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Abstract10

This paper focuses on blockchain finality, which refers to the time when it becomes impossible to11

remove a block that has previously been appended to the blockchain. Blockchain finality can be12

deterministic or probabilistic, immediate or eventual. To favor availability against consistency in the13

face of partitions, most blockchains only offer probabilistic eventual finality: blocks may be revoked14

after being appended to the blockchain, yet with decreasing probability as they sink deeper into the15

chain. Other blockchains favor consistency by leveraging the immediate finality of Consensus – a16

block appended is never revoked – at the cost of additional synchronization.17

The quest for "good" deterministic finality properties for blockchains is still in its infancy, though.18

Our motivation is to provide a thorough study of several possible deterministic finality properties and19

explore their solvability. This is achieved by introducing the notion of bounded revocation, which20

informally says that the number of blocks that can be revoked from the current blockchain is bounded.21

Based on the requirements we impose on this revocation number, we provide reductions between22

different forms of eventual finality, Consensus and Eventual Consensus. From these reductions, we23

show some related impossibility results in presence of Byzantine processes, and provide non-trivial24

results. In particular, we provide an algorithm that solves a weak form of eventual finality in an25

asynchronous system in presence of an unbounded number of Byzantine processes. We also provide26

an algorithm that solves eventual finality with a bounded revocation number in an eventually27

synchronous environment in presence of less than half of Byzantine processes. The simplicity of the28

arguments should better guide blockchain designs and link them to clear formal properties of finality.29
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1 Introduction33

This paper focuses on blockchain finality, which refers to the time when it becomes impossible34

to remove a block that has previously been appended to the blockchain. Blockchain finality35

can be deterministic or probabilistic, immediate or eventual.36

Informally, immediate finality guarantees, as its name suggests, that when a block is37

appended to a local copy, it is immediately finalized and thus will never be revoked in the38

future. Designing blockchains with immediate finality favors consistency against availability39

in presence of transient partitions of the system. It leverages the properties of Consensus (i.e40

a decision value is unique and agreed by everyone), at the cost of synchronization constraints.41

Assuming partially synchronous environments, most of the permissioned blockchains satisfy42

the deterministic form of immediate consistency, as for example Red Belly blockchain [9]43

and Hyperledger Fabric blockchain [2]. The probabilistic form of immediate consistency is44

typically achieved by permissionless pure proof-of-stake blockchains such as Algorand [8].45
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Unlike immediate finality, eventual finality only ensures that all local copies of the46

blockchain share a common increasing prefix, and thus finality of their blocks increases as47

more blocks are appended to the blockchain. The majority of cryptoassets blockchains, with48

Bitcoin [21] and Ethereum [27] as celebrated examples, guarantee eventual finality with49

some probability: blocks may be revoked after being appended to the blockchain, yet with50

decreasing probability as they sink deeper into the chain. More recently, a huge effort has51

been devoted to propose alternatives to the energy-wasting proof-of-work method of Bitcoin52

and Ethereum. These proof-of-stake blockchains (e.g. [17, 22, 13, 16]) offer as well a form53

of eventual finality. More broadly, all these solutions favor availability (or progress) under54

adversarial conditions, therefore they do not rely on Byzantine Consensus. This implies that55

it is admitted that a blockchain may lose consistency by incurring a fork, which is the presence56

of multiple chains at different processes. The heart of these solutions is then a reconciliation57

mechanism, which is always available to recover from a fork. Reconciliation typically consists58

in a local deterministic rule selecting a chain among the different alternatives available. In59

Bitcoin for instance any participant is able to reconcile the state following the "longest"60

chain rule. Once a winner chain is chosen, the other alternatives are revoked, as such all61

the blocks belonging to them. It is important to stress that the design of these blockchains62

aims at being resistant to adversarial participants creating alternative chains on purpose in63

synchronous environments. This means that during reconciliation all the candidate chains64

available at one honest participant are also available at all other honest participants. This65

allows us to compute finalisation probabilistic guarantees, such as the one in Bitcoin that66

says that it is computationally hard to revoke a block followed by six other blocks in presence67

of no more than 10% of Byzantine participants (selfish attack). Real large-scale distributed68

systems, however, can hardly be synchronous. Network effects make the moment at which all69

honest processes observe the same set of candidate chains unknown. The asynchrony effect70

might render the reconciliation rule and finalisation guarantees unsure, or simply extremely71

inefficient, for example by considering a block as finalised after one or more days. To solve72

this problem a number of permissionless blockchain projects are investigating how to add73

"finality gadgets" (e.g., [5, 26]) to proof-of-work or proof-of-stake blockchains, which means74

seeking additional mechanisms or protocols to reach "better" finality properties in network75

adversarial settings. The hope is to find ways to get deterministic finality by periodically76

running finality gadgets. For the time being, the only way that has been concretely pursued is77

to add Byzantine Consensus – e.g. Tenderbake [4] adds Byzantine Consensus to the existing78

proof-of-stake method assuring deterministic finality to each block followed by other two79

blocks. How to add mechanisms that do not resort to Consensus, however, is an intriguing80

and open question, related to the finality properties one would like to guarantee.81

The quest for "good" deterministic finality properties for blockchains is still in its infancy,82

though. Our motivation is to provide a thorough study of several possible finality properties83

and explore their solvability. In doing so, we are particularly intrigued by answering the84

question, what lies between eventual finality and immediate finality?85

To this aim we introduce the notion of bounded revocation, which informally says that86

the number of blocks that can be revoked from the current blockchain is bounded. Providing87

solutions that guarantee deterministic bounded revocation reveals to be an important crux88

in the construction of blockchains. We thus provide rigorous definitions for the weakest form89

of eventual finality EF⋆, which does not guarantee any bound on the number of blocks that90

can be revoked from the blockchain at any given fork, and two stronger forms: EF♢c, in91

which revocation is bounded but unknown, and EFc in which revocation is bounded and92

known. Intuitively, if EFc holds, processes revoke at most a constant number c of blocks93
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from the current blockchain at each reconciliation, while if EF♢c holds, processes revoke at94

most a constant number of c blocks from the current chain only eventually, i.e., after a finite95

but unknown number of reconciliations.96

The rigorous formalisation of these properties enable us to easily show that solutions that97

guarantee EFc are equivalent to Consensus, while solutions that guarantee EF♢c are not98

weaker than Eventual Consensus, an abstraction that captures eventual agreement among all99

participants. From these reductions, we show some related impossibility results in presence of100

Byzantine processes. Beside reductions and related impossibilities, we propose the following101

non-trivial results:102

EF⋆ cannot be achieved in an asynchronous system if the reconciliation rule follows103

the "longest" chain rule (Theorem 13). This implies that the reconciliation rule, used104

in current blockchains, to provide probabilistic finality in synchronous settings cannot105

guarantee that participants will eventually converge to a stable prefix of the chain in106

asynchronous settings.107

A solution that guarantees EF⋆ in an asynchronous system with a possibly infinite set108

of processes which can append infinitely many blocks. This novel solution is strikingly109

simple and tolerant to an unbounded number of Byzantine processes (Theorem 14).110

A solution that solves EF♢c in an eventually synchronous environment in presence of less111

than half of Byzantine processes (Theorem 15). The central point of our solution is to let112

correct processes blame each fork on a particular Byzantine process, which can then be113

excluded from the computation. Weakening the classic requirement of < 1/3 to < 1/2114

Byzantine processes makes such a solution well adapted to large scale adversarial systems.115

As for the previous one, we are not aware of any such solution in the literature.116

We hope that these results will better guide blockchain designs and link them to clear117

formal properties of finality.118

1.0.0.1 Related Work119

Formalization of blockchains in the lens of distributed computing has been recognized as an120

extremely important topic [15]. Garay et al. [11] have been the first to analyze the Bitcoin121

backbone protocol and to define invariants this protocol has to satisfy to verify with high122

probability an eventual consistent prefix, i.e. probabilistic eventual finality. The authors123

have analyzed the protocol in a synchronous system, while Pass et al. [23] have extended124

this line of work considering a more adversarial network. Anta et al. [3] have proposed125

a formalization of distributed ledgers modeled as an ordered list of records along with126

implementations for sequential consistency and linearizability using a total order broadcast127

abstraction. Not related to the blockchain data structure, authors of [14] have formalized128

the notion of cryptocurrency showing that Consensus is not needed.129

While probabilistic eventual finality has been widely studied in the context of Bit-130

coin [11, 6, 23], only a few studies have started to lay the foundations of the computation131

power of blockchains with deterministic eventual finality consistency. Anceaume et al. [1]132

have been the first to capture the convergence process of two distinct classes of blockchain133

systems: the class providing strong prefix (for each pair of chains returned at two different134

processes, one is the prefix of the other) and the class providing eventual prefix, in which135

multiple chains can co-exist but the common prefix eventually converges. Interestingly, the136

authors of [1] show that to solve strong prefix the Consensus abstraction is needed, however137

they do not address solvability of eventual prefix, which is the focus of this paper.138

139
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The paper is organised as follows: Section 2 formally presents the sequential specification140

of a blockchain and the formalisation of the different finality properties we may expect from141

a blockchain when concurrently accessed. Section 3 presents reductions between different142

forms of finality, Consensus and Eventual Consensus. Section 4 first shows why EF⋆ is not143

solvable in an asynchronous environment when the "longest" chain rule is used, and then144

presents the algorithms to solve EF⋆ and EF♢c. These algorithms are particularly simple.145

Finally, Section 5 concludes.146

2 Definitions147

2.1 Preliminary Definitions148

We describe a blockchain object as an abstract data type which allows us to completely149

characterize a blockchain by the operations it exports [19]. The basic idea underlying the150

use of abstract data types is to specify shared objects using two complementary facets: a151

sequential specification that describes the semantics of the object, and a consistency criterion152

over concurrent histories, i.e. the set of admissible executions in a concurrent environment [24].153

Prior to presenting the blockchain abstract data type we first recall the formalization used154

to describe an abstract data type (ADT).155

2.1.0.1 Abstract data types.156

An abstract data type (ADT) is a tuple of the form T = (A, B, Z, z0, τ, δ). Here A and B157

are countable sets called the inputs and outputs. Z is a countable set of abstract object158

states, z0 ∈ Z being the initial state of the object. The map τ : Z × A → Z is the transition159

function, specifying the effect of an input on the object state and the map δ : Z × A → B160

is the output function, specifying the output returned for a given input and an object local161

state. An input represents an operation with its parameters, where (i) the operation can162

have a side-effect that changes the abstract state according to transition function τ and (ii)163

the operation can return values taken in the output B, which depend on the state in which164

it is called and the output function δ.165

2.1.0.2 Concurrent histories of an ADT166

Concurrent histories are defined considering asymmetric event structures, i.e., partial order167

relations among events executed by different processes.168

▶ Definition 1. (Concurrent history H) The execution of a program that uses an abstract169

data type T =⟨A, B, Z, ξ0, τ, δ⟩ defines a concurrent history H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩, where170

Σ = A ∪ (A × B) is a countable set of operations;171

E is a countable set of events that contains all the ADT operations invocations and all172

ADT operation response events;173

Λ : E → Σ is a function which associates events to the operations in Σ;174

7→: is the process order, irreflexive order over the events of E. Two events (e, e′) ∈ E2
175

are ordered by 7→ if they are produced by the same process, e ̸= e′ and e happens before e′,176

that is denoted as e 7→ e′.177

≺: is the operation order, irreflexive order over the events of E. For each couple178

(e, e′) ∈ E2 if e′ is the invocation of an operation occurred at time t′ and e is the response179

of another operation occurred at time t with t < t′ then e ≺ e′;180
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↗: is the program order, irreflexive order over E, for each couple (e, e′) ∈ E2 with e ̸= e′
181

if e 7→ e′ or e ≺ e′ then e ↗ e′.182

2.2 The blocktree ADT183

We represent a blockchain as a tree of blocks. Indeed, while consensus-based blockchains184

prevent forks or branching in the tree of blocks, blockchain systems based on proof-of-work185

allow the occurrence of forks to happen hence presenting blocks under a tree structure. The186

blockchain object is thus defined as a blocktree abstract data type (Blocktree ADT).187

2.2.1 Sequential Specification of the Blocktree ADT (BT-ADT)188

A blocktree data structure is a directed rooted tree bt = (Vbt, Ebt) where Vbt represents a set189

of blocks and Ebt a set of edges such that each block has a single path towards the root of190

the tree b0 called the genesis block. Let BT be the set of blocktrees, B be the countable and191

non empty set of uniquely identified blocks and let BC be the countable non empty set of192

blockchains, where a blockchain is a path from a leaf of bt to b0. A blockchain is denoted by193

bc. The structure is equipped with two operations append() and read(). Operation append(b)194

adds the block b ̸∈ bt to Vbt and adds the edge (b, b′) to Ebt where b′ ∈ Vbt is returned by the195

append selection function fa() applied to bt. Operation read() returns the chain bc selected196

by the read selection function fr() applied to bt (note that in [1], the read() and append()197

operations are defined with a unique selection function). The read selection fr() takes as198

argument the blocktree and returns a chain of blocks, that is a sequence of blocks starting199

from the genesis block to a leaf block of the blocktree. The chain bc returned by a read()200

operation r is called the blockchain, and is denoted by r/bc. The append selection function201

fa() takes as argument the blocktree and returns a chain of blocks. Function last_block()202

takes as argument a chain of blocks and returns the last appended block of the chain. Only203

blocks satisfying some validity predicate P can be appended to the tree. Predicate P is204

an application-dependent predicate used to verify the validity of the chain obtained by205

appending the new block b to the chain returned by fa() (denoted by fa(bt)⌢b). In Bitcoin206

for instance this predicate embeds the logic to verify that the obtained chain does not contain207

double spending or overspending transactions. Formally,208

▶ Definition 2. (Sequential specification of the Blocktree ADT) The Blocktree Abstract Data209

Type is the 6-tuple BT − ADT={A = {append(b), read()/bc ∈ BC}, B = BC ∪ {⊤, ⊥}, Z =210

BT , ξ0 = b0, τ, δ}, where the transition function τ : Z × A → Z is defined by211

τ(bt, read()) = bt212

τ(bt, append(b)) =
{

(Vbt ∪ {b}, Ebt ∪ {b, last_block(fa(bt))}) if P (fa(bt)⌢b)
bt otherwise,

213

214

and where the output function δ : Z × A → B is defined by215

δ(bt, read()) = fr(bt)216

δ(bt, append(b)) =
{

⊤ if P (fa(bt)⌢b)
⊥ otherwise.

217

218

Note that we do not need to add the validity check during the read operation in the219

sequential specification of the Blocktree ADT because in absence of concurrency the validity220

check during the append operation is enough.221
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2.2.2 Concurrent Specification and Consistency Criteria of the222

BlockTree ADT223

The concurrent specification of the blocktree abstract data type is the set of concurrent224

histories. A blocktree consistency criterion is a function that returns the set of concurrent225

histories admissible for the blocktree abstract data type.226

We define three consistency criteria for the blocktree, i.e., the BT eventual finality (EF),227

the BT immediate finality (IF) and BT eventual immediate finality (EIF), and the notion of228

block revocation. This family of consistency criteria combined with the revocation notion229

provide a comprehensive characterization of what we may expect from blockchains.230

▶ Notation 1.231

E(a∗, r∗) is an infinite set containing an infinite number of append() and read() invocation232

and response events;233

E(a, r∗) is an infinite set containing (i) a finite number of append() invocation and234

response events and (ii) an infinite number of read() invocation and response events;235

oinv and orsp indicate respectively the invocation and response event of an operation o;236

and in particular for the read() operation, rrsp/bc denotes the returned blockchain bc237

associated with the response event rrsp and for the append() operation ainv(b) denotes the238

invocation of the append operation having b as input parameter;239

length : BC → N denotes a monotonic increasing deterministic function that takes as input240

a blockchain bc and returns a natural number as length of bc. Increasing monotonicity241

means that length(bc⌢{b}) > length(bc);242

bc ⊑ bc′ iff bc prefixes bc′.243

bc[i] refers to the i-th block of blockchain bc.244

▶ Definition 3 (BT Eventual Finality Consistency criterion (EF)). A concurrent history245

H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of a system that uses a BT-ADT verifies the BT eventual finality246

consistency criterion if the following four properties hold:247

Chain validity:248

∀rrsp ∈ E, P (rrsp/bc).249

Each returned chain is valid.250

Chain integrity:251

∀rrsp ∈ E, ∀b ∈ rrsp/bc : b ̸= b0, ∃ainv(b) ∈ E, ainv(b) ↗ rrsp.252

If a block different from the genesis block is returned, then an append operation has been253

invoked with this block as parameter. This property is to avoid the situation in which254

reads return blocks never appended.255

Eventual prefix:256

∀E ∈ E(a, r∗)∪E(a∗, r∗), ∀rrsp/bc, ∀i ∈ N : bc[i] ̸= ⊥, ∃r′
rsp, ∀r′′

rsp : r′
rsp ↗ r′′

rsp, ((r′
rsp/bc)[i] =257

(r′′
rsp/bc)[i]).258

In all the histories in which the number of read invocations is infinite, then for any non259

empty read chain position i, there exists a read r′/bc′ from which all the subsequent reads260

r′′/bc′′ will return the same block at position i, i.e. bc′[i] = bc′′[i].261

Ever growing tree:262

∀E ∈ E(a∗, r∗), ∀k ∈ N, ∃r ∈ E : length(rrsp/bc) > k.263

In all the histories in which the number of append and read invocations is infinite, for264

each length k, there exists a read that returns a chain with length greater than k. This265

property avoids the trivial scenario in which the length of the chain remains unchanged266

despite the occurrence of an infinite number of append operations. This can happen for267

instance if the tree is built as a star with infinite branches of bounded length.268
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▶ Definition 4 (BT Immediate Finality Consistency criterion (IF)). A concurrent history269

H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of the system that uses a BT-ADT verifies the BT immediate finality270

consistency criterion if chain validity, chain integrity, ever growing tree (as defined for EF)271

and the following property hold:272

Strong prefix:273

∀rrsp, r′
rsp ∈ E2, (r′

rsp/bc′ ⊑ rrsp/bc) ∨ (rrsp/bc ⊑ r′
rsp/bc′).274

For each pair of returned blockchains, one blockchain is the prefix of the other.275

▶ Definition 5 (BT Eventual Immediate Finality Consistency criterion (EIF)). A concurrent276

history H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of the system that uses a BT-ADT verifies the BT eventual277

immediate finality consistency criterion if chain validity, chain integrity, ever growing tree278

(as defined for EF) and the following property hold:279

Eventual strong prefix:280

∀E ∈ E(a, r∗)∪E(a∗, r∗), ∃rrsp ∈ E, ∀r′
rsp, r′′

rsp ∈ E2 : rrsp ↗ r′
rsp∧rrsp ↗ r′′

rsp, (r′′
rsp/bc′ ⊑281

r′
rsp/bc) ∨ (r′

rsp/bc ⊑ r′′
rsp/bc′).282

In all histories with an infinite number of reads, there exists a read r from which for each283

pair of returned blockchains, one blockchain is the prefix of the other.284

Bounded revocation285

Informally, bounded revocation says that for any two reads r/bc and r′/bc′ such that r286

precedes r′, then by pruning the last c blocks from bc the obtained chain is a prefix of bc’.287

Note that constant c can be initially known or not.288

▶ Definition 6. c-Bounded revocation289

∃c ∈ N, ∀rrsp, r′
rsp ∈ E : rrsp ↗ r′

rsp, ∀i ∈ N : i ≤ length(rrsp/bc) − c, (rrsp/bc)[i] =290

(r′
rsp/bc′)[i].291

▶ Notation 2. For readability reasons, in the following we will simply say finality instead of292

finality consistency criterion, i.e., eventual finality consistency criterion will be replaced by293

eventual finality, and (eventual) immediate finality consistency criterion will be replaced by294

(eventual) immediate finality.295

We can now define the c−Bounded Eventual Finality criteria by augmenting the previous296

consistency criteria with the Bounded revocation property:297

▶ Definition 7. c−Bounded Eventual Finality criteria298

EF⋆ = EF , in this case the revocation is unbounded.299

EFc = EIF combined with c−Bounded revocation, such that c is known a priori.300

EF♢c = EIF combined with c−Bounded revocation where c is unknown but bounded.301

We will show in the following that satisfying EFc is equivalent to immediate finality (IF).302

This is because from any algorithm P implementing EFc, if we take the blockchain that is303

returned by a read provided by P except for the last c blocks, this guarantees the strong304

prefix property of IF. Furthermore, EF♢c boils down to eventual immediate finality (EIF).305

Indeed as shown later, if we take half of the blockchain returned by a read provided by an306

algorithm P implementing EF♢c, this guarantees eventual immediate finality since chains307

are always growing, and thus the number of removed blocks increases up to reaching c.308

In the following section we prove the above-mentioned equivalences more formally and309

study relationships to known problems such as consensus and eventual consensus.310
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3 (Eventual) Consensus Reductions311

In this section we investigate the impact of the bounded revocation property on the construc-312

tion of a blocktree satisfying eventual finality. In particular, we show that when the bound c313

is known, this problem is equivalent to the consensus abstraction, while when unknown, this314

problem is not weaker than the eventual consensus abstraction [10].315

3.1 Known Bounded Revocation and Consensus316

▶ Theorem 8. EFc is equivalent to Consensus.317

Proof. We first show how to solve immediate finality (IF) given a solution P for EFc and then318

the reciprocal direction. Indeed, the equivalence between immediate finality and consensus is319

known from [1]. So let us show that we can solve immediate finality using P. To do so, we320

consider the following transformation from the protocol P. To make an append() operation,321

processes simply use the append() operation provided by P . But, for the the read() operation,322

processes use the read() operation provided by P to obtain a chain and prune the last c323

blocks from it before returning the remaining chain. Note that if there are less than c blocks,324

processes then return the genesis block.325

Let us show that this modified protocol solves immediate finality. For this, we need to326

show that the following properties are satisfied:327

Chain validity: The chain validity property is still satisfied by pruning the last c blocks.328

Chain integrity: The chain integrity property is still satisfied by pruning the last c329

blocks.330

Strong prefix: The strong prefix property follows from the known bounded revocation331

property and the removal of the last c blocks. Indeed, if we remove the last c blocks, then332

for any two read() operations, then the first read() returns a prefix of the second read()333

operation.334

Ever growing tree: The ever growing tree property is still satisfied by pruning the last335

c blocks.336

For the other direction, we can build a solution to EFc using a solution for immediate337

finality (IF). This trivially solves EFc with c = 0. ◀338

From Theorem 8 immediately follows the following impossibility result:339

▶ Theorem 9. There does not exist any solution that solves EFc in an eventual synchronous340

system with more than n/3 Byzantine processes, where n is the number of processes partici-341

pating to the algorithm.342

Proof. The proof follows from the equivalence between EFc and Consensus (cf. Theorem 8),343

which is unsolvable in a synchronous (and thus also in an eventually synchronous) system344

with more than one third of Byzantine processes [18]. ◀345

3.2 Unknown Bounded Revocation and Eventual Consensus346

In this section we show that EF♢c is not weaker than eventual consensus. We first show its347

equivalence with eventual immediate finality (EIF). Later we recall the eventual consensus348

problem with a small modification of the validity property to make it suitable to the blockchain349

context and show that eventual immediate finality is not weaker than eventual consensus.350

▶ Theorem 10. EF♢c is equivalent to eventual immediate finality.351
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Proof. Let P1 be a protocol solving EF♢c and let us show that we can solve eventual352

immediate finality. To do so, we consider the following modification to the protocol P1. To353

make an append() operation, processes simply use the append() operation provided by P1.354

But, for a read() operation, processes use the read() operation provided by P1 to obtain a355

chain and prune the second half of the returned chain before returning the remaining half of356

the chain.357

Let us show that this modified protocol solves eventual immediate finality. For this, we358

need to show that the following properties are satisfied:359

Chain validity: The chain validity property is still satisfied by pruning half of the chain.360

Chain integrity: The chain integrity property is still satisfied by pruning half of the361

chain.362

Eventual strong prefix: The eventual strong prefix property follows from the unknown363

bounded revocation property and the removal of the second half of the chain. Indeed, if364

we remove the second half of the chain, then eventually for any two read() operations,365

then the first read() returns a prefix of the second read() operation. Indeed, since we366

remove a growing number of blocks, eventually we remove at least c blocks and obtain367

chains such that one is the prefix of the other.368

Ever growing tree: The ever growing tree property is still satisfied by pruning half of369

the chain.370

For the other direction, let us consider a protocol P2 solving the eventual immediate371

finality and let us show that it solves EF♢c. The property of eventual strong prefix property372

clearly implies the eventual prefix property. Let revocation(b1, b2) be the function that373

takes two blockchains b1 and b2 and returns the number of blocks needed to prune b1374

to obtain a chain b′
1 such that b′

1 ⊑ b2. Let us show that ∃c ∈ N, ∀rrsp, r′
rsp ∈ E2, r ↗375

r′, revocation(rrsp/bc, r′
rsp/bc) < c. Assume by contradiction that this inequality is not376

satisfied, then it implies that for any c, there exists a couple of reads with a greater revocation377

than c. This implies that the eventual strong prefix property is not satisfied, which leads to378

a contradiction. Hence eventual immediate finality implies EF♢c. Putting all together, we379

have shown that eventual immediate finality is equivalent to EF♢c. ◀380

The eventual consensus (EC) abstraction [10] captures eventual agreement among all381

participants. It exports, to every process pi, operations proposeEC1, proposeEC2, . . . that382

take multi-valued arguments (correct processes propose valid values) and return multi-valued383

responses. Assuming that, for all j ∈ N, every process invokes proposeECj as soon as it384

returns a response to proposeECj−1, the abstraction guarantees that, in every admissible run,385

there exists k ∈ N and a predicate PEC , such that the following properties are satisfied:386

EC-Termination. Every correct process eventually returns a response to proposeECj387

for all j ∈ N.388

EC-Integrity. No process responds twice to proposeECj for all j ∈ N.389

EC-Validity. Every value returned to proposeECj is valid with respect to predicate PEC .390

EC-Agreement. No two correct processes return different values to proposeECj for all391

j ≥ k.392

▶ Theorem 11. Eventual immediate finality is not weaker than eventual consensus.393

Proof. We show that there exists a protocol P1 to solve eventual consensus starting from a394

protocol P2 that solves eventual immediate finality. We do the transformation as follows.395

Every correct process p invokes proposeECj for all j ∈ N. We impose that the validity396

predicate P of the blocktree ADT (see Section 2) be equal to predicate P1. When a correct397
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process p invokes the proposeECj(v) operation of P1, for any j ∈ N, then p executes the398

following sequence of three steps: (i) it invokes the append(v) operation of P2, then (ii) it399

invokes a sequence of read() operations up to the moment the read() returns a chain bc such400

that bc[j] ̸= ⊥, and finally (iii) p returns chain bc as decision for proposeECj(v) and triggers401

the next operation proposeECj+1(v′).402

Let us show that protocol P1 solves eventual consensus.403

EC-Termination This property is guaranteed by the ever growing tree property.404

EC-Integrity This property follows directly from the transformation.405

EC-Validity This property follows by construction and the chain validity property, since406

predicate P equals to predicate P1.407

EC-Agreement This property follows by the eventual strong prefix property, which408

guarantees that there exists a read() operation r such that, all the subsequent ones return409

blockchains that are each prefix of the following one. In other words, eventually there is410

agreement on the value contained in bc[j]. This implies that there exists k for which all411

proposeECj with j ≥ k return the same value to all correct processes.412

◀413

▶ Theorem 12. There does not exist any solution that solves EF♢c in an asynchronous414

system with at least one Byzantine process.415

Proof. The proof follows from the relationship between the EF♢c and eventual immediate416

finality (EIF). EIF is not weaker than the eventual consensus problem (cf. Theorem 11), which417

is equivalent to the leader election problem [10] which cannot be solved in an asynchronous418

system with at least one Byzantine process [25]. ◀419

4 Eventual Finality Solutions420

In this section we first show the impossibility of solving EF⋆ when the append operation, in421

case of forks, selects the "longest" chain. We then provide the first solution to EF⋆ with an422

unbounded number of Byzantine processes using an alternative selection rule.423

4.1 Impossibility of Eventual Finality with the Longest Chain Rule424

In the following we prove that we cannot provide EF⋆ if, in case of forks, the append selection425

function fa() follows the longest chain rule, i.e., returns the longest chain of the blockchain426

tree. To show this impossibility, we consider a scenario in which the occurrence of any fork427

produces at most two alternative chains (this is often referred to as a branching factor of 2).428

We consider a finite number of processes and an append selection function fa that in case of429

forks deterministically selects the longest chain, i.e., the chain with the largest number of430

blocks (the length is thus a monotonically increasing function on prefixes), and in case of a431

tie selects the chain whose last block is the smallest (in the lexicographical order). We show432

that it is impossible to guarantee EF⋆ for such append selection function fa.433

Note that such a selection function is used by many blockchain systems. In proof-of-work434

systems such as Bitcoin, chains are selected as the chain with the greater number of blocks435

(actually this corresponds to the heaviest one by considering the difficulty) while in Ethereum436

chains are selected using the chain with greatest weight, both captured by the selection of437

chains according to the longest chain. In proof-of-stake systems like EOS [13] or Tezos [12]438

the same rule is also applied.439

Intuitively, the impossibility follows from the fact that with the longest chain selection,440

races can occur between different branches in the tree. We show that as forks may occur, we441



E. Anceaume and A. Del Pozzo and T. Rieutord and S. Tucci-Piergiovanni XX:11

b0

b′
1,1 . . . b′

1,h b′
1,h+1 . . . b′

1,h′

b′
2,1 . . . b′

2,l b′
2,l+1

time|
t1

|
t2

|
t3

|
t4

|
t5

|
t6

|
t7

Figure 1 A blocktree generated by two processes. On the x-axis the longest chain value of each
chain at different time instants (from the root to the current leaf) and the relationships between
those values.

can create two infinite branches sharing only the root. One or the other branch constitutes442

alternatively the longest chain and append operations select chains from each branch alter-443

natively. This is enough to show that the only common prefix that is returned is the root444

hence, violating eventual finality.445

Obviously, this impossibility result holds only when blocks are not created by running a446

consensus algorithm. When consensus is employed, immediate finality can be assured, and447

no fork will ever occur. In this case the append operation will return the longest chain by448

default.449

To capture the synchronisation power of the system, we introduce an oracle that regulates450

the number of appended children from a same parent. The same approach has been proposed451

in [1]. The branching factor of an oracle is the maximal number of children that can452

be appended to a block. The oracle is the only generator of valid blocks. It owns a453

synchronization power equal to Consensus if its branching factor is equal to 1.454

The oracle grants access to the blocktree as a shared object, through the following three455

operations: update_view() returns the current state of the blocktree; getValidBlock(bi, bj)456

returns a valid block b′
j , constructed from bj , that can be appended to block bi, where bi is457

already included in the blocktree; and setValidBlock(bi, b′
j) appends the valid block b′

j to bi,458

and returns ⊤ when the block is successfully appended and ⊥ otherwise.459

▶ Theorem 13. It is impossible to guarantee EF⋆ if the append operation is based on the460

longest chain rule in an asynchronous environment.461

Proof. In the proof we consider the stronger oracle allowing the occurrence of one fork, i.e.,462

an oracle with branching factor equal to 2. That is, this oracle allows for two valid blocks to463

be appended to the same parent, afterwards, it shall return ⊥ to all requests.464

Let p1 and p2 be two processes trying to append infinitely many blocks. W.l.o.g., we465

carry out this proof with a length function equal to the number of blocks.466

At time t0, for both p1 and p2, the update_view() of bt equals b0, thus when both apply467

the append selection function fa on it to select the leaf where to append the new block, they468

both get b0. Then they both call getValidBlock(b0, bi,1) = b′
i, where i = 1 for p1 and i = 2469

for p2. At time t1 > t0, p1 and p2 are poised to call setValidBlock(b0, b′
i,1). We then let p1470

call setValidBlock(b0, b′
1,1), which must return ⊤ and hence b′

1,1 is appended to b0. Process p1471

then proceeds to append a new block b1,2, i.e., after having updated its bt’s view, through the472

update_view() function, p1 applies the append selection function fa on it to select the leaf473

where to append its new block, in this case the only leaf is b′
1,1. It calls getValidBlock(b′

1,1, b1,2)474

function which returns {b′
1,2} and it is poised to call setValidBlock(b′

1,1, b′
1,2).475

We let p1 continue to append new blocks until some time t2 at which it is poised to476

call setValidBlock(b′
1,h, b′

1,h+1), with h = 1, such that the length of the chain b0, . . . , b′
1,h+1477
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would be greater than or would have the same length but a smaller lexicographical order478

than the chain b0, b′
2,1 if b′

2,1 were already appended to block b0. Afterwards, at time t3 ≥ t2,479

we let p2 resume and complete its call to setValidBlock(b0, b′
2,1) which must also succeed480

and return ⊤ as our oracle has a branching factor of 2. By construction, p2 sees the two481

branches in its following update_view() of bt (i.e., chain b0, b′
1,h with h = 1, and chain b0, b′

2,1)482

of the same length thus the selection function fa selects the branch b0, b′
2,1 for where to483

append the next block as block b′
2,1 is smaller than b′

1,h in the lexicographical order. We484

let p2 append blocks to this branch until some time t4 at which it becomes poised to call485

setValidBlock(b′
2,c, b′

2,c+1) with c = 2 such that the length of the chain b0, . . . , b′
2,c is smaller486

than the chain b0, . . . , b′
1,h+1, or in case of equal length has a higher lexicographical order,487

and such that the length of the chain b0, . . . , b′
2,c+1 is greater than the chain b0, . . . , b′

1,h+1,488

or in case of equal length has a smaller lexicographical order.489

As before, it is time to stop the execution of p2 and resume the execution of p1 and490

to let it complete its call to setValidBlock(b′
1,h, b′

1,h+1). We can continue to create two491

infinite branches sharing only the root by alternatively letting p1 and p2 extend their own492

branch while stopping one and resuming the execution of the other each time its length493

would overcome the length of the other branch extended with the pending block (and the494

appropriate lexicographical orderings in case of equal length). This way we construct a tree495

composed of two infinite branches sharing only the root b0 as common prefix. It is easy to496

see that we can integrate read operations that may return the current chain from any branch497

as both branches are temporarily the longest one. Thus, the common prefix never increases,498

and so, the eventual finality consistency criteria is not satisfied.499

It is important to note that with any length function that increases monotonically with500

prefixes (e.g, the length function could count the total number of transactions that belong to501

the blocks on the same branch) then this scenario still holds. In that case h and c in the502

proof could be larger than 1 and 2 respectively. ◀503

4.2 Asynchronous Solution to EF⋆ with an Unbounded Number of504

Byzantine Processes505

We consider an asynchronous system with a possibly infinite set of processes which can506

append infinitely many blocks, and processes can be affected by Byzantine failures. Each507

process has a unique identifier i ∈ N and is equipped with signatures that can be used to508

identify the message sender identifier. Each block is identified with the identifier of the509

process that created it. Block identifier is inserted in the header of the block. Moreover, each510

process is equipped with an Eventual BFT-Reliable Broadcast primitive. If a correct process511

p broadcasts a message m then p eventually delivers m and if a correct process p delivers512

m then all correct processes eventually deliver m. We assume the system is such that we513

can implement an eventual reliable broadcast primitive, e.g., we assume that the infinite set514

of processes are arranged in a topology in which for each pair of correct processes, there515

exists a path composed by only correct processes [20]. Moreover, as proved in [1] reliable516

communications are necessary for eventual finality. We show that in that setting it is possible517

to build a blockchain that satisfies eventual prefix consistency.518

The main idea of Algorithm 1 consists in using local selection functions fa and fr for519

append and read operations respectively and characterizing blocks by their parent and the520

producer signature. Let us first describe the append() and read() operations first and the521

selection function after.522

To perform an append() operation of a block b, processes extend the chain returned523

by function fa applied on their current view of bt with b, i.e., fa(bt)⌢b, and rb-broadcast524
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Algorithm 1 EF⋆ with an unbounded number of Byzantine processes

1 upon rb-delivery(bc)
2 bt.addIfValid(bc)
3 end
4 upon append(b)
5 rb-broadcast(fa(bt)⌢b)
6 end
7 upon read()
8 return fr(bt)
9 end

fa(bt)⌢b. When a process rb-delivers a blockchain bc, it calls bt.addIfValid(bc) that merges bc525

with bt if the former is valid. By merging bc with bt we mean that for each block bi of bc526

starting from the genesis block b0, if bi is not present in bt then bi is added to bt, i.e., bi is527

added to the block of bt whose hash is equal to the one contained in bi’s header. For read()528

operations, processes return the chain selected by fr on their current bt.529

Given a blocktree bt, the append selection function fa selects a chain in bt by going from530

the root (i.e., genesis block) to a leaf, choosing at each fork bi the edge to the child with531

the lowest identifier. If more than one child have the same identifier (i.e., they have been532

created by the same process), then all of them are ignored. If all the children have the same533

identifier, then fa returns the chain from the genesis block to bi. Blocks are ranked by the534

creator identifier, in the domain of the natural number and thus lower bounded by 0. Then535

even though, an infinite number of blocks is added continuously to a fork, there is not, for536

a given block, an infinite number of blocks with a smaller identifier. Thus eventually the537

selection function fa will always select the same prefix. Finally, since blocks are diffused538

by a rb-broadcast primitive, eventually all correct processes will have the same view of the539

blocktree. When a process invokes the read() operation, it returns the blockchain selected by540

the read selection function fr applied to its current view of the blocktree. By imposing that541

fr = fa, then eventually all the processes, when reading, will select the same prefix.542

▶ Theorem 14. Algorithm 1 is a solution for EF⋆ in an asynchronous system with a possibly543

infinite set of processes which can append infinitely many blocks, and suffer from an unbounded544

number of Byzantine failures.545

Proof. We show by construction that Algorithm 1 solves EF⋆ in an asynchronous system546

with a possibly infinite set of processes which can append infinitely many blocks, and can547

suffer an unbounded number of Byzantine failures. Intuitively, despite the unbounded number548

of blocks in each fork, by the eventual reliable broadcast, eventually for each fork all correct549

processes have the same block with the smallest identifier. Hence, by the read selection550

function that at each fork selects the block with the smallest identifier in order to select the551

chain to read, eventually, at all correct processes, function fr returns the blockchain having552

a common increasing prefix. Let p1, p2, . . . , be a possibly infinite set of processes, such that553

each one maintains its local view bti of blocktree bt by running Algorithm 1. Then for any554

correct process pi the following properties hold.555

Chain validity: it is satisfied by function bt.addIfValid(bc) that merges blockchain bc to556

bti only if the former is valid.557

Chain integrity: The read() operation returns the chain of blocks selected by function558

fr applied to bti. By Line 2 of Algorithm 1, only valid blocks are locally added to bti559
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once they have been reliably delivered. By Algorithm 1, the only place at which blocks560

are reliably broadcast is in the append() operation.561

Eventual prefix: The eventual prefix property follows from the definition of fa and562

the reliable broadcast. Thanks to the reliable broadcast for any b in the bt of a correct563

process p, eventually all correct processes deliver b. Let tb be the time after which no564

process can append further blocks bchild to b such that bchild is part of the chain returned565

by fa. This time tb always exists, as for each block b having potentially infinitely many566

children we have that, by definition of function fa, fa(bt) selects a chain in bt by going567

from the root to a leaf, choosing at each fork b the edge to the child with the lowest568

identifier. Since identifiers are lower bounded by 0, eventually function fa will always569

select the same child b′ of b. The same argument applies for b′ and its children. Hence,570

if any two correct processes invoke the read operation infinitely many times, then as571

fr = fa, eventually they return chains that satisfy the eventual prefix property.572

Ever growing tree: The ever-growing tree property relies on the fact that each fork573

has a finite number of blocks since there are finitely many processes and each (Byzantine574

or correct) process can contribute with at most one block per parent as multiple children575

created by the same process are ignored by fa. Thus, eventually, new blocks contribute576

to the growth of the tree.577

◀578

4.3 Eventually Synchronous Solution to EF♢c with less than half of579

Byzantine Processes580

In this section we prove that EF♢c is solvable in an eventual synchronous message-passing581

system with less than n/2 Byzantine processes, where n is the number of processes.582

We propose an algorithm, called AF for Accountable Forking. This algorithm is inspired583

by the Streamlet [7] algorithm. Streamlet [7] assumes the presence of less than a third of584

Byzantine processes and an eventual synchronous system with a known message delay ∆ after585

GST. We weaken both of these assumptions to provide a solution to EF♢c (or equivalently to586

the eventual immediate finality, see Theorem 10). In particular, we assume only a majority587

of correct processes, we do not explicitly use ∆ and consider a slightly modified version of588

the protocol. In the following we first describe Streamlet and then present our protocol in589

terms of proposed modifications to Streamlet, before providing the proof.590

Streamlet protocol. The Streamlet protocol works in an eventually synchronous system591

with a known message delay ∆ and a finite set of n processes. In particular, before the Global592

Stabilisation Time (GST), message delays can be arbitrary; however, after GST, messages593

sent by correct processes are guaranteed to be received by correct processes within ∆ time. 1
594

In Streamlet [7], each epoch, composed of 2∆, has a designated leader chosen at random595

by a publicly known hash function. Each block b is labelled with the epoch (b.epoch) at596

which it has been created. This allows processes to establish if a block b has been created by597

a legitimate leader. The protocol works as follows:598

Propose-Vote. In every epoch:599

The epoch’s designated leader proposes a new block (rb-broadcast it, rb-broadcast600

as defined in Section 4.2) extending from the longest notarized chain (defined in a601

moment) it has seen, if there are multiple then it breaks ties arbitrarily.602

1 Notice that, in Streamlet [7] there is not the notion of time but of round, which denotes a basic unit of
time.
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Every process votes (rb-broadcast a vote) for the first proposal they see from the603

epoch’s leader, as long as the proposed block extends from (one of) the longest notarized604

chain(s) that the voter has seen. A vote is a signature on the proposed block.605

When a block gains votes from at least 2n/3 distinct processes, it becomes notarized.606

A chain is notarized if its constituent blocks are all notarized.607

Finalize. Notarized does not mean final. If in any notarized chain, there are three608

adjacent blocks with consecutive epoch numbers, the prefix of the chain up to the second609

of the three blocks is considered final. When a block becomes final, all of its prefix must610

be final too.611

Our protocol AF is such that for any given fork, correct processes can blame the process612

that originates it, i.e, a Byzantine process creating a fork is accountable for it. AF makes613

the following two modifications to Streamlet. First, we only require that a block gains votes614

from a majority of distinct processes to become notarized, which means that forks can occur.615

The second modification goes deeper: if a fork occurs, then it is possible to detect Byzantine616

processes and to exclude them from the voters. This is done as follows. When, two conflicting617

chains are finalized, that is two finalized chains that are not the prefix of one another, then618

processes look for inconsistent blocks. Two notarized blocks b, b′ are inconsistent with one619

another if one of the following two conditions hold:620

Cond. 1. b and b′ share the same epoch, i.e, b.epoch = b′.epoch;621

Cond. 2. either ((b.epoch < b′.epoch) and (b.height > b′.height)) or ((b′.epoch < b.epoch)622

and (b′.height > b.height)). Function height counts the number of blocks from the genesis623

block.624

If a process votes for blocks inconsistent with one another then it is detected as Byzantine.625

Once a correct process p detects a Byzantine process q, p ignores all messages coming from q.626

Since all messages received by a correct process q are received by any correct process, then627

all of them do the same with respect to q.628

▶ Theorem 15. There exists a solution that solves unknown bounded revocation eventual629

finality in an eventual synchronous system with less than n/2 Byzantine processes, where n630

is the number of processes participating to the algorithm.631

Proof. Let us show that AF is a solution for unknown bounded revocation eventual finality.632

Let us first show that voting for two inconsistent blocks b and b′ is a Byzantine failure. If633

the two blocks are inconsistent for Cond. 1, then the intersecting voters are Byzantine as634

correct processes vote only once per epoch. Hence if a process q votes for b and b′ then q is635

Byzantine. If the two blocks are inconsistent for Cond. 2, then the intersecting voters are636

Byzantine, as correct processes vote only for blocks extending one of the longest notarized637

chains. That is, if a correct process p votes for b it means that b is extending a notarized638

block bpred that is of height b.height − 1, therefore p cannot vote for a block b′ later on with639

a height strictly smaller than b.height because it needs to extend one of the longest notarized640

chain. It follows that if a process q votes for b and b′ then q is Byzantine.641

Let us now show that when a fork occurs we must have two inconsistent blocks. Indeed, if642

there is a fork then we have two sequences of three adjacent blocks with consecutive epochs,643

b1, b2, b3 and b′
1, b′

2, b′
3 (by construction, given the finalization rule). If no blocks share the644

same epoch number then we can assume w.l.o.g. that b3.epoch < b′
1.epoch. Let block b′

645

belonging to the prefix of b′
3 such that b′.epoch > b1.epoch and b′.height is the smallest in the646

prefix of b′
3. Such block always exists as b′

1 satisfies those two conditions. We have two cases:647

Either b′.height < b3.height or b′.height ≥ b3.height. In the former case, b′ is inconsistent648
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Figure 2 Illustration of block inconsistencies due to the occurrence of a fork when the finalized
blocks are not labelled with the same epoch. Epochs are on the x axis, and all consecutive blocks
have consecutive epochs, e.g., bc and bd have four epochs of difference, 4 and 7 respectively, while b1

and b2 are labelled with consecutive epochs.

with b3 since by assumption b′.epoch > b3.epoch. In the latter case, the predecessor of b′
649

is inconsistent with b3. Indeed, the predecessor of b′ has a strictly smaller height than b1650

and by assumption has a larger epoch number than b3. Figure 2 illustrates the presence651

of inconsistent blocks in presence of a fork at some block bc. From bc two chains are built,652

the first one consisting of the sequence of three blocks b1, b2 and b3, and the second chain653

consisting of four consecutive blocks bd, b′
1, b′

2, b′
3 (to illustrate the first case) and of five654

consecutive blocks bd, be, b′
1, b′

2, b′
3 (to illustrate the second case). In both cases block block b′

1655

plays the role of block b′. In the first case (figure in the top), b3.height = 6 and b′.height = 5656

while b3.epoch = 6 and b′.height = 5. Thus Cond. 2 applies. In the second case (figure in657

the bottom), since b′.height ≥ b3.height then there must exist some block be in the b′ prefix.658

Thus be.height < b′.height. Moreover, given that by assumption be.epoch > b3.epoch, then659

Cond. 2 holds for be and b3.660

Hence there is always a couple of inconsistent blocks in a fork.661

Let us now conclude our proof that we solve the eventual immediate finality. If a fork662

occurs, then each correct process eventually detects at least one Byzantine process and663

ignores its votes, hence, we have a finite number of forks as we have a finite number of664

Byzantine processes, hence eventually there is always a single chain that is finalized. As there665

is a majority of correct processes, our protocol S remains live as in the original Streamlet666

protocol. S also inherits the properties of the original Streamlet protocol for finalizing blocks667

eventually when synchrony is reached. ◀668

5 Conclusion669

In this work we have focused on the formalisation of eventual finality, which ensures that670

selected main chains at different processes share a common increasing prefix. We have671

formalised different forms of eventual finality in terms of the maximal number of blocks672

that can be revoked at each reconciliation, which is a crux in current blockchain designs.673
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We have formally shown that in an asynchronous system is not possible to reach a bound674

on the number of blocks that can be revoked. On the other hand, we proposed for the675

first time a solution in an eventually synchronous system with less than half of Byzantine676

processes guaranteeing that such bound is reached eventually. We have also shown that in677

an asynchronous system eventual finality with no bound on the number of revocable blocks678

cannot be solved using the reconciliation rule of Bitcoin. Still we provide an asynchronous679

solution with an unlimited number of Byzantine processes. We hope that these results will680

better guide blockchain designs and link them to clear formal properties of finality.681
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