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ABSTRACT: A series of arene-bridged dithorium complexes was synthesized via the reduction by potassium graphite of a Th(IV)
precursor in the presence of arenes. All these compounds adopt an inverse-sandwich structure, with the arene bridging two thorium
centers in a μ-η6,η6-mode. Structural and spectroscopic data support the assignment of two Th(IV) ions and an arene tetraanion,
which is an aromatic structure according to Hückel’s rule. Arene exchange reactions revealed that the stability of the corresponding
compounds follows the series naphthalene ≪ toluene < benzene ≈ biphenyl. Reactivity studies showed that they function as four-
electron reductants capable to reduce anthracene, cyclooctatetraene, alkynes, and azobenzene, while a mononuclear thorium
anthracene complex could reduce benzene. Density functional theory calculations unveiled that the bonding interactions consist of δ
bonds between thorium 6d and 5f orbitals and arene π* orbitals, showing a significant covalent character, able to stabilize highly
reduced arene ligands.

f-Element arene interactions1−3 proved critical in f-element
catalysis4−7 and stabilizing novel oxidation states.8−12 Among
f-element arene complexes, arene-bridged dinuclear com-
pounds with an inverse-sandwich structure are arguably the
most studied.2,3 Examples include benzene-bridged dinuclear
lanthanide complexes,13−17 tetraanionic biphenyl-bridged
dinuclear rare-earth metal complexes,18,19 and, most notably,
a large number of arene-bridged diuranium complexes.3,20−33

The remarkable robustness of the inverse-sandwich diuranium
arene motif was emphasized by a ready exchange of the
ancillary ligand,23 a facile change of metal oxidation states,28,30

and C−H borylation of the arene.27 In-depth experimental and
computational studies elucidated that the unusual stability of
the uranium-arene interaction should be attributed to the
formation of two δ bonds between uranium 5fδ orbitals and
arene π* orbitals, which lie lower in energy than the
nonbonding 5f orbitals.22,31,32 Inverse-sandwich diuranium
arene complexes were employed as low valent uranium
synthons to obtain novel compounds,25,26,33,34 which would
otherwise be difficult to synthesize, as well as inspired the
incorporation of arene in a supporting ligand framework,35,36

resulting in an unprecedented redox reactivity.4,5,37−39

However, despite the many precedents of inverse-sandwich
diuranium arene complexes,3 and the close analogy between
thorium and uranium,40−42 there is no example of an inverse-
sandwich dithorium arene complex. Even thorium complexes
of reduced arenes are rare: only three structurally characterized
thorium reduced naphthalene complexes, in which Th(IV) was
bound to a distorted naphthalene dianion in an η4-mode, were
reported by Gambarotta et al.43−45

We previously reported a series of inverse-sandwich rare-
earth metal biphenyl complexes [(NNTBS)M]2(μ-η

6,η6-
C6H5Ph)[K(solvent)]2 (M2-biph-K2 , NNTBS = fc-
(NSitBuMe2)2, fc = 1,1′-ferrocenediyl, M = Sc, Y, La, Lu,

Gd, Dy, Er)18,19 and the inverse-sandwich diuranium toluene
complex [(NNTBS)U]2(μ-η

6,η6-C6H5Me) (U2-tol).
25 Encour-

aged by these results, we sought to pursue the analogous
inverse-sandwich dithorium arene complexes. Herein, we
report their synthesis and characterization together with
reactivity studies and a computational analysis of their
electronic structure and bonding interaction.
The Th(IV) precursor (NNTBS)ThCl2(THF) (ThCl2) was

prepared from ThCl4(DME)2 and (NNTBS)K2(OEt2)
46

(Scheme 1a). Following the protocol for Y2-biph-K2,
18 the

addition of 2.5 equiv of KC8 into a precooled THF solution of
an equivalent of ThCl2 and 0.5 equiv of biphenyl at −78 °C
resulted in an immediate color change to black (Scheme 1b).
The 1H NMR spectrum of the crude reaction mixture showed
diamagnetic peaks similar to those of Y2-biph-K2.

18 X-ray
crystallography confirmed the product to be [(NNTBS)Th-
(THF)]2(μ-η

6,η6-C6H5Ph) (Th2-biph). The other Th2-arene
complexes were prepared analogously (Th2-naph, Th2-
benzene, Th2-tol, Scheme 1c−e).
All Th2-arene compounds feature an inverse-sandwich

structure with both thorium ions bound to the same phenyl
ring in a symmetric μ-η6,η6-fashion (Th2-benzene, Figure S34;
Th2-tol, Figure S35; Th2-biph, Figure S36; Th2-naph, Figure
S37). The structures of Th2-tol and Th2-naph are shown as
representatives (Figure 1) and will be discussed for
comparison. For Th2-tol, the average Th−Cring distance of
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2.62 Å and the average Th−Ccentroid distance of 2.18 Å are
comparable to the corresponding values in U2-tol

25 when
taking account of the difference between their ionic radii.47

The C−C distances of the bound ring range from 1.441(7) to
1.459(7) Å with an average of 1.45 Å. These values are close to
those of U2-tol (1.44(1) to 1.47(1) Å with an average of 1.45
Å).25 The average Th−N distance of 2.37 Å is 0.10 Å longer
than that of 2.27 Å in ThCl2, but comparable to the average
U−N distance of 2.31 Å in U2-tol.

25 This elongation was also

observed in Y2-biph-K2, when it was attributed to the
weakening of the Y−N bond rather than a change in the
metal’s oxidation state.18 In addition, a close contact between
the ferrocene backbone and thorium was present in Th2-tol,
indicating a donor−acceptor type interaction between these
fragments.48

Despite crystallizing with a coordinating THF molecule per
thorium, the structural parameters for Th2-naph resemble
those of Th2-tol. An intriguing feature is the alternating C−C
distances of the unbound ring (1.454(1), 1.351(1), 1.429(1),
1.357(1), and 1.437(1) Å), implying a diene-like character, in
accord with the distinct 13C NMR chemical shifts of the
unbound ring carbon atoms at 125.6 and 98.9 ppm. A similar
dearomatization was observed in inverse-sandwich diuranium
naphthalene complexes.21 The Th−Ccentroid distances for Th2-
arene, ranging from 2.177 to 2.241 Å, are much shorter than
those for Th(IV) neutral arene complexes (2.655 to 2.95 Å),
and also shorter than those of 2.463(7) and 2.497(7) Å in the
thorium complexes with partially reduced arene backbones. In
addition, the average Th−C distances of 2.62−2.65 Å in Th2-
arene are significantly shorter than the average Th−C
distances of 2.72−2.73 Å in mononuclear Th(IV) reduced
naphthalene complexes.43,44 Overall, the Th−arene interaction
in Th2-arene should be stronger than that in previously
reported thorium arene complexes43−45 but comparable to that
in the inverse-sandwich diuranium3 and rare-earth metal arene
complexes.18

Spectroscopic data also agreed with the electronic structure
of tetraanionic arenes and thorium(IV). The 1H and 13C NMR
spectra of Th2-arene displayed signals in the diamagnetic
region, implying a closed-shell ground state. Chemical shifts of
13C NMR spectra assigned to the coordinating phenyl ring in
Th2-arene complexes (Th2-benzene: 78.6 ppm; Th2-tol: 88.4,
85.1, 80.8, 80.6 ppm; Th2-biph: 82.0, 77.5, 69.5, 66.1 ppm;
Th2-naph: 76.2, 73.8, 69.4 ppm) are at higher fields compared
to those of neutral arenes (for example, 128.6 ppm for benzene
and 137.9, 129.3, 128.56, 125.7 ppm for toluene), indicating a
highly reduced nature of the arene ligands in Th2-arene.
Moreover, the 13C NMR chemical shifts of the bound phenyl
ring in Th2-arene were similar to those of Y2-biph-K2,

18

implying the arenes were quadruply reduced (Table S1). The
UV−vis−NIR absorption spectra of Th2-arene showed a broad
and intense band between 400 and 600 nm (Figures S46−51);
however, no characteristic peaks of Th(III) around 700 and
800 nm were observed.49 Furthermore, X-ray photoelectron
spectroscopy (Table S2) and the absence of an electron
paramagnetic resonance signal also support a formal oxidation
state of +4 for thorium in Th2-arene.
It is worth mentioning that Th2-benzene is the first metal

complex that contains the parent tetranionic benzene, which is
the prototypical 6C, 10π-electron aromatic system.50 In
addition, the fact that the arene rather than thorium was
reduced during the formation of Th2-arene is also in line with
the formation of M2-biph-K2 (M = Sc, Y, La, Lu, Gd, Dy, Er,
Sm).51,52

Arene exchange reactions were previously observed in
inverse-sandwich diuranium arene complexes.20,22,32 Arene
exchange is also accessible with Th2-arene and we observed a
slow exchange when heating Th2-benzene or Th2-tol in C6D6,
while no exchange was observed for Th2-benzene in C7D8 or
Th2-biph in C6D6. A competitive reaction to synthesize Th2-
benzene and Th2-tol starting with an equal molar mixture of

Scheme 1. Synthesis of (a) ThCl2; (b) Th2-biph; (c) Th2-
naph; (d) Th2-benzene; (e) Th2-tol

Figure 1. Thermal-ellipsoid (50% probability) representations of Th2-
tol (a) and Th2-naph (b). Hydrogen atoms were omitted for clarity.
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benzene and toluene resulted in a product ratio of 10:1 for
Th2-benzene and Th2-tol.
For Th2-naph, a rapid exchange with C6D6 was observed

(Scheme 2a). This result seems counterintuitive since benzene

is considered more difficult to reduce than naphthalene based
on their reduction potentials. However, the dearomatization of
the unbound ring in Th2-naph may account for this abnormal
reactivity. Moreover, an arene exchange was observed between
Th2-naph and biphenyl and between Th2-tol and biphenyl.
Therefore, the arene exchange study established the stability of
Th2-arene as Th2-naph ≪ Th2-tol < Th2-benzene ≈ Th2-
biph.
The low stability of Th2-naph prompted us to investigate

the reduction of ThCl2 in the presence of anthracene, which is
known to form a stable dianion upon reduction.1 This reaction
led to the formation of a mononuclear thorium complex of
dianionic anthracene, [(NNTBS)Th(THF)](9,10-η2-C14H10)
(Th-anth). Intriguingly, when heating in C6D6, Th-anth
reduced benzene to form Th2-benzene (Scheme 2b). To the
best of our knowledge, this is the first confirmed benzene
reduction by a well-defined metal anthracene complex,
although such compounds were proposed as intermediates.27

While the reverse reaction of Th2-benzene and anthracene did
not take place, Th2-naph could reduce anthracene to yield Th-
anth (Scheme 2c). The arene exchange reactivity highlights
the higher stability for nonfused arenes over more readily
reducible fused arenes in the inverse-sandwich dithorium arene
complexes.
We also explored the reactivity of Th2-arene toward

unsaturated substrates. Th2-arene functioned as four-electron
reductants to reduce cyclooctatetraene (Scheme 2d) or
azobenzene (Scheme 2e) to form (NNTBS)Th(THF)(η8-
COT) (Th-COT) or (NNTBS)Th(THF)2(η

2-N2Ph2) (Th-
N2Ph2), respectively, in a similar fashion as the inverse-
sandwich diuranium arene complexes.20,21,23 The outcome of
the alkyne reduction reactions were dependent on the nature
of the alkyne. While all Th2-arene could reduce diphenylace-
tylene (Scheme 2f) to form a five-membered metallocycle
(NNTBS)Th(THF)(η2-C4Ph4) (Th−C4Ph4), the reduction of
bis(trimethylsilyl)acetylene took place only with the most
reactive Th2-naph (Scheme 2g) and resulted in the formation

of a rare actinide metallacyclopropene,53−55 (NNTBS)Th-
(THF)2(η

2-C2(SiMe3)2), which could further react with
diphenylacetylene to generate Th-C4Ph4 (Scheme 2h).
Density functional theory (DFT) calculations of Th2-arene

show that the highest occupied molecular orbital (HOMO)
and HOMO−1 of Th2-benzene (Figure 2; see Figures S60−62

for other Th2-arene) are close in energy (−4.04 and −4.07 eV,
Table S3). They feature δ-type bonding orbitals composed of
the π4 and π5 orbitals of benzene and the 6dδ and 5fδ orbitals of
thorium. A composition analysis showed that the contributions
from benzene-based orbitals are 66.5% and 67.4%, while those
from thorium orbitals are 28.2% (6d: 15.8%; 5f: 12.4%) and
28.7% (6d: 16.9%; 5f: 11.8%) for HOMO and HOMO−1,
respectively. The HOMO and HOMO−1 of Th2-tol and Th2-
biph share similar energy levels and orbital compositions as
Th2-benzene (Tables S9 and S10). However, the HOMO of
Th2-naph (−3.44 eV) is 0.36 eV higher in energy than
HOMO−1 and also significantly higher than the HOMOs of
other Th2-arene, which may explain the low stability of Th2-
naph (Table S11). In addition, the Mulliken population
analysis showed that the charge of the bound ring in Th2-naph
(−0.66) differs from those in other Th2-arene (−1.30 to
−1.61) (Table S12). Furthermore, the Wiberg Th−C bond
orders in Th2-arene (Table S13) are 0.53−0.58; the average
C−C bond orders for the bound rings are 1.17−1.23. The
latter values are much weaker than the bond orders of the
corresponding free arenes (1.49−1.58) (Table S14). These
values indicate a strong interaction between thorium and
arenes and a significant weakening of the C−C bonds of the
bound ring, consistent with the presence of δ bonding
interactions. Notably, the bond orders of the unbound ring
in Th2-naph have different values of 1.27, 1.69, 1.42, 1.69, and
1.27, consistent with the structural parameters for a diene-like
character.

Scheme 2. Arene Exchange Reactions and Reactivity Studies
of Th2-arene

Figure 2. HOMO and HOMO−1 (isovalue 0.03) of Th2-benzene.
Hydrogen atoms are omitted for clarity.
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We also compared the δ bonding interactions in Th2-arene
with those in the inverse-sandwich diuranium and rare-earth
metal arene complexes. The contributions from thorium
orbitals in δ bonds are slightly under 30%, in between the
values for Y2-biph-K2 (ca. 20% Y orbitals)18 and those of
inverse-sandwich diuranium arene complexes (ca. 50% U
orbitals).22,32 These values indicate that the thorium−arene
interaction is more covalent than the rare-earth metal−arene
interaction but less covalent than the uranium−arene
interaction, in line with the general trend of covalency for f
elements. Moreover, the contribution of Th 6d orbitals is
higher than that of 5f orbitals, in contrast to the case of the
inverse-sandwich diuranium arene complexes, in which the
contribution of U 5f orbitals is more than double that of 6d
orbitals.22 This trend is in accordance with the relative energies
for actinide 6d and 5f orbitals.56

In summary, we synthesized and characterized the first
inverse-sandwich dithorium arene-bridged complexes with
benzene, toluene, biphenyl, and naphthalene. The structural
and spectroscopic parameters are consistent with a bridged
tetraanionic arene and thorium(IV) centers, analogous to our
findings for the corresponding bridged tetranionic arene rare-
earth metal complexes. The arene exchange reaction
established the relative stability of Th2-arene, and reactivity
studies showed their use as low valent thorium synthons. DFT
calculations unveiled the presence of a δ bonding interaction in
these compounds, in analogy to relevant uranium and rare-
earth metal complexes. These compounds possess high
synthetic utility, in particular, enabling multielectron redox
chemistry for thorium. Moreover, they provide insight into the
electronic structures of thorium complexes in comparison to
those of uranium and rare-earth metals. Further reactivity
studies and an in-depth analysis of the electronic structure and
bonding interactions of Th2-arene are currently ongoing.
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