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Abstract10

This paper focuses on blockchain finality, which refers to the time when it becomes impossible to11

remove a block that has previously been appended to the blockchain. Blockchain finality can be12

deterministic or probabilistic, immediate or eventual. To favor availability against consistency in the13

face of partitions, most blockchains only offer probabilistic eventual finality: blocks may be revoked14

after being appended to the blockchain, yet with decreasing probability as they sink deeper into the15

chain. Other blockchains favor consistency by leveraging the immediate finality of Consensus – a16

block appended is never revoked – at the cost of additional synchronization.17

The quest for "good" deterministic finality properties for blockchains is still in its infancy, though.18

Our motivation is to provide a thorough study of several possible deterministic finality properties and19

explore their solvability. This is achieved by introducing the notion of bounded revocation, which20

informally says that the number of blocks that can be revoked from the current blockchain is bounded.21

Based on the requirements we impose on this revocation number, we provide reductions between22

different forms of eventual finality, Consensus and Eventual Consensus. From these reductions, we23

show some related impossibility results in presence of Byzantine processes, and provide non-trivial24

results. In particular, we provide an algorithm that solves a weak form of eventual finality in an25

asynchronous system in presence of an unbounded number of Byzantine processes. We also provide26

an algorithm that solves eventual finality with a bounded revocation number in an eventually27

synchronous environment in presence of less than half of Byzantine processes. The simplicity of the28

arguments should better guide blockchain designs and link them to clear formal properties of finality.29
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52:2 On Finality in Blockchains

1 Introduction34

This paper focuses on blockchain finality, which refers to the time when it becomes impossible35

to remove a block previously appended to the blockchain. Blockchain finality can be36

deterministic or probabilistic, immediate or eventual.37

Informally, immediate finality guarantees, as its name suggests, that when a block is38

appended to a local copy, it is immediately finalized and thus will never be revoked in the39

future. Designing blockchains with immediate finality favors consistency against availability40

in presence of transient partitions of the system. It leverages the properties of Consensus (i.e41

a decision value is unique and agreed by everyone), at the cost of synchronization constraints.42

Assuming partially synchronous environments, most of the permissioned blockchains satisfy43

the deterministic form of immediate consistency, as for example Red Belly blockchain [8] and44

Hyperledger Fabric blockchain [2]. The probabilistic form of immediate finality is typically45

achieved by permissionless pure proof-of-stake blockchains such as Algorand [7].46

Unlike immediate finality, eventual finality only ensures that eventually all local copies of47

the blockchain share a common increasing prefix, and thus finality of their blocks increases48

as more blocks are appended to the blockchain. The majority of permissionless cryptoassets49

blockchains, with Bitcoin [20] and Ethereum [25] as celebrated examples, guarantee eventual50

finality with some probability: blocks may be revoked after being appended to the blockchain,51

yet with decreasing probability as they sink deeper into the chain. In an effort to replace52

the energy-wasting proof-of-work (PoW) method of Bitcoin and Ethereum, recent proof-of-53

stake blockchains such as e.g. [16, 12, 15] emerged. These blockchains offer as well a form54

of eventual finality. More broadly, all these permissionless solutions favor availability (or55

progress) relying on a Nakamoto-style consensus: a broadcast primitive to diffuse blocks56

and a local reconciliation mechanism to select a unique chain. It is indeed admitted that57

a blockchain may lose consistency by incurring a fork, which is the presence of multiple58

chains at different processes. The reconciliation mechanism, available to recover from a fork,59

consists in a local deterministic rule selecting a chain among the different possible alternatives.60

In Bitcoin for instance any participant reconciles the state following the "longest" chain61

rule (the term "longest" chain rule is commonly employed, but this is actually the one that62

required the most work to be built). Once a winner chain is chosen, the other alternatives63

are revoked, as such all the blocks belonging to them. In designs using Nakamoto-style64

consensus, however, network effects make the moment at which all honest processes observe65

the same set of candidate chains unknown. Reconciliation and finalisation guarantees are66

then uncertain, or simply extremely inefficient, for example by considering a block as finalised67

after one or more days. To solve this problem a number of projects are investigating how68

to add "finality gadgets" (e.g., [5, 24]) to Nakamoto-style blockchains, which means seeking69

additional mechanisms or protocols to reach "better" finality properties in network adversarial70

settings. The hope is to find ways to get deterministic finality by periodically running finality71

gadgets on top of Nakamoto-style consensus. For the time being, the only way that has been72

concretely pursued is to resort to Byzantine Consensus – e.g. Tenderbake [4] adds Byzantine73

Consensus to the existing proof-of-stake method assuring deterministic finality to each block74

followed by other two blocks. How to add mechanisms that do not resort to Consensus,75

however, is an intriguing and open question, related to the finality properties one would like76

to guarantee.77

The quest for "good" deterministic finality properties for blockchains is still in its infancy,78

though. Our motivation is to provide a protocol-independent abstraction of several possible79

finality properties to study their solvability. To this aim we formalise, for the first time, the80
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notion of finality in a protocol-agnostic way. At the heart of the proposed formalisation lies81

the notion of revocation number. Informally, given a system run and a blockchain bc read by82

a user at some time t, we call the revocation number the natural number n such that by83

pruning the last n blocks from bc, we obtain a prefix of any blockchain bc′ read after t.84

By leaving the revocation number unbounded in all the runs of the system, we formalise85

our weakest form of finality, the eventual finality consistency criterion F : In each run, the86

revocation number can be infinite when the run goes to infinity, still each block will be87

eventually finalised.88

By introducing restrictions on the revocation number, we then introduce stronger criteria.89

The strongest criterion, called Fc, is obtained by restricting the revocation number to be a90

constant c in all the runs of the system. Informally, Fc guarantees that finality of each block91

is deferred by at most c blocks in all system runs, i.e., any block followed by at least c blocks92

in the blockchain cannot be revoked.93

Between F and Fc we then define three other forms of deferred finality: Fn, where the94

revocation number is bounded but not known, F�,c, where the revocation number is constant95

but holds only eventually, and finally F�,n, where the bound on the revocation number is96

not known and holds only eventually. Fn guarantees that finality of each block is deferred97

by a constant c in each system run, but this constant can vary from one run to another. For98

F�,c and F�,n we have that F�,c guarantees that eventually finality of each block is deferred99

by c in all system runs, while for F�,n, eventually finality of each block is deferred by c in100

each system run with c varying from one run to another. Nicely, we obtain each consistency101

criterion by adding a proper bounded revocation property to F and we prove that Fn, F�,c,102

F�,n are all equivalent.103

The rigorous formalisation of these consistency criteria enables us to easily show that104

solutions that guarantee Fc are equivalent to Consensus, while solutions that guarantee Fn
105

(or equivalently F�,n and F�,c) are not weaker than Eventual Consensus, an abstraction106

that captures eventual agreement among all participants. From these reductions, we show107

some related impossibility results in presence of Byzantine processes. Beside reductions and108

related impossibilities, we propose the following non-trivial results:109

F cannot be achieved in an asynchronous system if the reconciliation rule follows the110

"longest" chain rule (Theorem 20). This implies that the reconciliation rule, used in current111

blockchains to provide probabilistic finality in synchronous settings, cannot guarantee112

that participants will eventually converge to a stable prefix of the chain in asynchronous113

settings.114

A solution that guarantees F in an asynchronous system with a possibly infinite set of115

processes which can append infinitely many blocks. This novel solution is simple and116

tolerant to an unbounded number of Byzantine processes (Theorem 21).117

A solution that solves Fn in an eventually synchronous environment in presence of less118

than half of Byzantine processes (Theorem 22). The central point of our solution is to let119

correct processes blame each fork on a particular Byzantine process, which can then be120

excluded from the computation. Weakening the classic requirement of < 1/3 to < 1/2121

Byzantine processes makes such a solution well adapted to large scale adversarial systems.122

As for the previous one, we are not aware of any such solution in the literature.123

We hope that these results will better guide blockchain designs and link them to clear124

formal properties of finality. Hence, in the remainder of this article, Section 2 situates our125

work with respect to similar ones. Section 3 formally presents the sequential specification of126

a blockchain and the formalisation of the different finality properties we may expect from a127

blockchain when concurrently accessed. Section 4 presents reductions between different forms128
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52:4 On Finality in Blockchains

of finality, Consensus and Eventual Consensus. Section 5 first shows why F is not solvable129

in an asynchronous environment when the "longest" chain rule is used, and then presents130

two original and simple algorithms that respectively solve F and Fn. Finally, Section 6131

concludes the paper.132

2 Related Work133

Formalization of blockchains in the lens of distributed computing has been recognized as134

an extremely important topic [14]. Garay et al. [10] have been the first to analyze the135

Bitcoin backbone protocol and to define invariants this protocol has to satisfy to verify with136

high probability an eventual consistent prefix. The authors have analyzed the protocol in a137

synchronous system, while others, as for example Pass et al. [21], have extended this line138

of work considering a more adversarial network. In those works the specification of the139

consistency properties are protocol dependent and thus provide an abstraction level that140

does not allow us to model the blockchain as a shared object being agnostic of the way it is141

implemented. The objective we pursue throughout this work is to formalize the semantic142

of the interface between the blockchain and the users. To do so we consider the blockchain143

as a shared object, and thus the consistency properties are specified independently of the144

synchrony assumptions of underlying distributed system and the type of failures that may145

occur. By doing this, we offer a higher level of abstraction than well-known properties do.146

This approach has been recently followed in particular by Anta et al. [3], Anceaume et147

al. [1] and Guerraoui et al. [13] 1. In Anta et al. [3], the authors propose a formalization of148

distributed ledgers, modeled as an ordered list of records along with implementations for149

sequential consistency and linearizability using a total order broadcast abstraction. Anceaume150

et al. [1] have captured the convergence process of two distinct classes of blockchain systems:151

the class providing strong prefix as [3] (for each pair of chains returned at two different152

processes, one is the prefix of the other) and the class providing eventual prefix, in which153

multiple chains can co-exist but the common prefix eventually converges. The authors of [1]154

show that to solve strong prefix the Consensus abstraction is needed, however they do not155

address solvability of eventual prefix and do not formalise finality. Interestingly, our notion156

of finality and bounded revocation is able to encompass the strong and the eventual prefix157

consistency properties of [1].158

3 Definitions159

3.1 Preliminary Definitions160

We describe a blockchain object as an abstract data type which allows us to completely161

characterize a blockchain by the operations it exports [18]. The basic idea underlying the162

use of abstract data types is to specify shared objects using two complementary facets: a163

sequential specification that describes the semantics of the object, and a consistency criterion164

over concurrent histories, i.e. the set of admissible executions in a concurrent environment [22].165

Prior to presenting the blockchain abstract data type we first recall the formalization used166

to describe an abstract data type (ADT).167

1 While not related to the blockchain data structure, authors of [13] have formalized the notion of
cryptocurrency showing that Consensus is not needed.



E. Anceaume, A. Del Pozzo, T. Rieutord and S. Tucci-Piergiovanni 52:5

3.1.1 Abstract data types.168

An abstract data type (ADT) is a tuple of the form T = (A,B,Z, z0, τ, δ). Here A and B169

are countable sets respectively called input alphabet and output alphabet. Z is a countable170

set of abstract object states and z0 ∈ Z is the initial abstract state. The map τ : Z ×A→ Z171

is the transition function, specifying the effect of an input on the object state and the172

map δ : Z ×A→ B is the output function, specifying the output returned for a given input173

and an object local state. An input represents an operation with its parameters, where (i)174

the operation can have a side-effect that changes the abstract state according to transition175

function τ and (ii) the operation can return values taken in the output B, which depends on176

the state in which it is called and the output function δ.177

3.1.2 Concurrent histories of an ADT178

Concurrent histories are defined considering asymmetric event structures, i.e., partial order179

relations among events executed by different processes.180

I Definition 1. (Concurrent history H) The execution of a program that uses an abstract181

data type T =〈A,B,Z, ξ0, τ, δ〉 defines a concurrent history H = 〈Σ, E,Λ, 7→,≺,↗〉, where182

Σ = A ∪ (A×B) is a countable set of operations;183

E is a countable set of events that contains all the ADT operations invocations and all184

ADT operation response events;185

Λ : E → Σ is a function which associates events to the operations in Σ;186

7→: is the process order, irreflexive order over the events of E. Two events (e, e′) ∈ E2
187

are ordered by 7→ if they are produced by the same process, e 6= e′ and e happens before e′,188

that is denoted as e 7→ e′.189

≺: is the operation order, irreflexive order over the events of E. For each couple190

(e, e′) ∈ E2 if e′ is the invocation of an operation occurred at time t′ and e is the response191

of another operation occurred at time t with t < t′ then e ≺ e′;192

↗: is the program order, irreflexive order over E, for each couple (e, e′) ∈ E2 with e 6= e′193

if e 7→ e′ or e ≺ e′ then e↗ e′.194

3.2 The blocktree ADT195

We represent a blockchain as a tree of blocks. The same representation has been adopted196

in [1]. Indeed, while consensus-based blockchains prevent forks or branching in the tree of197

blocks, blockchain systems based on proof-of-work allow the occurrence of forks to happen198

hence presenting blocks under a tree structure. The blockchain object is thus defined as a199

blocktree abstract data type (Blocktree ADT).200

3.2.1 Sequential Specification of the Blocktree ADT (BT-ADT)201

A blocktree data structure is a directed rooted tree bt = (Vbt, Ebt) where Vbt represents a202

set of blocks and Ebt a set of edges such that each block has a single path towards the root203

of the tree b0 called the genesis block. A branching in the tree is called a fork. Let BT be204

the set of blocktrees, B be the countable and non empty set of uniquely identified blocks205

and let BC be the countable non empty set of blockchains, where a blockchain is a path206

from a leaf of bt to b0. A blockchain is denoted by bc. The structure is equipped with two207

operations append() and read(). Operation append(b) adds block b 6∈ bt to Vbt and adds the208

edge (b, b′) to Ebt where b′ ∈ Vbt is returned by the append selection function fa() applied to209
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52:6 On Finality in Blockchains

bt. Operation read() returns the chain bc selected by the read selection function fr() applied210

to bt (note that in [1], the read() and append() operations are defined with a unique selection211

function). The read selection fr() takes as argument the blocktree and returns a chain of212

blocks, that is a sequence of blocks starting from the genesis block to a leaf block of the213

blocktree. The chain bc returned by a read() operation r is called the blockchain, and is214

denoted by r/bc. The append selection function fa() takes as argument the blocktree and215

returns a chain of blocks. Function last_block() takes as argument a chain of blocks and216

returns the last appended block of the chain. Only blocks satisfying some validity predicate217

P can be appended to the tree. Predicate P is an application-dependent predicate used to218

verify the validity of the chain obtained by appending the new block b to the chain returned219

by fa() (denoted by fa(bt)_b). In Bitcoin for instance this predicate embeds the logic to220

verify that the obtained chain does not contain double spending or overspending transactions.221

Formally,222

I Definition 2. (Sequential specification of the Blocktree ADT) The Blocktree Abstract Data223

Type is the 6-tuple BT−ADT={A = {append(b), read()/bc ∈ BC}, B = BC ∪ {>,⊥}, Z =224

BT , ξ0 = b0, τ, δ}, where the transition function τ : Z ×A→ Z is defined by225

τ(bt, read()) = bt226

τ(bt, append(b)) =
{

(Vbt ∪ {b}, Ebt ∪ {b, last_block(fa(bt))}) if P (fa(bt)_b)
bt otherwise,227

228

and where the output function δ : Z ×A→ B is defined by229

δ(bt, read()) = fr(bt)230

δ(bt, append(b)) =
{
> if P (fa(bt)_b)
⊥ otherwise.231

232

Note that we do not need to add the validity check during the read operation in the233

sequential specification of the Blocktree ADT because in absence of concurrency the validity234

check during the append operation is enough.235

3.2.2 Concurrent Specification and Consistency Criteria of the236

BlockTree ADT237

The concurrent specification of the blocktree abstract data type is the set of its concurrent238

histories. A blocktree consistency criterion is a function that returns the set of concurrent239

histories admissible for the blocktree abstract data type. In this paper, we define different240

consistency criteria for the blocktree. We first define eventual finality, which is the weakest241

consistency criterion that we may expect from blockchains, along with the notion of block242

revocation. We then combine eventual finality with different forms of revocation to provide243

stronger consistency criteria. The presented family of consistency criteria is a comprehensive244

characterization of what we may expect from blockchains.245

I Notation 1.246

E(a∗, r∗) is an infinite set containing an infinite number of append() and read() invocation247

and response events;248

E(a, r∗) is an infinite set containing (i) a finite number of append() invocation and249

response events and (ii) an infinite number of read() invocation and response events;250
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oinv and orsp indicate respectively the invocation and response event of an operation o;251

and in particular for the read() operation, rrsp/bc denotes the returned blockchain bc252

associated with the response event rrsp and for the append() operation ainv(b) denotes the253

invocation of the append operation having b as input parameter;254

length : BC → N denotes a monotonic increasing deterministic function that takes as input255

a blockchain bc and returns a natural number as length of bc. Increasing monotonicity256

means that length(bc_{b}) > length(bc);257

We represent chain bc as an infinite list b0b
∗⊥+ of blocks, where the first block bc[0] = b0,258

the genesis block, followed by block values b, and an infinite number of ⊥ values. Notation259

bc[i] refers to the i-th block of blockchain bc. Note that the special “⊥” symbol counts for260

zero for the length function.261

bc v bc′ if and only if bc prefixes bc′. The operator v ignores all the records set to ⊥.262

I Definition 3 (BT Eventual Finality Consistency criterion (F)). A concurrent history263

H = 〈Σ, E,Λ, 7→,≺,↗〉 of a system that uses a BT-ADT verifies the BT eventual finality264

consistency criterion if the following four properties hold:265

Chain validity:266

∀rrsp ∈ E,P (rrsp/bc).267

Each returned chain is valid.268

Chain integrity:269

∀rrsp ∈ E,∀b ∈ rrsp/bc : b 6= b0,∃ainv(b) ∈ E, ainv(b)↗ rrsp.270

If a block different from the genesis block is returned, then an append operation has been271

invoked with this block as parameter. This property is to avoid the situation in which272

reads return blocks never appended.273

Eventual prefix:274

∀E ∈ E(a, r∗) ∪ E(a∗, r∗),∀rrsp/bc,∀i ∈ N : bc[i] 6= ⊥,∃r′rsp : rrsp ↗ r′rsp,∀r′′rsp : r′rsp ↗275

r′′rsp, (r′rsp/bc
′)[i] = (r′′rsp/bc

′′)[i] 6= ⊥.276

In all the histories in which the number of read invocations is infinite, then for any read277

operation such that the returned chain has a block at position i, there exists a read r′/bc′278

from which all the subsequent reads r′′/bc′′ will return the same block at position i, i.e.279

bc′[i] = bc′′[i] 6= ⊥.280

Ever growing tree:281

∀E ∈ E(a∗, r∗),∀k ∈ N,∃r ∈ E : length(rrsp/bc) > k.282

In all the histories in which the number of append and read invocations is infinite, for283

each length k, there exists a read that returns a chain with length greater than k. This284

property avoids the trivial scenario in which the length of the chain remains unchanged285

despite the occurrence of an infinite number of append operations (i.e., tree built as a star286

with infinite branches of bounded length). Specifically the “Ever growing tree” property287

imposes that in presence of an infinite number of read and append operations, for any288

natural number k, there will always exist a read operation that will return a chain of at289

least length k. Note that the well known “Chain Growth Property” [10, 21] states that290

each (honest) chain grows proportionally with the number of rounds of the protocol, which291

in contrast to our specification, makes it protocol dependent.292

Bounded revocation293

As previously said, the bounded revocation properties are at the heart of our formalisation294

of blockchain finality. Informally, given a history, we call the revocation number the natural295
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52:8 On Finality in Blockchains

number n such that for any two reads r/bc and r′/bc′, where r precedes r′, by pruning the296

last n blocks from bc we obtain a chain that is a prefix of bc′.297

Note that the eventual finality consistency criterion presented so far does not impose any298

bound on the revocation number, which can be then infinite when the history goes to infinity.299

To obtain stronger consistency criteria, we then introduce restrictions to the revocation300

number. To this aim, we define the c-bounded revocation property, which states that the301

revocation number n is bounded by a constant c in all histories. We also define the bounded302

revocation property, which states that the revocation number n is bounded by a constant303

c in each history, but may be unbounded when we consider the union of all the histories,304

i.e., the bound can vary from a history to another. Eventual forms of c-bounded revocation305

and bounded revocation state that the revocation number will be equal to a constant c only306

eventually. More formally:307

I Definition 4 (c-Bounded Revocation). ∃c ∈ N,∀E,∀rrsp/bc, r
′
rsp/bc

′ ∈ E : rrsp ↗ r′rsp,∀i ∈308

N : i ≤ (length(bc)− c), bc[i] = bc′[i] 6= ⊥.309

I Definition 5 (Bounded Revocation). ∀E,∃c ∈ N,∀rrsp/bc, r
′
rsp/bc

′ ∈ E : rrsp ↗ r′rsp,∀i ∈310

N : i ≤ (length(bc)− c), bc[i] = bc′[i] 6= ⊥.311

I Definition 6 (Eventual c-Bounded Revocation). ∃c ∈ N,∀E,∃r ∈ E : ∀r′rsp/bc, r
′′
rsp/bc

′ ∈312

E : rrsp ↗ r′rsp, r
′
rsp ↗ r′′rsp,∀i ∈ N : i ≤ (length(bc′)− c), bc′[i] = bc′′[i] 6= ⊥313

I Definition 7 (Eventual Bounded Revocation). ∀E,∃c ∈ N,∃r ∈ E : ∀r′rsp/bc, r
′′
rsp/bc

′ ∈ E :314

rrsp ↗ r′rsp, r
′
rsp ↗ r′′rsp,∀i ∈ N : i ≤ (length(bc′)− c), bc′[i] = bc′′[i] 6= ⊥315

Note that Bounded Revocation properties are not protocol dependent in contrast to the316

well-known “Common-Prefix Property" [10, 21], which states that for any two rounds r and317

r’ of the protocol with r < r’, the (honest) chain read at round r from which the last c318

blocks have been pruned is a prefix of (resp. is equal to with high probability) the one read319

at round r’.320

Based on these different forms of bounded revocation, we define four criteria stronger321

than eventual finality. Nicely, we obtain each consistency criterion by adding the proper322

bounded revocation property to F .323

By adding c-bounded revocation to F , we obtain the c-deferred finality form, denoted by324

Fc. Informally, Fc guarantees that finality of each block is deferred by at most c blocks in325

all histories, i.e., any block followed by at least c blocks in the blockchain cannot be revoked.326

By adding the bounded revocation property to F , we obtain the bounded deferred finality327

form, denoted by Fn. Informally Fn guarantees that finality of each block is deferred by a328

constant c in each history, but this constant can vary from history to history. In other words329

constant c is unknown.330

Finally, by adding respectively, eventual c-bounded finality and eventual bounded finality331

to F , we obtain other two forms of deferred finality, namely F�,c F�,n, both equivalent to332

Fn. Informally, F�,c guarantees that eventually finality of each block is deferred by c in all333

histories. For F�,n, eventually finality of each block is deferred by c in each history, with c334

varying from history to history.335

In the following we formally introduce Fc, Fn, F�,c, F�,n, and show equivalences between336

F�,c, F�,n and Fn.337

I Definition 8 (BT c-Deferred Finality Consistency criterion (Fc)). A concurrent history338

H = 〈Σ, E,Λ, 7→,≺,↗〉 of the system that uses a BT-ADT verifies the BT c-deferred finality339

consistency criterion if chain validity, chain integrity, eventual prefix, ever growing tree, and340

the c-bounded revocation properties hold.341
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I Definition 9 (BT Bounded Deferred Finality Consistency criterion (Fn)). A concurrent342

history H = 〈Σ, E,Λ, 7→,≺,↗〉 of the system that uses a BT-ADT verifies the BT bounded343

deferred finality consistency criterion if chain validity, chain integrity, eventual prefix, ever344

growing tree, and the bounded revocation properties hold.345

I Definition 10 (BT Eventual c-Deferred Finality Consistency criterion (F�,c)). A concurrent346

history H = 〈Σ, E,Λ, 7→,≺,↗〉 of the system that uses a BT-ADT verifies the BT eventual347

c-deferred finality consistency criterion if chain validity, chain integrity, ever growing tree,348

eventual prefix and the eventual c-bounded revocation properties hold.349

I Definition 11 (BT Eventual Bounded Deferred Finality Consistency criterion (F�,n)). A350

concurrent history H = 〈Σ, E,Λ, 7→,≺,↗〉 of the system that uses a BT-ADT verifies the351

BT eventual bounded deferred finality consistency criterion if chain validity, chain integrity,352

ever growing tree, eventual prefix and the eventual bounded revocation properties hold.353

Note that in the blockchain literature, Fc, with c = 0, is also referred to as immediate354

finality. Immediate finality is equivalent to BT strong consistency defined in [1], which355

implies that for any two read operations, one of the returned blockchains is the prefix of the356

other one.357

I Notation 2. For readability reasons, in the following we will simply say finality instead of358

finality consistency criterion.359

I Theorem 12. Fn and F�,n are equivalent.360

Proof. Trivially, Fn implies F�,n. Let us now consider the other direction. From F�,n, we361

have that given any execution E, there exists c ∈ N and a read operation r such that for all362

reads r′, r′′ after r, with r′ ↗ r′′ the blockchain returned by r′ pruned of the last c blocks363

is a prefix of the blockchain returned by r′′. Let c′ be the maximal length of blockchains364

returned by read operations occurring before r, and let c′′ = max(c, c′). By construction, Fn
365

is satisfied for E with revocation number n = c′′. Hence F�,n implies Fn. J366

We now show that F�,n and F�,c are equivalent. This equivalence is shown by first367

proving that F�,n and F�,c=0 are equivalent and then that F�,c=0 and F�,c are equivalent.368

I Theorem 13. F�,c=0 and F�,n are equivalent.369

Proof. Let P1 be a protocol guaranteeing F�,n. We build protocol P2 as follows: to make370

an append() operation, processes simply use the append() operation of P1. For the read()371

operation, processes use the read() operation provided by P1 to obtain the blockchain and372

prune the second half of it before returning the first half of the blockchain. Let us show that373

protocol P2 guarantees F�,c=0. For this, we need to show that the properties of F�,c=0 are374

satisfied:375

Chain validity: The chain validity property is still satisfied by pruning half of the chain.376

Chain integrity: The chain integrity property is still satisfied by pruning half of the377

chain.378

Eventual prefix: The eventual prefix property is still satisfied by pruning half of the379

chain.380

Ever growing tree: The ever growing tree property is still satisfied by pruning half of381

the chain.382

(c = 0)-eventual bounded revocation: This property follows from the removal of the383

second half of the chain. Indeed, if we remove the second half of the chain, then eventually384

for any two read() operations, then the first read() returns a prefix of the second read()385

operation.386
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For the other direction, we can build a solution to F�,n using a solution to F�,c=0. J387

I Theorem 14. F�,c=0 and F�,c are equivalent.388

Proof. Trivially, F�,c=0 implies F�,c. For the other direction, we apply a construction close389

to the one used in the proof of Theorem 13. Specifically, given a protocol P1 that guarantees390

F�,c, we build a protocol P2 by using P1 as follows. To make an append() operation,391

processes simply use the append() operation of P1. For the read() operation, processes use392

the read() operation provided by P1 to obtain the blockchain and prune its last c blocks393

before returning it. Note that if there are less than c blocks, processes then return the genesis394

block. The properties of F�,c=0 trivially follow from the properties of F�,c and the proposed395

transformation. J396

I Corollary 15. Fn, F�,n, F�,c, and F�,c=0 are equivalent.397

Proof. Straightforward from Theorems 12, 13 and 14. J398

4 (Eventual) Consensus Reductions399

In this section, we show that guaranteeing Fc is equivalent to solving Consensus, while400

guaranteeing bounded deferred finality (or any of the equivalent forms) is not weaker than401

solving Eventual Consensus.402

4.1 c-Bounded Deferred Finality and Consensus403

I Theorem 16. Guaranteeing Fc is equivalent to solving Consensus.404

Proof. Let us first remark that Fc=0 is equivalent to BT Strong Consistency [1], which has405

been shown to be equivalent to Consensus [1].406

To prove the theorem it is then sufficient to give a protocol P2 that guarantees Fc=0 given407

a solution P1 that satisfies Fc, the other direction being trivial. We build P2 by applying408

the same transformation of P1 described in the proof of Theorem 14. The properties of Fc=0
409

trivially follow from the properties of Fc and the proposed transformation. J410

I Corollary 17. There does not exist any solution that solves Fc in an eventual synchronous411

system with more than 1/3 of Byzantine processes.412

Proof. The proof follows from the equivalence between Fc and Consensus (cf. Theorem 16),413

which is unsolvable in a synchronous (and thus also in an eventually synchronous) system414

with more than one third of Byzantine processes [17]. J415

4.2 Bounded Deferred Finality and Eventual Consensus416

In this section we show that guaranteeing bounded deferred finality is not weaker than417

Eventual Consensus. To this aim we first recall the Eventual Consensus problem with a418

small modification of the validity property to make it suitable to the blockchain context and419

then we show that F�,c=0 (which is equivalent to F�,n by Corollary 15) is not weaker than420

Eventual Consensus.421

The Eventual Consensus (EC) abstraction [9] captures eventual agreement among all422

participants. It exports, to every process pi, operations proposeEC1, proposeEC2, . . . that423

take multi-valued arguments (correct processes propose valid values) and return multi-valued424

responses. Assuming that, for all j ∈ N, every process invokes proposeECj as soon as it425
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returns a response to proposeECj−1, the abstraction guarantees that, in every admissible run,426

there exists k ∈ N and a predicate PEC , such that the following properties are satisfied:427

EC-Termination. Every correct process eventually returns a response to proposeECj428

for all j ∈ N.429

EC-Integrity. No process responds twice to proposeECj for all j ∈ N.430

EC-Validity. Every value returned to proposeECj is valid with respect to predicate PEC .431

EC-Agreement. No two correct processes return different values to proposeECj for all432

j ≥ k.433

I Theorem 18. Guaranteeing F�,c=0 (or any of the equivalent forms) is not weaker than434

solving Eventual Consensus.435

Proof. We show that there exists a protocol P1 that solves Eventual Consensus assuming436

the existence of a protocol P2 that solves F�,c=0. We do the transformation as follows. Every437

correct process p invokes proposeECj for all j ∈ N. We impose that the validity predicate P438

of the blocktree ADT (see Section 3) be equal to predicate PEC . When a correct process439

p invokes the proposeECj(v) operation of P1, for any j ∈ N, then p executes the following440

sequence of three steps: (i) p invokes the append(v) operation of P2, then (ii) p invokes441

a sequence of read() operations up to the moment the read() returns a chain bc such that442

bc[j] 6= ⊥, and finally (iii) p decides chain bc (i.e., it returns chain bc) and triggers the next443

operation proposeECj+1(v′). We now show that protocol P1 solves Eventual Consensus.444

EC-Termination This property is guaranteed by the ever growing tree property.445

EC-Integrity This property follows directly from the transformation.446

EC-Validity This property follows by construction and by the chain validity property447

since predicate P equals to predicate PEC .448

EC-Agreement This property follows by the eventual prefix property and the 0-eventual449

revocation property, which guarantees that there exists a read() operation r such that all450

the subsequent ones return blockchains that are each prefix of the following one. In other451

words, eventually there is agreement on the value contained in bc[j]. This implies that452

there exists k for which all proposeECj with j ≥ k return the same value to all correct453

processes.454

Finally, by Corollary 15, the proof of the Theorem completes. J455

I Theorem 19. There does not exist any solution that solves Fn (and any of the equivalent456

forms) in an asynchronous system with at least one Byzantine process.457

Proof. The proof follows from Corollary 15 and the fact that F�,c=0 is not weaker than458

Eventual Consensus (cf. Theorem 18). Since Eventual Consensus is equivalent to the leader459

election problem [9], which cannot be solved in an asynchronous system with at least one460

Byzantine process [23], this completes the proof of the Theorem. J461

5 Finality Solutions462

In this section we first show the impossibility of solving our weakest form of finality F when463

the append operation, in case of forks, selects the "longest" chain. We then provide the first464

solution to F with an unbounded number of Byzantine processes in an asynchronous system465

using an alternative selection rule.466
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5.1 Impossibility to Satisfy F with the Longest Chain Rule467

In the following we prove that, in an asynchronous environment, we cannot provide F if, in468

case of forks, the append selection function fa() follows the longest chain rule, i.e., returns469

the longest chain of the blockchain tree. Note that this result holds even in absence of470

failures. Obviously we assume that blocks are not created using the Consensus abstraction:471

With Consensus, immediate finality is easily ensured, and thus no fork will ever occur.472

Thus, when the Consensus abstraction cannot be implemented (due to the adversity of the473

environment), many blockchain systems adopt a selection function fa based on the longest474

chain. For instance, in proof-of-work systems such as Bitcoin, selected chains are the ones475

that have required the most amount of work, which is equivalent to the longest chains when476

the difficulty is constant. In Ethereum, while the selection rule is based on heaviest sub-tree477

of the blockchain tree, or in proof-of-stake systems like EOS [12] or Tezos [11], the same478

argument applies.479

To show this impossibility result, we consider a scenario in which the occurrence of any480

fork produces at most two alternative chains (this is often referred to as a branching factor481

of 2). We consider a finite number of processes and an append selection function fa that482

in case of forks deterministically selects the longest chain through the length function (see483

Section 3.2.2), and in case of a tie selects the chain following any deterministic rule (for484

instance the chain whose last block hast the smallest digest). We show that it is impossible485

to guarantee F for such append selection function fa.486

Intuitively, the impossibility follows from the fact that with the longest chain selection487

rule, races can occur between different branches in the tree. We show that as forks may488

occur, we can create two infinite branches sharing only the root. One or the other branch489

constitutes alternatively the longest chain and append operations select chains from each490

branch alternatively. This is enough to show that the only common prefix that is returned is491

the root hence, violating eventual finality.492

I Theorem 20. It is impossible to guarantee F if the append operation is based on the493

longest chain rule in an asynchronous environment.494

Proof. The interested reader is invited to read the proof in the Appendix of this paper. J495

5.2 Asynchronous Solution Satisfying F with an Unbounded Number496

of Byzantine Processes497

We consider an asynchronous system with a possibly infinite set of processes which can498

append infinitely many blocks, and processes can be affected by Byzantine failures. Each499

process has a unique identifier i ∈ N and is equipped with signatures that can be used to500

identify the message sender identifier. Each block is identified with the identifier of the501

process that created it. Block identifier is inserted in the header of the block. Moreover, since502

it has been proven that reliable communications are necessary to ensure eventual finality [1],503

we assume that each process is equipped with an Eventually Reliable Broadcast primitive504

that satisfies the following two properties: If a correct process p broadcasts a message m505

then p eventually delivers m and if a correct process p delivers m then all correct processes506

eventually deliver m. Such a primitive can be implemented by organizing the infinite set507

of processes in a topology in which for each pair of correct processes, there exists a path508

composed by only correct processes [19]. Thus, we do not require any assumptions on the509

proportion between Byzantine and correct processes in the system but on the way those510

processes are arranged on the network topology.511
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Algorithm 1 Guaranteeing F with an unbounded number of Byzantine processes

1 upon rb-delivery(bc)
2 bt.addIfValid(bc)
3 end
4 upon append(b)
5 rb-broadcast(fa(bt)_b)
6 end
7 upon read()
8 return fr(bt)
9 end

The main idea of Algorithm 1 consists in using local selection functions fa and fr for512

append and read operations respectively and characterizing blocks by their parents and513

producer signatures.514

To perform an append operation of a block b, correct processes extend the chain returned515

by function fa applied on their current view of bt with b, i.e., fa(bt)_b, and rb-broadcast516

fa(bt)_b. When a process rb-delivers a blockchain bc, it calls bt.addIfValid(bc) that merges bc517

with bt if the former is valid. By merging bc with bt we mean that for each block bi of bc518

starting from the genesis block b0, if bi is not present in bt then bi is added to bt, i.e., bi is519

added to the block of bt whose hash is equal to the one contained in bi’s header. A read()520

operation triggered by a correct process p returns the chain selected by fr on the current521

blocktree bt of p. Given a blocktree bt, the append selection function fa selects a chain in bt522

by going from the root (i.e., genesis block) to a leaf, choosing at each fork bi the edge to the523

child with the lowest identifier. If more than one child have the same identifier (i.e., they524

have been created by the same process), then all of them are ignored. If all the children have525

the same identifier, then fa returns the chain from the genesis block to bi. Blocks are ranked526

by the creator identifier, in the domain of the natural number and thus lower bounded by 0.527

Then even though, an infinite number of blocks is added continuously to a fork, there is not,528

for a given block, an infinite number of blocks with a smaller identifier. Thus eventually the529

selection function fa will always select the same prefix. Finally, since blocks are diffused by530

an eventually reliable broadcast primitive, eventually all correct processes will have the same531

view of the blocktree. When a process invokes the read() operation, it returns the blockchain532

selected by the read selection function fr applied to its current view of the blocktree. By533

imposing that fr = fa, then eventually all the processes, when reading, will select the same534

prefix.535

I Theorem 21. Algorithm 1 is a solution satisfying F in an asynchronous system with a536

possibly infinite set of processes which can append infinitely many blocks, and suffer from an537

unbounded number of Byzantine failures.538

Proof. We show by construction that Algorithm 1 solves F in an asynchronous system with539

a possibly infinite set of processes which can append infinitely many blocks, and can suffer540

an unbounded number of Byzantine failures. Intuitively, despite the unbounded number of541

blocks in each fork, by the eventually reliable broadcast, eventually for each fork all correct542

processes have the same block with the smallest identifier. Hence, by the read selection543

function fr that at each fork selects the block with the smallest identifier in order to select544

the chain to return, eventually, at all correct processes, function fr returns the blockchain545

having a common increasing prefix. Let p1, p2, . . . , be a possibly infinite set of processes,546
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such that each one maintains its local view bti of blocktree bt by running Algorithm 1. Then547

for any correct process pi the following properties hold.548

Chain validity: it is satisfied by function bt.addIfValid(bc) that merges blockchain bc to549

bti only if the former is valid.550

Chain integrity: The read() operation returns the chain of blocks selected by function551

fr applied to bti. By Line 2 of Algorithm 1, only valid blocks are locally added to bti552

once they have been reliably delivered. By Algorithm 1, the only place at which blocks553

are reliably broadcast is in the append() operation.554

Eventual prefix: This property follows from the definition of fa and the eventually555

reliable broadcast primitive. Thanks to the latter, for any b in the bt of a correct process556

p, eventually all correct processes deliver b. Let tb be the time after which no process can557

append further blocks bchild to b such that bchild is part of the chain returned by fa. This558

time tb always exists, as for each block b having potentially infinitely many children we559

have, by definition of function fa, that fa(bt) selects a chain in bt by going from the root560

to a leaf, choosing at each fork b the edge to the child with the lowest identifier. Since561

identifiers are lower bounded by 0, eventually function fa will always select the same562

child b′ of b. The same argument applies for b′ and its children. Hence, if any two correct563

processes invoke the read operation infinitely many times, then as fr = fa, eventually564

they return chains that satisfy the eventual prefix property.565

Ever growing tree: This property relies on the fact that each fork has a finite number566

of blocks since there are finitely many processes and each (Byzantine or correct) process567

can contribute with at most one block per parent as multiple children created by the same568

process are ignored by fa. Thus, eventually, new blocks contribute to the tree growth.569

J570

5.3 Eventually Synchronous Solution Satisfying Bounded Deferred571

Finality with less than half of Byzantine Processes572

In this section we prove that the bounded deferred finality is solvable in an eventually573

synchronous message-passing system with less than n/2 Byzantine processes, where n is the574

number of processes.575

We propose an algorithm, called AF for Accountable Forking. This algorithm is inspired576

by the Streamlet [6] algorithm. Streamlet [6] assumes the presence of less than a third of577

Byzantine processes and an eventually synchronous system with a known message delay ∆578

after GST. Algorithm AF relies on weaker assumptions: we assume the presence of only579

a majority of correct processes and we do not explicitly use bound ∆. We suppose that580

processes have access to the eventually reliable broadcast presented in Section 5.2. Prior to581

presenting our algorithm, we first recall the description of the original Streamlet [6].582

The Streamlet Algorithm. The Streamlet algorithm works in an eventually synchron-583

ous system with a known message delay ∆ and a finite set of n processes. In particular,584

before the Global Stabilisation Time (GST), message delays can be arbitrary; however, after585

GST, messages sent by correct processes are guaranteed to be received by correct processes586

within ∆ time units. Each epoch, composed of 2∆ time units, has a designated leader chosen587

at random by a publicly known hash function. Each block b is labelled with the epoch588

(b.epoch) at which it has been created. This allows processes to determine whether block b589

has been created by a legitimate leader. Figure 1 presents Steamlet protocol [6].590

The Accountable Forking (AF) Algorithm. We propose AF , an algorithm that591

extends Streamlet. AF guarantees that for any given fork, correct processes can blame592

the process that originates it, i.e, a Byzantine process creating a fork is accountable for it.593
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Propose-Vote. In every epoch:
The epoch’s designated leader proposes a new block and reliably broadcasts it,
extending the longest notarized chain (defined below) it has seen, or breaking ties
arbitrarily if they have the same height.
Each process votes (rb-broadcasts a vote) for the first proposal it sees from the
epoch’s leader, as long as the proposed block extends (one of) the longest notarized
chain(s) that the voter has seen. A vote is a signature on the proposed block.
When a block gains votes from at least 2n/3 distinct processes, it becomes notarized.
A chain is notarized if its constituent blocks are all notarized.

Finalize. Notarized does not mean final. If in any notarized chain, there are three
adjacent blocks with consecutive epoch numbers, the prefix of the chain up to the second
of the three blocks is considered final. When a block becomes final, all of its prefixes
must be final too.

Figure 1 Streamlet algorithm [6]

This is achieved as follows: First, we only require that a block gains votes from a majority594

of distinct processes to become notarized, which means that forks can occur. The second595

modification we propose goes deeper: if a fork occurs, any correct processes can detect the596

Byzantine process that originated it, and excludes it from the voters. Specifically, when597

two conflicting chains are finalized (i.e., two finalized chains that are not the prefix of one598

another) then processes look for inconsistent blocks. By definition, two notarized blocks b, b′599

are inconsistent with one another if one of the following two conditions holds:600

Condition 1. b and b′ share the same epoch, i.e, b.epoch = b′.epoch;601

Condition 2. either ((b.epoch < b′.epoch) and (b.height > b′.height)) or ((b′.epoch <602

b.epoch) and (b′.height > b.height)). Function height counts the number of blocks from603

the genesis block.604

If a process votes for blocks inconsistent with one another then it is detected as Byzantine.605

Once a correct process p detects a Byzantine process q, p ignores all messages coming from606

q. Since all messages received by a correct process q are eventually received by any correct607

process, then all of them do the same with respect to q.608

I Theorem 22. There exists a solution that satisfies F�,c=0 (and all the equivalent forms)609

in an eventually synchronous system with less than half Byzantine processes.610

Proof. We show in the Appendix that algorithm AF is such a solution. J611

6 Conclusion612

In this work we have defined different consistency criteria for blockchains. We have first613

defined eventual finality, which is the weakest consistency criterion that we may expect from614

blockchains, along with the notion of block revocation. By combining eventual finality with615

different forms of revocation we obtained stronger consistency criteria, thus providing a616

comprehensive characterization of what we may expect from blockchains. We have formally617

shown that in an asynchronous system it is not possible to provide a known bound on618

the number of blocks that can be revoked. On the other hand, we have proposed for the619

first time a solution in an eventually synchronous system with less than half of Byzantine620

processes guaranteeing that eventually such bound is reached. We have also shown that in621

an asynchronous system, finality with no bound on the number of revocable blocks cannot622
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be solved using the reconciliation rule of Bitcoin. Still we provide an asynchronous solution623

with an unlimited number of Byzantine processes. We hope that this work will better guide624

blockchain designs.625
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Appendix682

Theorem 20 It is impossible to guarantee F if the append operation is based on the longest683

chain rule in an asynchronous environment.684

Proof. To capture the synchronisation power of the system, we abstract the deterministic685

creation of new blocks and their addition to the blockchain within an oracle. This oracle686

is the only generator of valid blocks, and regulates the number of appended children from687

a same parent. The same approach has been proposed in [1]. The branching factor of an688

oracle is the maximal number of children that can be appended to a block. The oracle owns689

a synchronization power equal to Consensus if its branching factor is equal to 1. The oracle690

grants access to the blocktree as a shared object, through the following three operations:691

update_view() returns the current state of the blocktree; getValidBlock(bi, bj) returns a valid692

block b′j , constructed from bj , that can be appended to block bi, where bi is already included693

in the blocktree; and setValidBlock(bi, b
′
j) appends the valid block b′j to bi, and returns >694

when the block is successfully appended and ⊥ otherwise. The following theorem shows that,695

even with this strong oracle (that allows to have a bounded branching factor in contrast to696

proof-of-work (PoW) approaches), we cannot reach eventual finality if we rely on the longest697

chain rule to resolve forks.698

In the proof we consider the stronger oracle allowing the occurrence of one fork, i.e., an699

oracle with branching factor equal to 2. That is, this oracle allows for two valid blocks to700

be appended to the same parent. If the oracle receives new requests to append additional701

blocks to this parent, it shall return ⊥ to all such requests.702

Let p1 and p2 be two processes trying to append infinitely many blocks. Without loss of703

generality, we carry out this proof with a length function that counts the number of blocks704

from the genesis block.705

We illustrate our proof with Figure 2. At time t0, for both p1 and p2, the update_view()706

of bt equals b0, thus when both apply the append selection function fa on it to select the leaf707

where to append the new block, they both get b0. Then they both call getValidBlock(b0, bi,1) =708

b′i, where i = 1 for p1 and i = 2 for p2. At time t1 > t0, p1 and p2 are poised to call709

setValidBlock(b0, b
′
i,1). We then let p1 call setValidBlock(b0, b

′
1,1), which must return > and710

hence b′1,1 is appended to b0. Process p1 then proceeds to append a new block b1,2, i.e., after711

having updated its bt’s view, through the update_view() function, p1 applies the append712

selection function fa on it to select the leaf where to append its new block, in this case the713

only leaf is b′1,1. It calls getValidBlock(b′1,1, b1,2) function which returns {b′1,2} and it is poised714

to call setValidBlock(b′1,1, b
′
1,2).715

We let p1 continue to append new blocks until some time t2 at which it is poised to716

call setValidBlock(b′1,h, b
′
1,h+1), with h = 1, such that the length of the chain b0, . . . , b

′
1,h+1717

would be greater than or would have the same length but a larger lexicographical order than718

the chain b0, b
′
2,1 if b′2,1 were already appended to block b0. Afterwards, at time t3 ≥ t2,719

we let p2 resume and complete its call to setValidBlock(b0, b
′
2,1) which must also succeed720

and return > as our oracle has a branching factor of 2. By construction, p2 sees the two721

branches in its following update_view() of bt (i.e., chain b0, b
′
1,h with h = 1, and chain b0, b

′
2,1)722

of the same length thus the selection function fa selects the branch b0, b
′
2,1 for where to723

append the next block as block b′2,1 is smaller than b′1,h in the lexicographical order. We724

let p2 append blocks to this branch until some time t4 at which it becomes poised to call725

setValidBlock(b′2,c, b
′
2,c+1) with c = 2 such that the length of the chain b0, . . . , b

′
2,c is smaller726

than the chain b0, . . . , b
′
1,h+1, or in case of equal length has a higher lexicographical order,727

and such that the length of the chain b0, . . . , b
′
2,c+1 is greater than the chain b0, . . . , b

′
1,h+1,728
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Figure 2 A blocktree generated by two processes. On the x-axis the longest chain value of each
chain at different time instants (from the root to the current leaf) and the relationships between
those values.

or in case of equal length has a smaller lexicographical order.729

As before, it is time to stop the execution of p2 and resume the execution of p1 and730

to let it complete its call to setValidBlock(b′1,h, b
′
1,h+1). We can continue to create two731

infinite branches sharing only the root by alternatively letting p1 and p2 extend their own732

branch while stopping one and resuming the execution of the other each time its length733

would overcome the length of the other branch extended with the pending block (and the734

appropriate lexicographical orderings in case of equal length). This way we construct a tree735

composed of two infinite branches sharing only the root b0 as common prefix. It is easy to736

see that we can integrate read operations that may return the current chain from any branch737

as both branches are temporarily the longest one. Thus, the common prefix never increases,738

and so, the eventual finality consistency criterion is not satisfied.739

It is important to note that with any length function that increases monotonically with740

prefixes (e.g, the length function could count the total number of transactions that belong to741

the blocks on the same branch) then this scenario still holds. In that case h and c in the742

proof could be larger than 1 and 2 respectively.743

J744

I Theorem 22. There exists a solution that satisfies F�,c=0 (and all the equivalent forms)745

in an eventually synchronous system with less than half Byzantine processes.746

Proof. Let us first demonstrate that voting for two inconsistent blocks b and b′ is a Byzantine747

failure. We have two cases to consider. If both b and b′ are inconsistent because Condition 1748

holds, then the intersecting voters are Byzantine as correct processes vote only once per epoch.749

Hence if process q votes for b and b′ then q is Byzantine. If both b and b′ are inconsistent750

because Condition 2 is met, then the intersecting voters are Byzantine, as correct processes751

vote only for blocks extending one of the longest notarized chains. That is, if correct process752

p votes for b it means that b is extending a notarized block bpred that is of height b.height− 1,753

therefore p cannot vote afterwards for a block b′ whose height is strictly smaller than b.height754

because p must extend one of the longest notarized chain. It follows that if process q votes755

for both b and b′ then q is Byzantine.756

Let us now show that a fork occurs because of two inconsistent blocks. If there is a757

fork then this gives rise to two sequences of three adjacent blocks with consecutive epochs,758

b1, b2, b3 and b′1, b′2, b′3 (by construction given the finalization rule). If no blocks share the759

same epoch number then we can assume w.l.o.g. that b3.epoch < b′1.epoch. Let block b′760

belonging to the prefix of b′3 such that b′.epoch > b1.epoch and b′.height is the smallest in the761

prefix of b′3. Such block always exists as b′1 satisfies those two conditions. We have two cases:762

Either b′.height < b3.height or b′.height ≥ b3.height. In the former case, b′ is inconsistent763

with b3 since by assumption b′.epoch > b3.epoch. In the latter case, the predecessor of b′764
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Figure 3 Illustration of block inconsistencies due to the occurrence of a fork when the finalized
blocks are not labelled with the same epoch. Epochs are on the x axis, and all consecutive blocks
have consecutive epochs, e.g., bc and bd have four epochs of difference, 4 and 7 respectively, while b1

and b2 are labelled with consecutive epochs.

is inconsistent with b3. Indeed, the predecessor of b′ has a strictly smaller height than b1765

and by assumption has a larger epoch number than b3. Figure 3 illustrates the presence766

of inconsistent blocks in presence of a fork at some block bc. From bc two chains are built,767

the first one consisting of the sequence of three blocks b1, b2 and b3, and the second chain768

consisting of four consecutive blocks bd, b
′
1, b
′
2, b
′
3 (to illustrate the first case) and of five769

consecutive blocks bd, be, b
′
1, b
′
2, b
′
3 (to illustrate the second case). In both cases block b′1 plays770

the role of block b′. In the first case (figure in the top), b3.height = 6 and b′.height = 5 while771

b3.epoch = 6 and b′.height = 5. Thus Condition 2 applies. In the second case (figure in772

the bottom), since b′.height ≥ b3.height then there must exist some block be in the b′ prefix.773

Thus be.height < b′.height. Given that by assumption be.epoch > b3.epoch, then Condition 2774

holds for be and b3. Hence there is always a couple of inconsistent blocks in a fork.775

Let us now conclude our proof that protocol AF solves F�,c=0. If a fork occurs, then776

each correct process eventually detects at least one Byzantine process and ignores its votes.777

Thus, the number of forks is finite since we have a finite number of Byzantine processes. As a778

consequence, there is always a single chain that is eventually finalized. As there is a majority779

of correct processes, algorithm AF remains live as the original Streamlet one. Algorithm780

AF also inherits the properties of the original Streamlet algorithm regarding the eventual781

finalization of blocks when the system becomes synchronous.782

Finally, by applying Corollary 15, we complete the proof of the theorem.783
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