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Summary paragraph  
 
The science of cities seeks to understand and explain regularities observed in the world's major 
urban systems. Modelling the population evolution of cities is at the core of this science and of 
all urban studies. Quantitatively, the most fundamental problem is to understand the hierarchical 
organization of cities and the statistical occurrence of megacities, first thought to be described 
by a universal law due to Zipf [1, 2], but whose validity has been challenged by recent empirical 
studies [3, 4]. A theoretical model must also be able to explain the relatively frequent rises and 
falls of cities and civilizations [5], and despite many attempts [6, 7, 8, 9, 10] these fundamental 
questions have not been satisfactorily answered yet. Here	we	fill	this	gap	by	introducing	a	
new	 kind	 of	 stochastic	 equation	 for	 modelling	 population	 growth	 in	 cities,	 which	 we	
construct	from	an	empirical	analysis	of	recent	datasets	(for	Canada,	France,	UK	and	USA)	
that	reveals	how	rare	but	large	interurban	migratory	shocks	dominate	city	growth. This 
equation predicts a complex shape for the city distribution and shows that Zipf’s law does not 
hold in general due to finite-time effects, implying a more complex organization of cities. It 
also predicts the existence of multiple temporal variations in the city hierarchy, in agreement 
with observations [5]. Our result underlines the importance of rare events in the evolution of 
complex systems [11] and at a more practical level in urban planning. 
 
Main text 
 
Growth of Cities and Zipf’s law  
 
Constructing a science of cities has become a crucial task for our societies that grow always 
more concentrated in urban systems. A better planning could be achieved with such a science 
that seeks to understand city growth and how it affects society and environment [12]. Various 
important aspects of cities such as urban sprawl, infrastructure development or transport 
planning depend on the population evolution over time, and multiple theoretical attempts were 
made in order to understand this crucial phenomenon. To this day, most of these works were 
done with the idea that the stationary state for a set of cities is described by Zipf’s law. This law 
is considered as a cornerstone of urban economics and geography [3], and states that the 
population distribution of urban areas on a given territory (or country) displays a Pareto law 
with exponent equal to 2 or, equivalently, that the city populations sorted in decreasing order 



versus their ranks follow a power-law with exponent 1. This allegedly regularity through time 
and space is probably the most striking fact in the science of cities and has triggered intense 
debates and many studies for more than a century [1, 2, 5, 10, 13, 14, 15, 16, 17, 18] [19, 20, 
21, 22, 23, 24, 25, 26, 27, 28]. Indeed, this result characterizes the hierarchical organization of 
cities, and in particular quantifies the statistical occurrence of large cities. Zipf’s law implies 
that in any country the city with the largest population is generally twice as large as the next-
biggest, and so on. It is a signature of the very large heterogeneity of city sizes and shows that 
cities are not governed by optimal considerations that would lead to one unique size but, on the 
contrary, that cities sizes are broadly distributed and follow some sort of hierarchy [16]. The 
empirical value of the Pareto exponent informs us about the hierarchical degree of a system of 
cities: a large value of the exponent corresponds to a more equally distributed population among 
cities and on the contrary, for small exponent values, the corresponding system of cities is very 
heterogeneous with a few  megacities. 
 
Studies in economics suggested that Zipf’s law is the result of economic shocks and random 
growth processes [6, 7, 8]. Gabaix [10] proved in a seminal paper how Gibrat’s law of random 
growth [9] - that assumes a population growth rate independent from the size of the city - can 
lead to a Zipf law with exponent 1, at the expense of the additional and untested assumption 
that cities cannot become too small. This model remains so far the most accepted paradigm to 
understand city growth. Since then, it has also been understood on simplified theoretical models 
(without any empirical arguments) that migrations from other cities or countries are determinant 
in explaining random growth [29]. However, while most of these theoretical approaches 
focused on how to explain Zipf’s law with exponent 1, recent empirical studies [3, 4] boosted 
by the increased number of data sources have questioned the existence of such a universal 
power-law and have shown that Zipf’s exponent can vary around 1 depending on the country, 
the time period, the definition of cities used, or the fitting method [13, 21, 30, 31] (we illustrate 
this in the Extended data Figure 1 showing that no universal result for the population 
distribution is observed) leading to the idea that there is no reason to think that Zipf’s law holds 
in all cases [32].  
 
Beyond understanding the stationary distribution of urban populations, lies also the problem of 
their temporal evolution. As already noted in [5], the huge number of studies about the 
population distribution contrasts with the few analysis of the time evolution of cities. As 
discussed in [5], cities and civilizations are rising and falling many times on a large range of 
time scales, and Gabaix’s model is both quantitatively and qualitatively unable to explain these 
specific chaotic dynamics.  
 
So far, a model able to explain simultaneously observations about the stationary population 
distribution and the temporal dynamics of systems of cities is therefore missing. In particular, 
we are not able at this point to identify the causes of the diversity of empirical observations 
about the hierarchical organization of cities, the occurrence of megacities, and the empirical 
instability in city dynamics with falls or births of large cities on short time scales. In this respect, 
we do not need just a quantitative improvement of models but a shift of paradigm. In this paper, 
we show that city growth is dominated by rare events, namely large interurban migratory 
shocks, rather than by the average growth rate. Rare but significant positive or negative 
migratory flows can destabilize the hierarchy and the dynamics of cities on very short time 
scales, leading to the chaotic dynamics of cities observed through History. Based on the 
empirical analysis of migrations flows in four countries, we derive in the following the new 
stochastic equation of city growth able to explain empirical observations about both their 
statistics and their temporal dynamics. 



 
Deriving the equation of city growth 
 
To understand city growth, we need a robust bottom-up approach, starting from elementary 
mechanisms governing the evolution of cities. Without loss of generality, the growth dynamics 
of a system (such as a country) of cities 𝑖 of size 𝑆! can be decomposed into the sum of an inter-
urban migration term between metropolitan areas and an ‘out-of-system’ term that combines 
the other sources of growth: natural growth (birth and deaths) and migrations that do not occur 
within the system of cities (international migrations and exchanges with smaller towns). We 
denote by 𝑁(𝑖) the set of neighbours of city 𝑖, ie. cities that exchange a non-zero number of 
inhabitants. On the four recent datasets of migrations that we use here (USA for 2012-2017, 
France for 2003-2008, UK for 2012-2016 and Canada for 2012-2016) we find for France and 
USA that |𝑁(𝑖)|~𝑆!

" where 𝛾 ≈ 0.5 (Extended data Figure 2). The British and Canadian 
datasets are fully-connected leading to 𝛾 = 0. The time evolution of the population size 𝑆! can 
then be written as: 
 

𝜕#𝑆! = 𝜂!𝑆! + ∑ 𝐽$→! − 𝐽!→$$∈'(!)             (1) 
 
where the quantity 𝜂! is an uncorrelated random variable accounting for the ‘out-of-system’ 
growth of city 𝑖 and that we found in the data to be gaussian distributed (Extended Data Figure 
3). The flow 𝐽!→$ is the number of individuals moving from 𝑖 to 𝑗 during the time 𝑑𝑡. If there is 
an exact balance of migration flows (𝐽!→$ = 𝐽$→!), the equation becomes equivalent to Gibrat’s 
model [9] which predicts a lognormal distribution of populations.  

 
Starting from this general equation (1) is very natural as it amounts to write the balance of 
births, deaths and migrations but - as it is often the case of general basic equations - it is very 
difficult to use for making predictions. Simplifications of this equation were proposed in [29] 
where various assumptions (such as the gravity model for migration for example) lead to 
Gibrat’s model but however missed the very large fluctuations of migrations, a crucial 
ingredient as we will see below. We also note that this general stochastic equation (1) was 
discussed in another context [33] and is a central object in the statistical physics of disordered 
systems. Regarding cities, the migration flow 𝐽!→$ depends a priori (and at least) on the 
populations 𝑆! and 𝑆$ and the distance 𝑑!$ between cities 𝑖 and 𝑗. Using a standard gravitational 
model [34, 35], we show that for France and USA, the dominant contribution to the flow 𝐽!→$ 
comes from the populations and that the role of distance appears as a second-order effect (see 
SI for details). This result suggests that the 𝐽!→$ term can be represented by a variable of the 
form 𝐼*𝑆!

+𝑆$,𝑥!$ 	where the random variables 𝑥!$ have an average equal to 1 and encode all the 
noise and multiple effects, including distance. We denote by 𝐼$! = 𝐽!→$/𝑆! the probability per 
unit time and per capita to move from city 𝑖 to city 𝑗. The left panel of Fig. 1 shows that the 
ratio  𝐼!$/𝐼$! versus the ratio of populations 𝑆!/𝑆$ displays a linear behavior on average. This 
implies that 𝜇 = 𝜈, and that we have on average a sort of detailed balance < 𝐽!→$ >=< 𝐽$→! >, 
but that crucially, fluctuations are non-zero. More precisely, if we denote by 𝑋!$ =

-!→#.-!→#
/$0!

% , we 

observe that these random variables 𝑋!$ are heavy-tailed, i.e. they are distributed according to 
a broad-law that decreases asymptotically as a power-law with exponent α < 2 (see SI for more 
details and empirical evidence). The sum in the second term of the r.h.s. of Eq. (1) can then be 
rewritten as 

 ∑ 𝐽$→! − 𝐽!→$$∈'(!) = 𝐼*𝑆!, ∑ 𝑋!$$∈'(!)             (2) 
 



and according to the generalized version of the central limit theorem [36] (assuming that 
correlations between the variables 𝑋!$ are negligible), the random variable  
 

𝜁! =
1

|'(!)|&/(
∑ 𝑋!$$∈'(!)       

 
follows (for a large enough 𝑁(𝑖)) a Lévy stable law L3 of parameter α and scale parameter 𝑠. 
This is empirically confirmed in Figure 1 (right panel): French, American, British and Canadian 
data are better fitted by a Lévy stable law than by any other distribution and the estimates of α 
(using different methods) are given in Table 1. We are thus led to the conclusion that the growth 
of systems of cities is governed by a stochastic differential equation (SDE) of a new type with 
two independent noises: 
 

𝜕#𝑆! = 𝜂!𝑆! + 𝐷𝑆!
4ζ!            (3) 

 
where 𝐷 = 𝑠𝐼*, 𝛽 = 𝜈 + "

3
 and where 𝜂! 	is a gaussian noise of mean the average growth rate 𝑟 

and dispersion 𝜎. This is the growth equation of cities that governs the dynamics of large urban 
populations and which is our main result here. In this equation both noises are uncorrelated, 
multiplicative and Itô’s convention [37] seems here to be the more appropriate as population 
sizes at time 𝑡 are computed independently from inter-urban migrations terms at time 𝑡 + 𝑑𝑡. 
Estimates for the various parameters together with the prediction for the value of 𝛽 are given 
in Table 2. 
 
The central limit theorem together with the broadness of inter-urban migration flow allowed us 
to show that many details in Eq. (1) are in fact irrelevant and that the dynamics can be described 
by the more universal Eq. (3). Starting from the exact equation (1) is therefore not only doomed 
to failure in general, but is also not useful. The importance of migrations was already sensed in 
[29], but the authors derived a stochastic differential equation with multiplicative Gaussian 
noise, which we show here to be incorrect: we have indeed a first multiplicative noise term but 
also crucially another term that is a multiplicative Lévy noise with zero average. This is a major 
and non-trivial theoretical shift that was missed in all previous studies on urban growth and 
which has many capital implications, both in understanding stationary and dynamic properties 
of cities. 
 
No stationary distribution for cities 
 
The equation (3) governs the evolution of urban population and analyzing it at large times gives 
indications about the stationary distribution of cities. In order to discuss analytical properties of 
this Eq. (3), we assume that Gaussian fluctuations are negligible compared to the Lévy noise 
and write 𝜂! ≈ 𝑟 (See Extended Data Figure 5). The corresponding Fokker-Planck equation 
(with Itô’s convention) can be solved using the formalism of Fractional Order Derivatives and 
Fox functions [38, 39, 40, 41], leading to the general distribution at time t that can be expanded 
in powers of 𝑆 as (see SI for derivation and complete expressions of all terms): 
 

𝑃(𝑆, 𝑡) = ∑ 𝐶5
6(#))(*)((&)*)-

0&.(*.((&)*)-
7
581             (4)  

 
where 𝐶5 is a complicated prefactor independent from time and 𝑆 and where 𝑎(𝑡) ∝

O 9/;(

</((&)*)0.1
P
1/3(1.4)

 decreases exponentially at large times. This expansion shows that the 



probability distribution of city sizes is dominated at large 𝑆 by the order 𝑘 = 1 and converges 
towards a Pareto distribution with exponent 𝛼 ≠ 1. The speed of convergence towards this 
power-law can be estimated with the ratio 𝜆(𝑆, 𝑡) of the first and second terms of the expansion 
Eq. (4) and leads to: 
 

𝜆(𝑆, 𝑡) = ;(

=
V𝑆(𝑡)WWWWWW/𝑆X3

(1.4)                      (5) 
 
where 𝑆(𝑡)WWWWWW is the average city size. If 𝜆(𝑆) ≥ 1, the 𝛼-exponent regime is not valid in the right-
tail with threshold 𝑆 at time 𝑡. Estimates of 𝛼 and 𝛽	for the four datasets show that finite-time 
effects are very important in general and that a power-law regime is only reached for 
unrealistically large city sizes (see discussion in the SI for details). Hence, the range of city 
sizes for which we can observe a power-law distribution may not exist in practice and there is 
no reason in general to observe Zipf’s law or any other stationary distribution. We also note 
that from Eq. 4 there is a scaling of the form 𝑃(𝑆, 𝑡) = 1

0
𝐹( 0

0(#)>>>>>>) with a scaling function 𝐹 that 
depends on the country. We confirmed this scaling form for France (the only country for which 
we had sufficient data) and details can be found in the SI (see Fig. S6). 
 
In addition, if we perform a power-law fit of the expansion (Eq. 4), the upper-tail of the city 
size distributions may be mistaken for a Pareto-tail with a spurious exponent that changes with 
the definition of the upper-tail (Fig. S7 of Extended data). This might explain the various 
discrepancies observed in the broad literature about Zipf’s law. As city sizes increase, the 
apparent exponent changes and can significantly deviate from 1 as we initially observed on the 
Extended Data Figure 1. Following our analysis, it should converge towards the value given by 
𝛼, as it is indeed observed for example for France (𝛼 = 1.4) and the United States (𝛼 = 1.3). 
 
 
Dynamics: splendor and decline of cities 
 
The validity of our model (Eq. (3)) can be further tested on the dynamics of systems of cities 
over large periods of time. This can be done by following the populations and ranks of the 
system’s cities at different times with the help of “rank clocks” proposed in [5]. In this work, it 
was proven that the micro-dynamics of cities is very turbulent with many rises and falls of entire 
cities that cannot result from Gabaix’s model (which is basically Gibrat with a non-zero 
minimum for city sizes). We show in Figure 2 the empirical rank clock for France (from 1876 
to 2015) and for the results obtained with Gabaix’s model and ours (for the other countries, see 
Extended Data Figure 8).  
 
We see that in Gabaix’s model (middle), city rank is on average stable and not turbulent: the 
rank trajectories are concentric and the rank of a city oscillates around its average position. In 
the real dynamics (left), cities can emerge or die. Very fast changes in rank order can occur, 
leading to a much more turbulent behavior. In our model (right), the large fluctuations of Lévy’s 
noise are able to statistically reproduce such fast surges and swoops of cities. More 

quantitatively, we first compare the average shift per time 𝑑 = ∑ ∑ |9!(#).9!(#.1)|1
!2&0

'@
 over 𝑇 years 

and for 𝑁 cities in the three cases (Table 3) and look at the statistical fluctuations of the rank 
(see Extended Data Figure 9): we note that Lévy fluctuations are much more able to reproduce 
the turbulent properties of the dynamics of cities through time. Indeed, the fast births or deaths 
of cities due for example to wars, discoveries of new resources, incentive settlement policies, 
etc. are statistically explained by broadly-distributed migrations and incompatible with a 



Gaussian noise. Second, we can also compare with the empirical data the predictions of the 
different models for the time needed to make the largest rank jump (see Extended data Figure 
10 for France which typically predicts a duration of order 80 years to make a very large jump). 
We confirm here that Gabaix’s model is unable to reproduce these very large fluctuations and 
that our equation agrees very well with the data. 
 
A new paradigm 
 
In this paper, we built a stochastic equation of growth for cities on microlevel considerations, 
empirically sound, that challenges the paradigm of Zipf’s law and current models of urban 
growth. We show that microscopic details are irrelevant and the growth equation obtained is 
universal. A crucial point in this reasoning is that although we have on average some sort of 
detailed balance that would lead to a Gaussian multiplicative growth process, it is the existence 
of non-universal and broadly distributed fluctuations of the microscopic migration flows 
between cities that govern the statistics of city populations. We show here that city growth is 
described by a stochastic equation of a new type with two sources of noise and which predicts 
an asymptotic power-law regime. However, this stationary regime is not reached in general and 
finite-time effects cannot be discarded. Our model is also able to statistically reproduce the 
turbulent micro-dynamics of cities with fast births and deaths, in contrast to previous Gaussian-
based models of growth [5]. 
 
In addition, our fundamental result exhibits an interesting connection between the behavior of 
complex systems and non-equilibrium statistical physics for which microscopic currents and 
the violation of detailed balance seem to be the rule rather than the exception [11]. At a practical 
level, this result also highlights the critical effect of not only inter-urban migration flows (an 
ingredient that is generally not considered in urban planning theories), but more importantly 
their large fluctuations, ultimately connected to the capacity of a city to attract a large number 
of new citizens. Our approach, that relies essentially on the population budget description and 
empirical results, provides a solid ground for future research on this central problem in urban 
science that is the temporal evolution of cities. 
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Figure and Tables 

 
Figure 1. Migration flow analysis. Left: plot of the migration rate ratio versus the ratio of 
populations. The straight line is a power-law fit which gives an exponent equal to one. Right: 
Empirical right-cumulative distribution function of renormalized migrations flows 𝜁! compared 
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to Lévy (continuous red lines) and Normal distributions (green dashed lines). See Extended 
Data Figure 4 for the left-cumulative. 
 
 

 
Figure 2. Rank clocks for France. We compare the real dynamics of the 500 largest French 
cities between 1876 and 2015 (left) to Gabaix’s statistical prediction (middle) and to our 
statistical prediction (right). On the clocks, each line represents a city rank over time where the 
radius is given by the rank and the angle by time. In this representation, the largest city is at the 
center and the smallest at the edge of the disk. 
 
 
Tables 
 

Dataset MLE Kolmogorov-
Smirnov Test 

Log-moments Hill 

France 2003-
2008 

1.43 ± 0.07 1.2 < 𝛼 < 1.8 1.3 1.4 ± 0.3 

US 2013-2017 1.27 ± 0.07 1.15 < 𝛼 < 1.20 1.2 Inconclusive 

UK 2012-2016 1.32 ± 0.26 Inconclusive 
 

1.0 1.2 ± 0.8 

Canada 2012-
2016 

1.69 ± 0.12 Inconclusive 
 

1.9 1.4 ± 0.6 
 

 
Table 1. Estimates of the parameter 𝛼. We used different methods of estimation: maximum 
likelihood estimation, Kolmogorov-Smirnov test, log-moments and Hill estimates (see for 
example [42]). 
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Dataset 𝛾 𝜈 𝛽	 = 𝜈 + 𝛾/𝛼 𝛽A<6BC9<D 

France 2003-
2008 

0.55 ± 0.06 0.4 ± 0.3 0.8 ± 0.4 
 

0.75 ± 0.07 

US 2013-2017 0.41 ± 0.05 0.4 ± 0.4 0.7 ± 0.5 0.93 ± 0.07 

UK 2012-2016 0 0.7± 0.3 0.7± 0.3 0.51 ± 0.05 

Canada 2012-
2016 

0 0.5± 0.4 0.5± 0.4 0.78 ± 0.06 

Table 2. Estimates of parameters for the four datasets. We observe a good agreement 
between the measured and predicted values of 𝛽 in the US and France (see SI for details about 
these estimates). British and Canadian datasets are small and hence fully-connected (implying 
𝛾 = 0) and very noisy. 
 
 

Distance Real Lévy Gabaix 

France 1876-
2015 

6.0 6.1 8.0 
 

US 1790-1990 4.7 16 27 

UK 1861-1991 4.8 16 25 

 
Table 3. Average rank shift per unit time 𝒅. Parameters for the Lévy and the Gaussian noise 
are fitted on the France 2003-2008, US 2013-2017 and UK 2012-2016 datasets respectively. 
The most complete dataset is the French one with total population for all cities at all times. In 
the US and UK datasets, only populations of the largest cities are recorded (Top 100 in the US 
and Top 40 in the UK). This can explain the large discrepancies observed while considering the 
distance 𝑑 in both countries. Extended Data Figure 10 investigates the distribution and 
fluctuations of the rank over time. 
 
Methods 
 
For the four countries we build the graph of migration flows between metropolitan areas. We 
have: 
- The populations of metropolitan areas. 
- The migration flows between metropolitan areas (described in more detail below). 
 
US migrations 
Data of migrations in the United States are taken from the 2013-2017 American Community 
Survey (ACS) [43]. Aggregated Metro Area to Metro Area Migration Flows and Counterflows 
are directly given between 389 metropolitan statistical areas (MSA) in the US. More precisely, 
the American Community Survey (ACS) asked respondents whether they lived in the same 
residence one year ago and for people who lived in a different residence, the location of their 
previous residence is collected. 
 



French interurban migrations 
Data of migrations in France are taken from the 2008 INSEE report for residential migrations 
at the town (commune) level for each individual household [44]. The main residence in 2008 is 
compared to the main residence in 2003. In order to work at the urban area level, we used the 
1999 INSEE list of urban areas and aggregate residential migrations at the metropolitan level 
allowing us to analyze migration flows between the 500 largest urban areas in France. 
 
UK interurban migrations 
Data of migrations in the UK are taken from 2012-2016 ONS reports on internal migration 
between English and Welsh local authorities, giving the square matrix of moves each year [45]. 
In order to work at the urban area level, we used the list of local authorities by OECD functional 
urban areas and aggregate residential migrations at the metropolitan level allowing us to analyze 
migration flows between the 41 largest urban areas in England and Wales. 
 
 
Canadian interurban migrations 
Data of migrations in Canada are taken from 2012-2016 census reports on internal migration 
between Canadian metropolitan areas [46]. Flows between CMA are given city-to-city for each 
year between 2012 and 2016 for Canadian Top 160 cities. 
 
Data availability statement: The datasets used in this study are freely available from public 
repositories: the American community survey for the US data [43] available at the address 
https://www.census.gov/data/tables/2017/demo/geographic-mobility/metro-to-metro-
migration.html, accessed Feb. 21, 2020, the INSEE for the French data [44] available at the 
following link: https://www.insee.fr/fr/statistiques/2022291, accessed Feb. 21, 2020, the ONS 
data for the UK at 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/migrationw
ithintheuk/datasets/matricesofinternalmigrationmovesbetweenlocalauthoritiesandregionsinclu
dingthecountriesofwalesscotlandandnorthernireland, accessed Jun 2, 2020 and the Canadian 
data at 
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710008701&request_locale=en, 
accessed June 2, 2020. 
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