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A B S T R A C T

Background: Early diagnosis of coronavirus disease 2019 (COVID-19) is of the utmost importance but remains
challenging. The objective of the current study was to characterize exhaled breath from mechanically
ventilated adults with COVID-19.
Methods: In this prospective observational study, we used real-time, online, proton transfer reaction time-of-
flight mass spectrometry to perform a metabolomic analysis of expired air from adults undergoing invasive
mechanical ventilation in the intensive care unit due to severe COVID-19 or non-COVID-19 acute respiratory
distress syndrome (ARDS).
Findings: Between March 25th and June 25th, 2020, we included 40 patients with ARDS, of whom 28 had
proven COVID-19. In a multivariate analysis, we identified a characteristic breathprint for COVID-19. We
could differentiate between COVID-19 and non-COVID-19 ARDS with accuracy of 93% (sensitivity: 90%, speci-
ficity: 94%, area under the receiver operating characteristic curve: 0�94-0�98, after cross-validation). The four
most prominent volatile compounds in COVID-19 patients were methylpent-2-enal, 2,4-octadiene 1-chloro-
heptane, and nonanal.
Interpretation: The real-time, non-invasive detection of methylpent-2-enal, 2,4-octadiene 1-chloroheptane,
and nonanal in exhaled breath may identify ARDS patients with COVID-19.
Funding: The study was funded by Agence Nationale de la Recherche (SoftwAiR, ANR-18-CE45-0017 and
RHU4 RECORDS, Programme d’Investissements d’Avenir, ANR-18-RHUS-0004), R�egion Île de France (SESAME
2016), and Fondation Foch.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

As of November 21st, 2020, about 57 million of people worldwide
had been infected with severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), and about 1�4 million had died from coronavirus
disease 2019 (COVID-19) [1]. Approximately 5% of patients with
COVID-19 will develop acute respiratory distress syndrome (ARDS),
septic shock, or multiple organ dysfunction [2]. Around the world,
unprecedented research efforts are being focused on the prevention,
early detection, diagnosis and management of this lethal disease. To
date, only one antiviral drug (remdesivir) has been approved for the
treatment of patients hospitalized for COVID-19 [3]. More recently, a
large trial showed that dexamethasone at a daily dose of 6 mg for
10 days substantially reduced the risk of 28 day death (age-adjusted
rate ratio [95% confidence interval (CI)]: 0�83 [0�75 to 0�93], particu-
larly in patients with severe disease requiring invasive mechanical
ventilation (rate ratio: 0�64 [0�51 to 0�81]) [4]. Although the early
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Research in context

Evidence before this study
Early diagnosis of coronavirus disease 2019 (COVID-19) is of

the utmost importance but remains challenging. Around 5% of
patients with COVID-19 will develop acute respiratory distress
syndrome (ARDS), septic shock and/or multiple organ failure;
ideally, these patients should be identified as soon as possible.
Breath analysis is an innovative, non-invasive, real-time, point-
of-care technique for detecting volatile organic compounds
(VOCs) in expired breath. It has potential for use in diagnosis
and large-scale screening. However, it was not previously
known whether patients with COVID-19 have a breath “signa-
ture” (also known as a “breathprint”).

Added value of this study
Here, we show that breath analysis can discriminate

between COVID-19 ARDS and non-COVID-19 ARDS. We charac-
terized a VOC breathprint that was able to identify COVID-19
ARDS patients requiring invasive mechanical ventilation with
high sensitivity and specificity. The four most prominent vola-
tile compounds in the patients’ breath were methylpent-2-
enal, 2,4-octadiene 1-chloroheptane, and nonanal. The COVID-
19 breathprint did not depend on the severity of the ARDS or
the patient’s viral load.

Implications of all the available evidence
All the available evidence suggest that real-time, non-inva-

sive breath analysis could enable the large-scale screening and
thus earlier treatment of patients likely to develop severe forms
of COVID-19.
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immune response may not depend on the severity of the illness, the
most severely ill patients show persistent elevations of blood inflam-
matory markers (such as IL-1a, IL-1b, IL-6, IL-10, IL-18 and TNF-a) 10
or so days after SARS-CoV-2 infection, with a very high risk of subse-
quent organ injury [5�7]. Proteomic and metabolomic studies of
serum have described a COVID-19-specific molecular signature;
severe and non-severe forms of COVID-19 differ with regard to amino
acid metabolism and the expression of acute phase proteins [8].
Breath analysis is an innovative, non-invasive, real-time point-of-
care technique for detecting volatile organic compounds (VOCs) with
potential for use in diagnosis and large-scale screening [9,10]. Thou-
sands of VOCs have been identified in human breath following infec-
tious, inflammatory or pathological events [11,12]. It has been
suggested that the analysis of exhaled breath can be used to diagnose
tuberculosis, invasive fungal infections, and bacterial colonization of
the respiratory tract [13�16], together with ARDS and ventilator-
associated pneumonia in patients in the intensive care unit (ICU)
[17�22]. Likewise, previous studies have suggested that VOC analysis
is of value in the diagnosis of viral infections in patients with chronic
obstructive pulmonary disease and of influenza infections in a swine
model [23,24]. The airway and lung damage caused by SARS-CoV-2
[25] might conceivably result in the release of characteristic VOCs in
the exhaled breath. To test this hypothesis, we determined the metab-
olomic breath signature in a group of ARDS patients with or without
COVID-19 and who required invasive mechanical ventilation.

Methods

Study design and oversight

This prospective study was part of the observational phase of the
ongoing RECORDS trial (NCT04280497) and was conducted at the ICU
of Raymond Poincar�e Hospital (Garches, France). The RECORDS study
protocol was approved by an ethics commitee (Comite de Protection
des Personnes EST I, Dijon, France; reference 20.03.10.51415) and the
French National Agency for Healthcare Product Safety (ANSM, Paris,
France). The study was registered with the European Union Drug Regu-
lating Authorities Clinical Trials Database (EudraCT 2020-000296-21).
Whenever possible, participants or their legally authorized next of kin
provided written, informed consent before inclusion. In the remaining
cases, patients provided their deferred, written, informed consent. This
investigator-led study was publicly funded. All the authors had full and
independent access to all data and vouch for the integrity, accuracy, and
completeness of the data and analysis and for the adherence of the trial
to the protocol.

Study participants

Adult patients (aged 18 or over) in ICUs were eligible for inclusion
if they had ARDS and required invasive mechanical ventilation. ARDS
was defined as all of the following: (i) acute onset, i.e., within one
week of an apparent clinical insult, followed by progression of the
respiratory syndrome, (ii) bilateral opacities on chest imaging not
explained by another lung disease (e.g., pleural effusion, atelectasis,
nodules etc.), (iii) no evidence of heart failure or volume overload,
and (iv) PaO2/FiO2 � 300 mm Hg, and positive end expiratory pressure
(PEEP) � 5 cm H2O [26]. The main exclusion criteria were pregnancy, an
expectation of death within 48 h, and the withholding or withdrawal of
treatment.

Study measurements and procedures

Variables recorded at baseline were patient demographics and
anthropometrics, the source of infection, and the severity of illness
(according to the Simplified Acute Physiology Score (SAPS) II and the
Sequential Organ Failure Assessment (SOFA)) [27,28]. The following
variables were recorded at baseline and daily during the hospital
stay: core body temperature, vital signs, central hemodynamic data,
standard laboratory data, microbiological and virologic data. Samples
for routine surveillance of lower respiratory tract colonization were
obtained every 72 h until the patient had been weaned off mechanical
ventilation or had died. A nonbronchoscopic bronchoalveolar lavage
was performed with three 20 mL aliquots of sterile 0�9% saline solu-
tion, with a view to collect at least 5�10 mL of effluent per sample.
Samples of blood and nasopharyngeal, bronchial or bronchoalveolar
lavage fluids were assayed for SARS-CoV-2 and other respiratory
viruses with a PCR test, as described by the French National Reference
Center for Respiratory Viruses (Institut Pasteur, Paris, France). We also
recorded life-supportive therapies including mechanical ventilation,
renal replacement therapy, intravenous fluids bolus and the adminis-
tration of vasopressors, and adjunct therapies including corticoste-
roids, thiamine, vitamin C, other vitamins, nutritional supplements,
blood products, anticoagulants, sedatives, stress ulcer prophylaxis, and
anti-infective drugs.

Breath analysis

Each patient’s expired air was analyzed daily in the morning until
discharge. Measurements were made with a proton-transfer-reaction
quadrupole time-of-flight mass spectrometer (Ionicon Analytik GmbH,
Innsbruck, Austria) placed outside the patient room. Samples were
obtained via a heated transfer line (length: 1.6 m) connected directly
to the end of the endotracheal tube (i.e., without disconnection from
themechanical ventilator) and with an air flow of 50mL/min. To elimi-
nate the dependency on the oxygen concentration in the sample
matrix, recordings were performed in patients with a fraction of
inspired oxygen of 100% for at least 3 min [29]. The acquisition took
2 min. H3O+ was used as the primary ion and the instrument settings
were as follows: source voltage, 120 V; drift tube pressure, 3�8 mbar;
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drift tube temperature, 60 °C; and drift tube voltage, 959 V. The mass
spectrumwas acquired up tom/z = 392, with a time resolution of 0�1 s.

Data and statistical analysis

Patient characteristics were expressed as the median [interquar-
tile range (IQR)] for continuous variables and the frequency (percent-
age) for categorical variables. Patients with and without COVID-19
were compared using Fisher’s exact test for categorical variables, and
a t-test or the Mann-Whitney test for normally and non-normally
distributed continuous variables (as evaluated with the d'Agostino-
Pearson test), respectively.

Mass spectrometry data were processed with the ptairMS R pack-
age (https://github.com/camilleroquencourt/ptairMS) and included
mass calibration, expiratory phase detection on the CO2 extracted ion
chromatogram, peak detection and quantification with background
subtraction, normalization, alignment, isotope identification, and
imputation of missing values. All concentration values were quoted
in ppb [30]. After aligning each individual peak, ions detected in
more than 70% of at least one group (COVID vs. non-COVID-19 ARDS)
were kept; this resulted in 81 features. Missing values (corresponding
to ions in exhaled breath that were not detected by the preprocessing
algorithm) were imputed with the ptairMS package, which returns to
the raw data and integrates the noise at the exact missing m/z. Data
were then log2-transformed and standardized. Outliers (patients with a
z-score >3 for at least five features) were deleted. In the remaining
patients, saturated ions (acetone, H3O+, H2O-H3O+, oxygen) and isotopes
were deleted to leave a final table of 65 features. For the univariate anal-
ysis, a Wilcoxon test was performed and p-values were adjusted to
control for the false discovery rate [31]. For multivariate analysis, data
were analyzed first with principal component analysis and then with
machine learning algorithms with different mathematical backgrounds
(orthogonal partial least-squares discriminant analysis (OPLS-DA), linear
support vector machine (SVM), elastic net, and random forest (RF); sum-
marized in Table S1) with the R packages ropls, e1071, and caret
[32�35]. A 10-fold, stratified cross-validation was repeated four times
(in order to avoid overfitting the small number of data points), and fea-
tures were selected with the elastic net and RF approaches. The models’
parameters were tuned to optimize the accuracy of cross-validation.
Features were ranked according to the specific metrics of eachmodeling
method (p-values from the Wilcoxon test, absolute loading values from
PCA, the variable importance in projection fromOPLS-DA, the coefficient
values from the elastic net and SVMmodels, and the feature importance
from the RFmodel). An aggregated rankingwas then computed bymax-
imizing the sum of the Spearman correlation with each of the metric
rankings (RankAggreg R package) [36]. The correlations between the
metric rankings and the aggregated rank are shown in Fig. S3. To limit
the risk of overfitting, we aggregated several metrics from statistical
models with different mathematical backgrounds. The effects of tidal
volume, serum C-reactive protein (CRP) level, body temperature, and
the number of days spent in the ICU were investigated in a correlation
test with the three first components of the PCA (using a Pearson’s test
for continuous variables and a chi-squared test for categorical variables)
to detect putative factors with a strong impact on the VOC concentra-
tions which may interfere with the prediction of the COVID-19 status
(Fig. S1). For the positive end-expiratory pressure (PEEP) and respiratory
rate (the median levels of which differed for each COVID-19 status), we
performed a Pearson correlation test within each group (as described in
the Supplementary Material and Fig. S2). No significant correlations
were detected by any of these tests.

A longitudinal univariate analysis of the most important features
was performed with a mixed effects model. The fixed effect repre-
sents the change in the VOC concentration as a function of the period
of mechanical ventilation, with only one measurement per patient
per day. We chose a spline function (sum of four b-spline functions
basis of degree three uniformly distributed over time) for the fixed
effect and an intercept per patient for the random effect. Intergroup
differences in trends and means were assessed with an F-test (p-
value <0�05) adjusted for the false discovery rate. The test compares
the residuals of models with and without COVID status as a predictor.
Correlations between VOC concentrations, the SAPS II, the SOFA
score, and the viral load were analyzed using Pearson’s correlation
test, after adjustment for the false discovery rate.

Role of the funding source

The funding source had no role in study design; in the collection,
analysis, and interpretation of data; in the writing of the report; and
in the decision to submit the paper for publication. The correspond-
ing author confirms that he had full access to all the data in the study
and had final responsibility for the decision to submit for publication.

Results

Patients

Between March 25th and June 25th, 2020, 40 patients (of whom 28
had confirmed COVID-19-related ARDS) were included in the study
and a total of 303 measurements were made. Compared with the
patients with non-COVID-19 ARDS, the patients with COVID-19 ARDS
had (i) a higher respiratory rate, FiO2, PEEP and CRP on admission, (ii)
a higher incidence of treatment with hydroxychloroquine and a
lower incidence of treatment with fludrocortisone after admission,
and (iii) a greater likelihood of renal replacement therapy (Table 1).

Metabolomic analysis of exhaled breath

We first used an untargeted metabolomic strategy to discover the
signature associated with COVID-19 ARDS. To this end, we used the
first breath sample collected after admission. Twelve of the 40 partic-
ipants had been hospitalized for more than 10 days at the start of the
sampling period and so were excluded from this first part of the
study. Hence, we analyzed 18 patients with COVID-19 ARDS and 10
with non-COVID-19 ARDS. The study groups’ demographic character-
istics are summarized in Table S2. A principal component analysis
and an orthogonal partial least-squares discriminant analysis showed
that COVID-19 was associated with a specific signature in the expired
air, i.e., the breathprint could discriminate between COVID-19 ARDS
and non-COVID-19 ARDS cases (Fig. 1). The use of three machine
learning algorithms yielded an accuracy of 93% for all three classifiers,
based on the selection of 19, 16 or 65 features for the elastic net, ran-
dom forest, and support vector machine algorithms, respectively (in
a 10-fold stratified cross-validation, repeated four times). The corre-
sponding receiver operating characteristic curves are shown in
Fig. 2a. AWilcoxon test with p-value correction for the false discovery
rate highlighted VOCs that significantly distinguished between the
two groups (p<0�05). We checked that none of the other external
covariates impacted the VOC concentrations and interfered with the
model’s predictions (see the Supplementary Material). To determine
which VOCs were most discriminant for COVID-19 ARDS, we per-
formed a rank aggregation based on the various metrics from the pre-
viously mentioned models and the hypothesis tests. The four most
relevant features in the rank aggregation were at m/z 99�08, 111�12,
135�09, and 143�15 (Fig. 3a). Using these four features only, the elas-
tic net, random forest, and support vector machine algorithms
yielded an accuracy of between 89% and 93% (Fig. 2b). We therefore
investigated the expression of these VOCs in the whole study popula-
tion throughout the period of mechanical ventilation (Fig. 3b). We
observed that the VOC concentrations (i) were significantly higher in
the breath of patients with COVID-19 ARDS than in the breath of
patients with non-COVID-19 ARDS, and (ii) tended to decrease over
the first 10 days of hospitalization. The putative annotations for the
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Table 1
Patient characteristics and treatments

COVID-19 ARDS Non-COVID-19 ARDS p value

Number of patients (n) 28 12 -
Males/females (n) 20/8 6/6 0�28
Age (years) 61 [55-72] 72 [54-79] 0�75
Body weight (kg) 80�0 [66�6-87�6] 86�5 [65�3-94�1] 0�71
Height (cm) 170 [164-175] 173 [169-175] 0�55
Body mass index (kg/m2) 26�3 [23�7-32�4] 28�9 [23�0-30�9] 0�79
SAPS II score in the first 24 hours 62 [49-68] 46 [40-57] 0�051
SOFA score in the first 24 hours 11 [7-12] 8 [5-12] 0�37
Comorbidities: (n (%))

26- high blood pressure
11 (39) 6 (50) 0�73

26- chronic obstructive pulmonary disease
2 (7) 1 (8) >0�99

26- ischemic cardiac disease
5 (18) 3 (25) 0�68

26- cancer
2 (7) 3 (25) 0�15

Treatments before admission: (n (%))

26- glucocorticoids
1 (4) 3 (25) 0�073

26- conversion enzyme inhibitors
5 (18) 1 (8) 0�54

26- angiotensin antagonists
2 (7) 2 (16) 0�57

Interventions after admission: (n (%))

26- catecholamines
17 (61) 4 (33) 0�17

26- renal replacement therapy
9 (32) 0 (0) 0�038

Treatments after admission: (n (%))

26- hydroxychloroquine
27 (96) 1 (8) <0�0001

26- remdesivir
2 (7) 0 (0) >0�99

26- lopinavir/ritonavir
7 (25) 0 (0) 0�081

26- glucocorticoids
11 (39) 6 (50) 0�73

26- fludrocortisone
1 (4) 4 (33) 0�022

26- eculizumab
12 (43) 4 (33) 0�73

Body temperature at first sample (°C) 37�4 [36�5-38�3] 37�3 [36�8-37�8] 0�84
Respiratory rate at first sample (breaths per min) 26 [25-28] 20 [18-23] <0�0001
Tidal volume at first sample (mL) 420 [400-475] 438 [400-490] 0�99
Fraction of inspired oxygen at first sample (%) 80 [50-100] 48 [31-68] 0�007
Positive end-expiratory pressure at first sample (cm H2O) 10 [8-13] 5�5 [5-8] 0�0002
Serum creatinine at first sample (mM) 74 [56-137] 67 [44-86] 0�30
Serum C-reactive protein at first sample (mg/L) 195 [175-268] 76 [23-119] 0�002

Continuous data are presented as the median [IQR].
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four compounds at m/z 99�08, 111�12, 135�09, and 143�15 were
respectively methylpent-2-enal, 2,4-octadiene 1-chloroheptane, and
nonanal.

Correlation with viral load and severity scores

The viral load in bronchoalveolar fluid was measured for 18
patients. The median [IQR] value in the first sample was 7�2
[6�2�8�4] log eq. copies/mL. The VOC concentrations in the first sam-
ple were not significantly correlated with the bronchoalveolar fluid
viral load or with the severity of illness (i.e., the SAPS II and SOFA score)
[27,28] measured during the first 24 h in the ICU (Table 2, |r|< 0�4).

Discussion

This study provided proof of concept for the measurement of
VOCs and the determination of a specific VOC breathprint in the
exhaled breath from patients with COVID-19-related ARDS requiring
invasive mechanical ventilation in the ICU. This breathprint was
independent of the severity of illness and the viral load. Four VOCs
(methylpent-2-enal, 2,4-octadiene 1-chloroheptane, and nonanal)
may discriminate between COVID-19 and non-COVID-19 ARDS.

We applied a highly sensitive, rapid, non-invasive, real-time
mass spectrometry breath analysis [37,38]. This contrasts with
offline technologies, which require a sampling step and remote,
time-consuming analytical steps [21,22]. Implementation of a non-
targeted strategy (as described here) is mandatory for the discovery
of novel biomarkers. The subsequent diagnostic validation and clini-
cal implementation can be based on less cumbersome technologies,
such as mass spectrometers dedicated to targeted analyses or porta-
ble “electronic noses” with a set of sensors that are relatively selec-
tive for different families of VOCs (as previously used in patients
with ARDS) [20].

The first (cross-sectional) part of the present study enabled us to
identify a specific signature. We then performed a longitudinal analy-
sis of expired air in ARDS patients, which allowed us to confirm the
VOC signature and to track the changes over time in the VOC concen-
trations. Two of the four prominent VOCs (methylpent-2-enal and



Fig. 1. Multivariate analysis. Principal component analysis (left) and orthogonal partial least squares - discriminant analysis (right) of the breath signature in intubated, mechani-
cally ventilated ICU patients with a positive (red) or negative (blue) PCR test for SARS-CoV-2.

Fig. 2. Receiver operating characteristic curves for models classifying patients with COVID-19 vs. non-COVID-19 ARDS. a. Complete model. The use of three machine learning algo-
rithms (elastic net, support vector machine (SVM), and random forest (RF)) yielded an accuracy of up to 93%, with a 10-fold cross validation repeated four times and based on the
selection of 19 features (elastic net), 16 features (random forest) or all 65 features (support vector machine) from the full dataset. After internal cross-validation, the sensitivity was
90% and the specificity was 94%. b. Model with the four most important features only. After internal cross-validation, the sensitivity ranged from 90% to 98% and the specificity
ranged from 88% to 94%.
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nonanal) are aldehydes, while 2,4-octadiene is an alkadiene. These
three compounds are known to be expressed in breath [39,40], while
1-chloroheptane is probably not endogenous. Nonanal is a sub-prod-
uct of the destruction of the cell membrane as a result of oxidative
stress; reactive oxygen species may be generated by various type of
inflammatory, immune and structural cell in the airways [41]. In
studies of expired air from patients with ARDS, Schubert et al. found
abnormally low isoprene concentrations and Bos et al. reported
abnormally high concentrations of octane, acetaldehyde and 3-meth-
ylheptane [21,22]. Differences in study populations (non-COVID-19
vs. COVID-19 ARDS) and analytical methods (offline vs. online) might
explain the differences between the VOCs identified in the present
study and those identified in previous studies of ARDS [21,22].
Although there may be an association between VOCs and disease, the
underlying biochemistry has not been fully characterized.

In line with previous reports, the VOC concentrations measured
here were not correlated with the severity of illness (as judged by the
SAPS II and the SOFA score) [21]. This finding suggest that the exhaled
breath signature is a marker of COVID-19 per se, rather than of the
severity of illness. Likewise, the VOC concentrations were not corre-
lated with viral load, suggesting that this signature may be a marker
of the disease related to SARS-CoV-2 rather than of virus carriage.

Our interpretation of the present data may have been limited by
differences between the COVID-19 and non- COVID-19 ARDS sub-
groups. Patients with COVID-19 ARDS cohort had higher respiratory
rate, FiO2, PEEP and CRP values on admission. The respiratory rate,
PEEP and CRP were not found to interfere with the VOC predictive
signature, and all the patients were sampled when breathing 100%
FiO2 (to avoid mass spectrometry interference by oxygen) [29]. Simi-
larly, patients with COVID-19 ARDS were more likely to have been
treated with hydroxychloroquine. However, this drug was adminis-
tered to the patients after their first sample had been analyzed.
Although the VOC concentrations decreased over time, the treat-
ments did not change, and there was no correspondence between



Fig. 3. Longitudinal analysis of VOCs in expired breath. The four features (m/z 99�08, 111�12, 135�09, and 143�15) contributing the most to the models were assessed in the first
sample available for each patient (a) and over time (b) during the ICU stay for intubated, mechanically ventilated patients with COVID-19 ARDS (in red, n = 28) or non-COVID-19
ARDS (in blue, n = 12). All the points for a given patient are connected, and the bold lines correspond to the fixed effect of the mixed model for each group. p-values come from aWil-
coxon test (a) and an F-test (b).

Table 2
Correlations between VOC concentrations and the SAPS II, SOFA score and viral
load.

SAPS II score SOFA score Viral load
VOC (m/z) r p-value r p-value r p-value

99�08 0�04 0�88 0�36 0�13 0�08 0�70
111�12 0�02 0�93 0�28 0�25 -0�14 0�48
135�09 0�05 0�85 0�35 0�14 -0�0004 1�00
143�15 0�12 0�62 0�27 0�25 -0�23 0�24

r: Pearson's correlation coefficient.
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the VOCs described in the present study and the molecular masses of
the known metabolites of hydroxychloroquine. Lastly, the sample
size of this pilot study was limited and these observations will
require confirmation with an external validation cohort.

In conclusion, we determined a COVID-19-specific breath metabo-
lomic signature in patients with ARDS requiring invasive mechanical
ventilation. Knowledge of this specific breathprint might enable the
development of rapid, non-invasive, point-of-care tests for large-
scale COVID-19 screening.
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