Different types of
EV (e.g., exosomes, microvesicles, ectosomes) are able to secrete misfolded assemblies of
pathological proteins, such as the prion protein PrP, α-synuclein or Tau and contribute to
their prion-like spreading pattern in various neurodegenerative diseases (e.g., Creutzfeldt–
Jakob, Parkinson’s, Alzheimer’s diseases) [111–115].

Fundamental cellular functions, including protein quality control, secretory pathway
and endosomal–autophagic processes, are conserved from yeast to humans. Therefore,
our recent work suggests yeasts could constitute a powerful model to investigate the
mechanisms and molecular determinants that govern the selection, targeting and vesicle
packaging of pathological prion-like protein aggregates in neurodegenerative diseases [43].
Heterologous expression of pathological human proteins in yeast allows the recapitulation
of most of their aggregation and cytotoxic properties. Furthermore, known modifiers of
protein aggregation, such as molecular chaperones or proteolytic systems, are conserved in
yeast and are able to act on these prion proteins [43,116–118]. Yeast offers a vast array of fast
and cost-effective experimental possibilities, including but not limited to the availability of
genome-wide deletion and mutant libraries or automated high-throughput drug screening.
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While the isolation of EV from yeast culture supernatant is a cumbersome process poorly
suited for screening purposes, the isolation of PV is by contrast quick, easy and compatible
with high-throughput assays [47]. We predict that developing yeast models of vesicle-
mediated prion proteins export will allow us not only to gain fundamental knowledge of
the underlying mechanisms but also to design alternative strategies against the propagation
of neuropathological protein assemblies.
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