
HAL Id: cea-03086182
https://cea.hal.science/cea-03086182

Submitted on 22 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

imzML: Imaging Mass Spectrometry Markup Language:
A Common Data Format for Mass Spectrometry

Imaging
Andreas Römpp, Thorsten Schramm, Alfons Hester, Ivo Klinkert, Jean-Pierre

Both, Ron M. A. Heeren, Markus Stoeckli, Bernhard Spengler

To cite this version:
Andreas Römpp, Thorsten Schramm, Alfons Hester, Ivo Klinkert, Jean-Pierre Both, et al.. imzML:
Imaging Mass Spectrometry Markup Language: A Common Data Format for Mass Spectrometry
Imaging. Methods in Molecular Biology, 2011, 696, pp.205-224. �10.1007/978-1-60761-987-1_12�.
�cea-03086182�

https://cea.hal.science/cea-03086182
https://hal.archives-ouvertes.fr

Chapter 12

imzML: Imaging Mass Spectrometry Markup Language:
A Common Data Format for Mass Spectrometry Imaging

Andreas Römpp, Thorsten Schramm, Alfons Hester, Ivo Klinkert,
Jean-Pierre Both, Ron M.A. Heeren, Markus Stöckli,
and Bernhard Spengler

Abstract

Imaging mass spectrometry is the method of scanning a sample of interest and generating an “image” of
the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra
which are usually acquired with identical settings. Existing data formats are not sufficient to describe an
MS imaging experiment completely. The data format imzML was developed to allow the flexible and
efficient exchange of MS imaging data between different instruments and data analysis software.

For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is
stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample
details) are stored in an XML file which is based on the standard data format mzML developed by
HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of
imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary)
are connected by offset values in the XML file and are unambiguously linked by a universally unique
identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file
allows flexible handling of large datasets.

Several imaging MS software tools already support imzML. This allows choosing from a (growing)
number of processing tools. One is no longer limited to proprietary software, but is able to use the pro-
cessing software which is best suited for a specific question or application. On the other hand, measure-
ments from different instruments can be compared within one software application using identical
settings for data processing. All necessary information for evaluating and implementing imzML can be
found at http://www.imzML.org.

Imaging mass spectrometry is the method of scanning a sample of
interest and generating an “image” of the intensity distribution
of a specific analyte. The principle of this method is shown

1. Introduction

205

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
DOI 10.1007/978-1-60761-987-1_12, © Springer Science+Business Media, LLC 2011

206 Römpp et al.

in Fig. 1. The application of MS imaging is rapidly growing with a
constantly increasing number of different instrumental systems
and software tools. An overview of methods and applications of
mass spectrometry imaging has been recently published (1). This
method results in a large number of spectra which are typically
acquired with identical measurement parameters. The data for-
mat described in this chapter was developed within the EU-funded
project COMPUTIS (2). The goal of this project was to develop
new and improved technologies for molecular imaging mass spec-
trometry. An important task was the comparison of images gener-
ated by diverse types of mass spectrometers. Therefore a standard
format for the exchange of MS imaging data was needed. Both
the DICOM standard for in-vivo imaging data (3) and the mzML
standard (4) by HUPO-PSI (5, 6) are not able to completely
represent an imaging MS experiment. Therefore a standardized
data format was developed to simplify the exchange of imaging
MS data between different instrument and data analysis software.
The following institutions were involved in the development of
imzML: Justus Liebig University (JLU), Giessen, Germany; FOM
Institute for Atomic and Molecular Physics (FOM), Amsterdam,
The Netherlands; Commissariat à l’Énergie Atomique (CEA),
Saclay, France; and Novartis Institutes for BioMedical Research
(Novartis), Basel, Switzerland.

Several data formats for MS imaging utilize two separate files:
a small file (ini or XML) for the metadata and a larger (binary) file
for the mass spectral data (e.g., Biomap (7) and internal data for-
mats at FOM and JLU). This structure proved to be very useful
for flexible and fast handling of the imaging MS data and it was
decided to follow this approach for the new data format. In order
to keep as close as possible to existing formats, we decided that
the (small) metadata file should be based on the mass spectrom-
etry standard mzML developed by HUPO-PSI (8). A more
detailed discussion on why mzML was not fully implemented and
about the relation between the two data formats (mzML and
imzML) is found in Note 1. A new controlled vocabulary was

Fig. 1. Schematic process of scanning microprobe MALDI-MS. A desorption laser scans the surface of the target (e.g., a
cell or tissue). The intensity of a selected peak in the resulting mass spectrum is transformed into a pixel of a grayscale
image.

207imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

compiled for imzML to include parameters that are specific for
imaging experiments (see Subheading 2.1.2). All relevant infor-
mation about imzML including specifications and example files
can be found at http://www.imzML.org.

The following section describes the design philosophy of
imzML. The data structure is discussed in more detail in
Subheading 2. Properties and possibilities of imzML files are dis-
cussed in Subheading 4. Available software applications including
an example for a file converter are presented in Subheading 5.

The fundamental goal while developing imzML was to design a
data format for the efficient exchange of mass spectrometry imag-
ing data. At the same time, the format should be easily inter-
changeable with mzML.

The main goals can be summarized as

 1. Ensure complete description of imaging MS experiments
 2. Minimize file size
 3. Ensure fast and flexible data handling
 4. Keep the (XML part of) imzML as close as possible to mzML

imzML consists of two separate files: one for the metadata and
one for the mass spectral data. The metadata is saved in an XML
file (*.imzML). The mass spectral data is saved in a binary file
(*.ibd). A schematic representation of the imzML file structure is
shown in Fig. 2. The connection between the two files is made via

2. imzML Data
Format

2.1. Data Structure

Fig. 2. Data structure of imzML.

208 Römpp et al.

links in the XML file which contain the offset positions of the
mass spectra in the binary file. It is important to keep in mind that
the information is only valid if both files are available. Therefore
the user should be very careful when copying or moving those
files; inaccurate file handling can result in data loss. It is recom-
mended to keep both files in the same folder and to use the same
names for the .imzML part and the .ibd part.

Corresponding XML and binary files contain the same
universally unique identifier (UUID) (9) in order to link them
unequivocally. The UUID is a controlled vocabulary entry in the
<fileContent> tag of the XML file and is also stored at the begin-
ning of the binary file. Comparing both UUIDs allows finding
out if the two files belong to the same measurement/data set.
More details on the implementation of UUIDs are discussed in
Note 2.

The XML file holds the metadata of a MS imaging experiment
which is described by the mzML-based XML structure and the
controlled vocabulary. The XML model of imzML is the same as
for mzML (see the mzML version 1.1.0 documentation for fur-
ther details) (8). The controlled vocabulary was extended in order
to include additional parameters which are needed to describe an
MS imaging experiment (see Subheading 2.1.2). Most of the
changes in the XML part are related to cvParam mapping rules
for the newly introduced parameters of the imaging controlled
vocabulary. One of the most important changes compared to
mzML is the function of the <binary> element which not contain
base64-encoded binary data anymore. It stays empty, which is
compatible to mzML 1.1.0. This results in predefined values for
“encoded length” and “array length” of zero in the parent tags
<spectrum> and <binaryDataArray>. The XML part of imzML
passes mzML validators without errors (only warning messages
for unknown cv entries are displayed). An example of XML code
is given in Fig. 3. Modifications (compared to mzML) are printed
bold and will be discussed in more detail in the following
section.

The controlled vocabulary is used to unequivocally describe the
information in the XML file. The additional imzML CV terms are
stored in an open biomedical ontology ((10, 11)) – the imag-
ingMS.obo file (12). They complement the mass spectrometry
parameters of the MS controlled vocabulary provided by HUPO-
PSI (13) in order to allow a complete description of MS imaging
experiments. An overview of CV entries concerning imaging-spe-
cific parameters and image properties is given in Table 1. These
parameters include information about the image itself and acqui-
sition parameters. For example: How many pixels does the
image contain in the x and y dimension? Which position in

2.1.1. XML

2.1.2. Controlled
Vocabulary

209imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

the image belongs to which spectrum? In which pattern was the
image scanned? Which Matrix was used in which concentration?
It is also necessary to give information about the instrumentation
used. In addition to the mass spectrometer, the ablation laser type
and parameters have to be documented such as wavelength,
energy, and impact angle. The sample stage also plays an essential
role when generating an image: step size and position accuracy.
The parameters concerning the scanning process are explained in
more detail in Subheading “Image Orientation”.

Additional entries were included, which are necessary for han-
dling the external binary file. Four parameters were introduced

Fig. 3. XML code new CV entries are printed bold.

210 Römpp et al.

Table 1
Additional parameters of the controlled vocabulary

ibd file:
External binary uri Location as an URI where to find the ibd file.

ibd checksum:
ibd MD5 MD5 (Message-Digest algorithm 5) is a cryptographic hash

function with a 128-bit hash value used to check the integrity of
files.

ibd SHA-1 SHA-1 (Secure Hash Algorithm-1) is a cryptographic hash function
designed by the National Security Agency (NSA) and published
by the NIST as a U. S. government standard. It is also used to
verify file integrity.

ibd binary type:
Continuous Way of saving spectra in an imzML binary data file (ibd). The m/z

values for all spectra are saved at the beginning of the ibd file.
Then the spectral values follow.

Processed Way of saving spectra in an imzML binary data file (ibd). Every
spectrum is saved with its own m/z and intensity values.

ibd identification:
Universally unique identifier Universally unique identifier is unique throughout the world and

allows to doubtlessly identify the ibd file.

ibd offset handle:
External array length Describes how many fields the external data array contains.
External data Shows that there is no data in the <binary> section of the file but

saved in an external file.
External encoded length Describes the length of the written data stream in byte.
External offset The position in byte where the data of the data array of a mass

spectrum begins.

Image:
Absolute position offset x Describes the position at the x-axis of the upper left point of the

image on the target.
Absolute position offset y Describes the position at the y-axis of the upper left point of the

image on the target.
Max count of pixels x Maximum number of pixels of the x-axis of the image.
Max count of pixels y Maximum number of pixels of the y-axis of the image.
Max dimension x Maximum length of the image in x-axis.
Max dimension y Maximum length of the image in y-axis.
Pixel size x Describes the length in x-direction of the pixels.
Pixel size y Describes the length in y-direction of the pixels.
Image shape Describes the shape of the image.

Laser shot mode:
Pixel mode The laser keeps the position while firing at the same spot one or

several times.
Raster mode The laser is moved while continuously firing at the sample.
Stigmatic mode The laser is moved around one point firing until moved to the next

position (pixel).

(continued)

211imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

Table 1
(continued)

Spectrum position:
Position x Attribute to describe the position of a spectrum in the direction of

the x-axis in the image.
Position y Attribute to describe the position of a spectrum in the direction of

the y-axis in the image.
Position z Attribute to describe the position of a spectrum in the direction of

the z-axis in the image.
Subimage position x Describes the position of a subimage in the direction of the x-axis of

the complete image.
Subimage position y Describes the position of a subimage in the direction of the y-axis of

the complete image.
Subimage position z Describes the position of a subimage in the direction of the z-axis of

the complete image.

Sample stage:
Target material Describes the material the target is made of.
Linescan sequence:
Bottom up The starting point is at the bottom of the sample and the sequence

of the linescans is in up direction (parallel to the y-axis).

Top down The starting point is at the top of the sample and the sequence of
the linescans is in bottom direction (parallel to the y-axis).

Left right The starting point is at the left of the sample and the sequence of
the linescans is in right direction (parallel to the x-axis).

Right left The starting point is at the right of the sample and the sequence of
the linescans is in left direction. (parallel to the x-axis).

No direction The linescans are performed randomly on the sample without any
sequence.

Scan pattern:
Meandering The scanning happens in non-stop way. As soon as the end of the

sample is reached, the scanning direction will be switched and the
scanning is continued. There is no new positioning necessary.

Flyback The scanning always happens in the same direction. As soon as the
end of the sample is reached, the stage is positioned at the
starting edge to begin the next run.

Random access The scanning points are randomly chosen and do not follow a
pattern.

Scan type:
Horizontal linescan The scanning line is a horizontal one.
Vertical linescan The scanning line is a vertical one.

Linescan direction:

Linescan bottom up The starting point is at the bottom of the sample and the scanning
happens in up direction (parallel to the y-axis).

Linescan left right The starting point is at the left of the sample and the scanning
happens in right direction (parallel to the x-axis).

Linescan right left The starting point is at the right of the sample and the scanning
happens in left direction. (parallel to the x-axis).

Linescan top down The starting point is at the top of the sample and the scanning
happens in bottom direction (parallel to the y-axis).

212 Römpp et al.

into the controlled vocabulary to describe the position and length
of the data in the binary file. The “external data” parameter indi-
cates that the mass spectral data is stored in a binary file. The
parameter “external offset” holds the information at which byte
in the binary file the data of the corresponding array starts. If one
adds the value of the “external encoded length” to the value of
the “external offset” the result has to be equal to the “external
offset” of the following binary data array. The parameter “exter-
nal encoded length” describes the byte length, which has to be
read to obtain all the data of the array completely. The parameter
“external array length” indicates the number of values of the
array.

A separate checksum for the binary file was added in order to
find out if the external file has been manipulated or corrupted. It
can be either a SHA-1 (Secure Hash Algorithm) or a MD-5
(Message-Digest Algorithm) hash.

Ensuring the integrity and authenticity of digital data is of
growing importance in today’s information management systems
especially for companies who have to operate in accordance with
GLP regulations (14). Therefore imzML contains a mechanism
to monitor (intentional or accidental) modifications of the data.
This feature is based on asymmetric cryptosystems, also known as
public key systems and hash functions. The checksum of the
binary file is encrypted with a personal key. A public key is needed
in order to verify the integrity of the checksum (and therefore the
data). This feature (in its basic version) only requires three addi-
tional CV entries in the XML file and can thus be easily added to
existing imzML files. This modular setup also allows for changing
the used encryption procedure, e.g., when one method turns out
not to be secure anymore. The encryption is an additional optional
feature. This means the data is still readable without the public
key, but authenticity cannot be tested in this case. This will pro-
tect data against loss (e.g., when one of the keys is lost) and also
ensures readability of the data with (older) software that does not
include the encryption feature.

The pixel in the upper left corner of the MS image is defined as
position 1/1 (Fig. 4). This way every application should generate
images of identical orientation. This particular orientation was
chosen because it is used for image acquisition in several MS
imaging systems. The information of x and y position is part of
the CV parameters in the <spectrum> tag of each mass spectrum
(see also Fig. 3).

Information about the pattern and sequence in which an image
was acquired is not necessary for generating an image from the
imzML file (because x and y position are specified for each indi-
vidual spectrum). But these parameters can be very important for

2.1.2.1. Image Orientation

2.1.2.2. Scan Pattern

213imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

data analysis and interpretation and are therefore part of the
imzML controlled vocabulary. The scan process is unambiguously
described by four parameters. The different scan parameters are
illustrated by examples in Fig. 5. The parameter scan pattern
gives information if the sample was scanned in fly-back or mean-
dering mode. Fly-back means that the linescans always occur in
the same direction. Meandering indicates that the linescans occur
in alternating direction. The scan type defines horizontal or ver-
tical linescans. The linescan direction defines the direction of
the (first) linescan(s). The linescan sequence specifies the chron-
ological order of the linescans.

Fig. 4. sample orientation.

Fig. 5. Examples of scan patterns.

214 Römpp et al.

The imaging binary data file (*.ibd) contains the mass spectral
data of the MS imaging measurement. The first 16 bytes of the
binary file are reserved for the UUID. This identifier is also saved
in the corresponding XML file so that a correct assignment of ibd
and XML file is possible even if the names of both files are differ-
ent. In order to ensure efficient storage, two different binary
modes are defined: continuous and processed. Schematic exam-
ples of these two data types are shown in Fig. 6. “Continuous”
means that an intensity value is stored for each m/z bin even if
there is no signal (resulting in an intensity of zero). As a result,
the m/z axis is identical for all spectra of one image (if the mass
range and bin size is not changed). Therefore it is sufficient to
store the m/z array only once in the binary file (directly behind
the UUID). For each of the spectra only the corresponding inten-
sity values are stored. This structure can reduce the file size sig-
nificantly (see Subheading 3).

On the other hand mass spectra are often processed before they
are stored, e.g., for noise-reduction, peak-picking, deisotoping.
This results in discontinuous and non-constant m/z arrays. In this
case, the m/z array has to be stored for each spectrum separately.
These data are stored as alternating m/z and intensity arrays in
the binary file of imzML. The different storage types are illus-
trated in Fig. 7. More information on choosing the right binary
mode is given in Note 3.

The second parameter influencing the file size is the binary
data type, which is used to store the values of the spectra. The
imzML binary format allows the storage of values in the following
signed integer types: 8 bit, 16 bit, and 32 bit. The values can also
be saved in floating point data types (IEEE 754): 32 bit (single
precision) or 64 bit (double precision). The byte order of mass
spectral data in imzML is little endian (see also Note 2). One
value saved in the 32 bit integer type needs four bytes of disk space.
The disk space needed by all values of all spectra determines the

2.1.3. Binary Data File

Fig. 6. Data types.

215imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

overall file size. Therefore the choice of the data types for intensity
and m/z values directly influences the file size of the binary file.
The data type is specified for each binary data array separately by
CV parameters. More details can be found in Note 4.

The efficient data storage of the imzML format is demonstrated
by an example file consisting of 7,000 spectra (Fig. 8). This file
represents a measurement on a linear ion trap mass spectrometer
(LTQ, Thermo Scientific GmbH, Bremen) (linear ion trap) of 50
by 35 pixel with four spectra (profile mode) acquired for each
pixel. The original raw data in the proprietary LTQ format has a
file size of 215 MB. The imzML files were saved with the follow-
ing settings: m/z values were stored as 32 bit float and intensity
values as 32 bit integer. Conversion of this data to an mzML file
results in a file size of 577 MB. The imzML files are 430 MB and
217 MB for the processed and continuous mode, respectively.
The smaller size of the processed imzML file compared to the
mzML file is mainly due to base64 encoding of the mass spectral

3. imzML File
Properties

Fig. 7. Binary data formats.

216 Römpp et al.

data in the mzML file. The even smaller file size of the continuous
imzML file is due to the fact that the m/z array (which is identical
for all mass spectra) is stored only once at the beginning of the
binary file (see Subheading 2.1.3 for more details). The continu-
ous imzML file is slightly larger (2 MB) than the original raw file.

In addition to the smaller overall size of the imzML files, the
small XML file (several MB) can be used to distribute metadata
over the network. This information can be used to select interest-
ing measurements for which the (large) binary files are down-
loaded selectively (as opposed to downloading the complete
dataset for all samples).

imzML is already implemented in a number of software tools
(some of them are available on http://www.imzML.org). Several
vendors of mass spectrometry imaging instrumentation support
the format (e.g., through export filters). Please check the imzML
website (http://www.imzML.org) for updated information on
supported vendor platforms and available tools.

There are numerous ways to display and analyze MS imaging data
and no single software application can combine all features.
Therefore it is a big advantage if one can freely choose the most

4. Implementation

4.1. Displaying Tools

Fig. 8. File size comparison.

217imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

appropriate software and is not limited by (proprietary) data
formats anymore. Examples of software tools that support imzML
to display and analyze MS imaging data are shown in the follow-
ing. A standard sample (peptide solution on a stainless steel tar-
get) was used for a round-robin experiment in order to compare
different mass spectrometry imaging systems. The images below
show the analysis of this particular measurement on a linear ion
trap mass spectrometer with different software tools. The selected
ion image of m/z 573 is shown for each tool in order to verify
that the data is read and displayed correctly. The specific advan-
tages of each software are illustrated with selected examples.

Biomap by Novartis (Fig. 9) is one of the most widely used
software tools for mass spectrometry imaging. It allows browsing
through selected ion images as well as coregistration of images
and includes a large number of additional analysis tools.

The Datacube Explorer tool by FOM allows dynamic scroll-
ing through masses in a dataset for fast and easy screening of a

Fig. 9. BioMap (Novartis).

218 Römpp et al.

dataset (Fig. 10). It also allows spectral analysis of regions of interest
and contains advanced analysis features such as self-organizing
maps for image classification. This tool is available for free on
http://www.imzML.org.

The fxSpectViewer by CEA is especially suited for handling
very large data files without the need of binning (Fig. 11). It also

Fig. 10. Datacube Explorer (AMOLF).

Fig. 11. fxSpectViewer (CEA).

219imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

includes automatic segmentation of images. This software runs
under Linux and Windows.

Mirion by JLU was especially developed for analyzing high
mass resolution images (Fig. 12). It allows a bin width of 0.001
mass units. This is necessary to take full advantage of the highly
accurate mass data from FTMS instruments. It also allows over-
laying different MS images as well as optical images. Individual
mass spectra are directly accessible from the image.

Several converters for imzML are currently developed and some
are already available on the imzML website (http://www.imzML.
org). An example and general considerations for the conversion of
proprietary data to the imzML format is discussed in the following.
The example shows a software that converts LTQ-based *.RAW
files (proprietary format of Thermo Scientific GmbH, Bremen).

The “Conversion” tab contains details about the input RAW
file. The “Imaging” tab (Fig. 13) includes the information that is
essential to generate a valid imzML file – and therefore an unam-
biguous image. “Binary Mode” determines in which way the data

4.2. Converters

Fig. 12. Mirion (Justus Liebig University).

220 Römpp et al.

Fig. 13. imzML converter: User interface for imaging details.

is stored in the binary file. This option can have significant
influence on the size of the resulting imzML file (see also Fig. 8).
A discussion on which binary mode to use (processed or continu-
ous) can be found in Note 3.

The second property that influences the file size is the data
type which is used to store the values of the m/z and intensity
arrays. This information is included in the “Data Type Details.”
Considerations for choosing the appropriate parameters are given
in Note 4.

The original file might not contain all necessary information
to generate a valid imzML file. This implies that the user has to
add these details manually, for example, the entries on the right
side (“Image Details”). The first four properties specify the char-
acteristics of the scanning procedure which was used when the
image was acquired (see Subheading “Scan Pattern”).

Further information to be put in manually is included in the
“Experiment” tab (Fig. 14). The parameters on the left describe
the laser which was used in the MALDI imaging experiment. On
the right side, the properties of the sample are listed. These
parameters can be included, but they are not required to create a
valid imzML file

When programming such a converter it is important to keep
in mind that redundant information should be avoided if possible
(for the sake of small data files). Some information might be
stored redundantly in XML part of imzML. If for example data is
acquired within an imaging experiment, all the measurements are

221imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

usually acquired with the same instrumental settings and mea-
surement conditions. Therefore it is sufficient to store this
information only once per experiment and not for each spectrum
separately. This redundant kind of information can nicely be
merged into referenceable parameter groups (8). The file size can
be reduced further by omitting CV param values that can be
retrieved from the mass spectral data (e.g., base peak intensity).

 1. Why not use mzML?
 First of all mzML was not available at the beginning of the

COMPUTIS project (2006). At later stages we evaluated
mzML with respect to imaging MS data. The main concern
was the file size of converted data sets. Storing the MS data
in a separate binary file is crucial for handling the very large
imaging MS data sets. After it became clear that our main
requirement (a separate binary file) was not possible in
mzML, we decided to continue with our own format.
However, we decided to store our metadata in the mzML
format in order to be able to easily convert between the two
formats. During the last years we stayed in contact with
HUPO-PSI at various occasions. The result of these discus-
sions was that we call our format imzML (for imaging mzML)
and that it will exist in parallel to mzML for specific use cases

5. Notes

Fig. 14. imzML converter: User interface for experimental details.

222 Römpp et al.

(e.g., large data sets). The structure of the XML metadata file
in imzML will remain compatible with mzML. The imaging
specific CV parameters will be kept in a separate imagingMS
obo file. A number of entries from this file (which were of
general importance) have already been included in the
PSI-MS OBO file.
 imzML files can easily be converted to mzML files (with
the consequence of increased file size and limited metadata)
in order to use mzML-based tools.

 2. Byte order of UUID
 Binary data can be stored in “little endian” or “big endian”

(net standard) byte order. Mass spectral data in imzML binary
files is stored in little endian byte order. The universally
unique identifier (UUID), however, is stored in big endian
according to the RFC 4122 specifications (cf.).

 Intel processors and clones use little endian, therefore
integers in the computer memory are also little endian num-
bers. Depending on the programming language which is
used, byte order may be automatically “corrected” when
reading big endian UUIDs. But some widely used program-
ming languages have no such automatic correction. So the
programmer has to take care of this.

 In the imzML binary file the first 16 bytes are the binary
representation of the UUID. A hexadecimal viewer can be
used to examine these bytes, for example: 52 33 F9 E6 09 B9
4A 00 AB 01 AF 5D F4 BE 38 15.

 In the corresponding imzML file the textual version of the
UUID which consists of 5 blocks delimited by a “-”-char is:
{5233F9E6-09B9-4A00-AB01-AF5DF4BE3815}. Be aware
that in a correct implementation, both representations should
have the same sequence of hexadecimal numerals.

 When implementing imzML on a Microsoft operating
system, one will usually use the Microsoft implementation of
UUID: GUID (general unique identifier). Its memory rep-
resentation is defined by:

 TGUID = structure

Data1 : 4 byte unsigned integer;
Data2 : 2 byte unsigned integer;
Data3 : 2 byte unsigned integer;
Data4 : array of 8 bytes;

end structure;
 In this structure, Data1, Data2, and Data3 are numbers

and therefore subject to byte order, whereas Data4 is just an
array of 8 bytes (and thus independent of byte order). That
means when dumping this memory representation on a little

223imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format

endian computer into a binary file Data1, Data2 and Data3
are inverted whereas Data4 is not inverted.

 3. Continuous or processed format
 The binary mode (continuous or processed), which is used in

the binary file has significant influence on the overall size of
imzML files and is therefore an important parameter. Data
with a continuous mass axis is often generated by time-of-
flight instruments. Discontinuous data can be the result of
data processing. In some cases the appropriate (most effec-
tive) data format can vary for one instrument depending on
the settings and mode of operation. For example, LTQ-based
instruments can generate profile or continuous data in the
linear ion trap mode. Measurements performed in the cen-
troid mode always have to be saved as “processed” due to the
discontinuous mass axis. When the acquisition is set to pro-
file mode the data format depends on the mass analyzer used
for the acquisition. Data from Fourier transform analyzers
(ICR or Orbitrap) is always modified before storage and thus
has to be stored as “processed” (because of on-the-fly data-
processing). If the linear ion trap analyzer is used for detec-
tion the data can be saved in continuous mode.

 It is possible to convert continuous into processed data.
The m/z values of the first spectrum simply have to be saved
for every spectrum. After conversion, all advantages of the
processed mode are usable: for example, skipping zero inten-
sity values.

 A special case is the storage of data acquired by secondary
ion mass spectrometry (SIMS). This data is typically stored in
an “event-based” format due to the much lower number of
ions detected in this ionization mode. A data point consists
of three values: x, y coordinates, and m/z (or time-of-flight)
value. This data has to be converted in order be stored in the
binary file. For each pixel the events are sorted by increasing
m/z values (after conversion from time-of-flight, if neces-
sary). These data have to be binned in order to be stored as
mass spectra: events within a defined mass bin (e.g., 1 u) are
summed up. The binned data can be stored in the binary file
of the imzML format (usually in the “processed mode”).

 It has to be stressed again that the most efficient data for-
mat strongly depends on the type of data and has to be evalu-
ated for each set of experiments.

 4. How to choose the appropriate binary data type?
 As already mentioned above the size of the binary file is

dependent on the applied data. Choosing an unsuitable data
type either results in loss of information or unnecessarily large
data files. Some considerations on deciding which data type

224 Römpp et al.

to use for m/z and intensity values, respectively, are given
below. If the data of a mass spectrometry imaging experi-
ment was acquired by a very accurate mass spectrometer
(e.g., FT-ICR), the accuracy of the measured m/z values
(up to eight significant digits) should be taken into account
by choosing the “64 bit float” (double precision) data type
(up to 15 significant digits). Storing the data in “32 bit float”
(single precision) would only allow seven significant digits,
resulting in a loss of precision.

 Intensity values of acquired spectra can be of integer or
floating point data type. This depends on the way the ions
are detected and on the digitizer of the used mass spectrom-
eter. The best data type for integer values can be estimated by
taking a look at the maximum intensity value of all spectra. If
for example, the maximum intensity value is 125 then a data
type of 8-bit integer will be sufficient to store these values.
The usage of a data type with a range too small for all the
values of a mass spectrometry imaging experiment will result
in a loss of information. The same applies for the usage of an
integer data type for floating point values, because the deci-
mals of the numbers will be cut off by rounding.

References

 1. McDonnell LA, Heeren RMA (2007) Imaging
mass spectrometry. Mass Spectrom Rev
26:606–643

 2. EU Project COMPUTIS (Accessed at http://
www.computis.org)

 3. Digital imaging and communications in
medicine – DICOM. (Accessed at http://
medical.nema.org)

 4. Deutsch E (2008) mzML: a single, unifying
data format for mass spectrometer output.
Proteomics 8:2776–2777

 5. Hermjakob H (2006) The HUPO proteom-
ics standards initiative – Overcoming the frag-
mentation of proteomics data. Proteomics
6(Suppl 2):34–38

 6. Orchard S, Hermjakob H, Taylor CF et al (2005)
Second Proteomics Standards Initiative Spring
Workshop. Expert Rev Proteomics 2:287–289

 7. Biomap. (Accessed at http://maldi-msi.org/
index.php?option=com_content&task=view
&id=14&Itemid=39)

 8. HUPO PSI mzML documentation version
1.1. (Accessed at http://psidev.info/index.
php?q=node/257)

 9. RFC 4122 – A Universally Unique IDentifier
(UUID) URN Namespace. (Accessed at
http://tools.ietf.org/html/rfc4122)

 10. Smith B, Ashburner M, Rosse C et al (2007)
The OBO foundry: coordinated evolution
of ontologies to support biomedical data
integration. Nat Biotechnol 25:
1251–1255

 11. Cote RG, Jones P, Martens L, Apweiler R,
Hermjakob H (2008) The ontology lookup
service: more data and better tools for con-
trolled vocabulary queries. Nucleic Acids Res
36:372–376

 12. Ontology of Mass Spectrometry Imaging.
(Accessed at http://www.maldi-msi.org/
index.php?option=com_content&view=articl
e&id=187&Itemid=67)

 13. PSI MS obo. (Accessed at http://psidev.cvs.
sourceforge.net/checkout/psidev/psi/psi-
ms/mzML/controlledVocabulary/psi-ms.
obo)

 14. OECD (1995) The application of the princi-
ples of GLP to computerised systems

http://www.computis.org
http://www.computis.org
http://medical.nema.org
http://medical.nema.org
http://maldi-msi.org/index.php?option=com_content&task=view&id=14&Itemid=39
http://maldi-msi.org/index.php?option=com_content&task=view&id=14&Itemid=39
http://maldi-msi.org/index.php?option=com_content&task=view&id=14&Itemid=39
http://psidev.info/index.php?q=node/257
http://psidev.info/index.php?q=node/257
http://tools.ietf.org/html/rfc4122
http://www.maldi-msi.org/index.php?option=com_content&view=article&id=187&Itemid=67
http://www.maldi-msi.org/index.php?option=com_content&view=article&id=187&Itemid=67
http://www.maldi-msi.org/index.php?option=com_content&view=article&id=187&Itemid=67
http://psidev.cvs.sourceforge.net/checkout/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
http://psidev.cvs.sourceforge.net/checkout/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
http://psidev.cvs.sourceforge.net/checkout/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
http://psidev.cvs.sourceforge.net/checkout/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo

	Chapter 12: imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format for Mass Spectrometry Imaging
	1. Introduction
	2. imzML Data Format
	2.1. Data Structure
	2.1.1. XML
	2.1.2. Controlled Vocabulary
	2.1.2.1. Image Orientation
	2.1.2.2. Scan Pattern

	2.1.3. Binary Data File

	3. imzML File Properties
	4. Implementation
	4.1. Displaying Tools
	4.2. Converters

	5. Notes
	References

