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ABSTRACT

The largest temperature anisotropy in the cosmic microwave background (CMB) is the dipole, which has been measured with increasing accuracy
for more than three decades, particularly with the Planck satellite. The simplest interpretation of the dipole is that it is due to our motion with
respect to the rest frame of the CMB. Since current CMB experiments infer temperature anisotropies from angular intensity variations, the dipole
modulates the temperature anisotropies with the same frequency dependence as the thermal Sunyaev-Zeldovich (tSZ) effect. We present the first,
and significant, detection of this signal in the tSZ maps and find that it is consistent with direct measurements of the CMB dipole, as expected. The
signal contributes power in the tSZ maps, which is modulated in a quadrupolar pattern, and we estimate its contribution to the tSZ bispectrum,
noting that it contributes negligible noise to the bispectrum at relevant scales.

Key words. cosmic background radiation – cosmology: observations – relativistic processes – reference systems

1. Introduction
In the study of cosmic microwave background (CMB)
anisotropies, the largest signal is the dipole. This is mainly
due to our local motion with respect to the CMB rest frame and it
has been previously measured in Kogut et al. (1993), Fixsen et al.
(1996), and Hinshaw et al. (2009), and most recently in Planck
Collaboration I (2020), Planck Collaboration II (2020), and
Planck Collaboration III (2020). Taking the large dipole as being
solely caused by our motion, the velocity is v = (369.82 ± 0.11)
km s−1 in the direction (l, b) = (264◦.021± 0◦.011, 48◦.253± 0◦.005)
(Planck Collaboration I 2020). A velocity boost has sec-
ondary effects, such as aberration and a frequency-dependent
dipolar-modulation of the CMB anisotropies (Challinor &
van Leeuwen 2002; Burles & Rappaport 2006). These two
effects were first measured using Planck1 data, as described in
? Corresponding author: R. M. Sullivan,

e-mail: rsullivan@phas.ubc.ca
1 Planck (http://www.esa.int/Planck) is a project of the Euro-
pean Space Agency (ESA) with instruments provided by two scientific
consortia funded by ESA member states and led by Principal Investi-
gators from France and Italy, telescope reflectors provided through a
collaboration between ESA and a scientific consortium led and funded
by Denmark, and additional contributions from NASA (USA).

Planck Collaboration XXVII (2014). The frequency-dependent
part of the dipolar-modulation signal, however, is agnostic to the
source of the large CMB dipole. Therefore, its measurement is
an independent determination of the CMB dipole. While it may
be tempting to use this measure to detect an intrinsic dipole, it
has been shown that an intrinsic dipole and a dipole induced
by a velocity boost would have the same dipolar-modulation
signature on the sky (Challinor & van Leeuwen 2002; Notari &
Quartin 2015).

In Notari & Quartin (2015), it was pointed out that the
frequency dependence of the dipolar modulation signal could
be exploited to achieve a detection with stronger significance
than that of Planck Collaboration XXVII (2014). The signal
comes from a frequency derivative of the CMB anisotropies’ fre-
quency function and, thus, has essentially the same frequency
dependence as the thermal Sunyaev-Zeldovich (tSZ) effect. The
dipole-induced quadropule, or “kinematic quadrupole”, would
also have the same frequency dependence as the tSZ effect
(Kamionkowski & Knox 2003); however, as the quadrupole
is less well constrained, a significant detection was not made
in this study. Therefore a map of the tSZ effect must con-
tain a copy of the dipole-modulated CMB anisotropies, so an
appropriate cross-correlation of the CMB anisotropies with the
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tSZ effect would be able to pull out the signal. In principle, it
could also contribute a bias and source of noise in the bispec-
trum of the tSZ effect. This is potentially important because the
tSZ effect is highly non-Gaussian and much of its information
content lies in the bispectrum (Rubiño-Martín & Sunyaev 2003;
Bhattacharya et al. 2012; Planck Collaboration XXI 2014;
Planck Collaboration XXII 2016).

In this paper we further investigate the CMB under a boost,
including tSZ effects (Chluba et al. 2005; Notari & Quartin
2015). We explicitly measure the dipole using a harmonic-space-
based method, similar to that outlined in Notari & Quartin
(2015), and using a new map-space-based analysis, with con-
sistent results. We also estimate the contamination in the tSZ
bispectrum, finding that it is a negligible source of noise.

The structure of the paper is as follows. We describe the
nature of the signal we are looking for in Sect. 2. The data that we
use, including the choice of CMB maps, tSZ maps, and masks,
are described in Sect. 3. The analysis is presented in Sect. 4,
and the results in Sect. 5, separately for the multipole-based and
map-based methods. We briefly discuss some potential system-
atic effects in Sect. 6 and we conclude in Sect. 7. We discuss the
issues related to the tSZ bispectrum in Appendix A, the results
coming from the use of an alternative tSZ map in Appendix B,
and how the results could become stronger if we used a less con-
servative multipole cut in Appendix C.

2. Signal

Here we derive the signal we are looking for. First let us intro-
duce some useful definitions:

x ≡
hν

kBT
; (1)

I ≡
2k3

BT 3

h2c2

x3

ex − 1
; (2)

f (x) ≡
xex

ex − 1
; (3)

Y(x) ≡ x
ex + 1
ex − 1

− 4. (4)

These are the dimensionless frequency, the Planck blackbody
intensity function, the frequency dependence of the CMB
anisotropies, and the relative frequency dependence of the tSZ
effect, respectively. Here h is Planck’s constant, kB is the Boltz-
mann constant, and c is the speed of light.

To first order, anisotropies of intensity take the form

δI(n̂) = I f (x)
[
δT (n̂)

T0
+ y(n̂)Y(x)

]
, (5)

where the first term represents the CMB anisotropies2, and the
second term is the tSZ contribution, entering with a different
frequency dependence and parameterized by the Compton y-
parameter,

y =

∫
ne

kBσTTe

mec2 ds. (6)

Here me the electron mass, σT the Thomson cross-section, ds the
differential distance along the line of sight n̂, and ne and Te are

2 We note that for brevity we have not written the kinetic Sunyaev-
Zeldovich (kSZ) effect; however, its presence is accounted for in our
analysis. Our only concern is that the signal δT/T (whatever it consists
of) is measured well compared to the noise in a CMB map.

the electron number density and temperature. Next we apply a
Lorentz boost (β ≡ u/c) from the unprimed CMB frame into the
primed observation or solar-system frame to obtain

δI′(n̂′) = I′ f (x′)
[
δT ′(n̂′)

T ′0
+ y′(n̂′)Y(x′)

]
. (7)

Here T ′0 is the new boosted blackbody temperature, and only dif-
fers from T0 to lowest order by β2,

T ′0 = T0 +
β2

2
T0; (8)

thus to first order T ′0 = T0. Taking each piece in turn, this trans-
forms as (to first order)

I′ f (x′) = I f (x)
[
1 + βµ(Y(x) + 3βµ)

]
, (9)

δT ′(n̂′)
T ′0

=
δT (n̂′)

T0
+ βµ, (10)

y′(n̂′)Y(x′) = y(n̂′)
[
Y(x) − βµx

dY(x)
dx

]
, (11)

n̂′ = n̂− ∇(n̂ · β), (12)

where µ = cos θ, and θ is defined as the angle from the direction
β to the line of sight.

Equation (7) can thus be written as3

δI′(n̂′) = I f (x)
(
1 + βµY(x) + 3βµ

)
×

(
δT (n̂′)

T0
+ βµ + y(n̂′)Y(x) − y(n̂′)βµx

dY(x)
dx

)
(13)

or more explicitly, to first order in β,

δI′(n̂′)
I f (x)

=
δT (n̂′)

T0
+ βµ

[
1 + 3

δT (n̂′)
T0

]
+ Y(x)

[
y(n̂′) + βµ

δT (n̂′)
T0

]
+ βµy(n̂′)

[
3Y(x) + Y2(x) − x

dY(x)
dx

]
, (14)

where we have split up each line on the right-hand side accord-
ing to the frequency dependence. Assuming perfect component
separation, and comparing with Eq. (5), the first line of Eq. (14)
shows that the boost induces a pure dipole (βµ), an aberra-
tion effect (δT (n̂′)/T0 − δT (n̂)/T0), and a dipolar modulation
(3βµδT/T0) of the CMB. The first effect is the classical CMB
dipole, which has been measured many times most recently by
Planck (Planck Collaboration I 2020), with the highest accu-
racy so far achieved. The effects of aberration and dipolar mod-
ulation (both frequency-independent and frequency-dependent
parts) were measured in Planck Collaboration XXVII (2014) at
a combined significance level of 5σ.

In the second line of Eq. (14) we see that the boost also
induces a change in a map of the tSZ effect. The original y
signal is aberrated (y(n̂′) − y(n̂)) and also gains a contribution
from the dipolar modulated CMB (βµδT/T0). This last effect is
what we measure in this paper for the first time. Its expected
signal can be seen in Fig. 1 (top right panel), along with the
full y map obtained via the MILCA method (Fig. 1 top left

3 We have left the primes on the n̂′s as a matter of convenience;
expanding this further would explicitly show the aberration effect,
which we do not explore in this analysis.
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Fig. 1. Map of the tSZ effect from the MILCA component-separation method in y-map units (top left) and the expected modulated CMB signal
(top right) generated using the SMICA-NOSZ CMB map in units of T0. The bottom left and right figures are the CMB anisotropies modulated in
orthogonal directions to the CMB dipole, as explained in the text after Eq. (17). The greyed out region shows the mask used for our analysis. NILC
and 2D-ILC y maps, as well as 2D-ILC CMB modulated anisotropies, are not shown, since they look essentially the same as the maps presented
here. Note that the map of the tSZ effect (top left) has a different scale bar when compared to the other three (i.e., the modulation signal is about
50 times weaker).

Hurier et al. 2013). It is worth noting that although the con-
tribution to the tSZ map is a dipolar modulation of the CMB
anisotropies, this induces power in the y map that is modu-
lated like a quadrupolar pattern (due to the lack of correlation
between the CMB anisotropies and y signal). That is, a y map
contains more power in the poles of the dipole, relative to the
corresponding equator (see Fig. 1). It should be possible to pull
out this signal compared with modulation patterns oriented in
orthogonal directions (lower panels of Fig. 1).

We note that the final line in Eq. (14) is simply the dipole
modulation of the tSZ effect, with a peculiar frequency depen-
dence Chluba et al. (2005). In principle one could generate a
map of the anisotropies in this new frequency dependence and
use the known CMB dipole to measure the y anisotropies again.
Such a measurement would be correlated with the original y
map, but would have independent noise properties and also have
a very low amplitude. From a practical perspective it is unlikely
that such a measurement would yield any significant informa-
tion increase, since the signal is contaminated with relativistic
tSZ and kSZ effects, and is suppressed by a factor of β (Chluba
et al. 2005).

3. Data

We look for the signal by cross-correlating a template map
derived from the CMB temperature data with a y map. Therefore
it is important that the CMB map is free of y residuals and that
the y map is free of CMB residuals, in order to avoid spurious
correlations.

To this end, we use the so-called 2D-ILC CMB
temperature map (first used for kSZ detection4 in Planck
Collaboration Int. XIII 2014), which was produced by the
“Constrained ILC” component-separation method designed by
Remazeilles et al. (2011) to explicitly null out the contribution
from the y-type spectral distortions in the CMB map. We also
use the SMICA-NOSZ temperature map, similarly produced
with express intent of removing the y-type spectral distor-
tions, and which was generated with the Planck 2018 data
release (Planck Collaboration IV 2020). Likewise, we use the
corresponding 2D-ILC y map, and the Planck MILCA y map,
which explicitly null out the contributions from a (differential)
blackbody spectral distribution in the y map (Hurier et al. 2013;
Planck Collaboration XXII 2016). We also consider the Planck
NILC y map, which does not explicitly null out the blackbody
contribution. The extra constraint to remove CMB anisotropies
in the 2D-ILC y map, or in the MILCA y map, is at the expense of
leaving more contamination by diffuse foregrounds and noise.
In Planck Collaboration XXII (2016), the Planck NILC y map
was preferred over the 2D-ILC y map to measure the angular
power spectrum of tSZ anisotropies, the CMB contaminant
being negligible compared to diffuse foregrounds. Conversely,
to measure the dipole modulation of the CMB anisotropies in
the y map, the 2D-ILC and MILCA y maps are preferred over the
Planck NILC y map because the latter does not fully null out

4 The map name “2D-ILC” was adopted because of the two-
dimensional (2D) constraint imposed on the internal linear combina-
tion (ILC) weights of being aligned with the CMB/kSZ spectrum while
being orthogonal to the tSZ spectrum.
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the contribution from the CMB. This significantly contaminates
the signal we are looking for, as can be seen in Appendix B. It
is noted in Planck Collaboration XXII (2016) that for ` > 2000
the signal is dominated by correlated noise, and so we use the
same cut as used in their analysis of `max = 1411, this is further
justified in Sect. 4.2.

Figure 1 shows the mask used in our analysis. This is the
union of the Planck 2018 data release common temperature con-
fidence mask (Planck Collaboration IV 2020), and the corre-
sponding y-map foreground masks (Planck Collaboration XXII
2016). This was then extended by 1◦ and apodized with a 200′
Gaussian beam. To account for any masked sections lost dur-
ing the smoothing, the original mask was then added back. Tests
were also done using the y-map point-source mask, with negli-
gible changes seen in the results, and was thus omitted from the
final analysis. This procedure aims to allow for the maximum
signal while minimizing the foreground contamination. Various
combinations of mask sizes and apodizations were also tested
and final results were consistent, independent of the choice of
mask.

4. Analysis

From Eq. (14) we see that a map of the tSZ effect (MSZ) contains
the following terms (for each pixel, or direction n̂):

MSZ = y + ηy + βµ
δT
T0
, (15)

where ηy is simply the noise in the y map, and we have neglected
the aberration effect. Our goal is to isolate the final term in
Eq. (15), which we do via a suitable cross-correlation with a
CMB map. A map of the CMB (MCMB) contains the following
terms:

MCMB =
δT
T0

+ ηT + 3βµ
δT
T0
, (16)

where we have explicitly removed the full dipole term, and ηT

is the noise in the CMB map. If we multiply our CMB map
(Eq. (16)) with βµ and cross-correlate that with our tSZ map
(Eq. (15)), then we can directly probe the dipole modulation.
This of course neglects the noise and modulation terms in the
CMB map, which we are justified in doing because the noise
term is sub-dominant, except at very small scales (we make the
restriction `max = 1411, so that the ymap and CMB maps are still
signal dominated Planck Collaboration XXII 2016), and because
the modulation term becomes second order in β. Equivalently
one could directly cross-correlate Eq. (15) with Eq. (16) and look
for the signal in harmonic space from the coupling of ` and `± 1
modes.

In Planck Collaboration XXVII (2014) a quadratic estimator
was used to determine the dipole aberration and modulation, in
essence using the auto-correlation of the CMB fluctuation tem-
perature maps, weighted appropriately to extract the dipole sig-
nal. The auto-correlation naturally introduces a correlated noise
term, which must be well understood for this method to work. In
this paper we take advantage of the fact that we know the true
CMB fluctuations with excellent precision and therefore the sig-
nal that should be present in the y map. We can therefore exploit
the full angular dependence of the modulation signal and remove
much of the cosmic variance that would be present in the auto-
correlation.

In order to implement this idea we define three templates, Bi
(with i = 1, 2, 3) as

Bi(n̂) = βn̂ · m̂i
δT
T0

(n̂), (17)

where β = v/c is 1.23357 × 10−3 (Planck Collaboration I 2020)
and m̂1, m̂2, m̂3 are the CMB dipole direction, an orthogonal
direction in the Galactic plane, and the third remaining orthogo-
nal direction (see Fig. 1 and Planck Collaboration XXVII 2014,
for a similar approach). Note that in Eq. (17), we simply use our
CMB map in place of δT/T0. We use two distinct methods to
accomplish this, discussed in detail in Sects. 4.1 and 4.2.

In the region where the CMB is signal dominated we can
regard δT/T0 as fixed, and thus our templates Bi are fixed. Due to
the presence of the CMB dipole, the signal B1 should be present
in the y map. We can therefore directly cross-correlate B1 with
our y map (Eq. (15)) to pull out the signal. Likewise, the cross-
correlation of B2 and B3 with our y map should give results con-
sistent with noise, although the coupling with the noise and mask
leads to a bias that is recovered through simulations.

Our y simulations are generated by first computing the power
spectra of our data y maps; specifically we apply the MASTER
method using the NaMASTER routine (Alonso et al. 2019) to
account for the applied mask (Hivon et al. 2002). Then we gener-
ate y maps using this power-spectrum with the HEALPix (Górski
et al. 2005) routine synfast5. This is done separately for the
2D-ILC and MILCAmaps because they have different noise prop-
erties (and thus different total power spectra). For our simu-
lations that include the dipolar modulated CMB anisotropies
we add the last term of Eq. (15). We finally apply a Gaussian
smoothing of 5′ to model the telescope beam.

For each analysis method (to be described in the following
subsections) we estimate the amplitude of the dipole (β̂i) in each
of the three orthogonal directions6. We apply the same analysis
on a suite of 1000 y simulations, generated with and without the
dipolar modulation term in Eq. (15). We are then able to generate
a covariance that appropriately contains the effects of the mask
we use and are able to compute any bias that the mask induces.
On the assumption (verified by our simulations) that the β̂i esti-
mators are Gaussian, we are able to compute a value of χ2 for
the case of no CMB term and with the CMB term (see Table 1).
We can then apply Bayes’ theorem along with our covariance to
calculate the probability that each model is true (with or with-
out the CMB term) and the posterior of our dipole parameters
(β, l, b), summarized in Table 1 and Fig. 2.

We estimate the covariance Ci j of the β̂i using the simula-
tions7 and calculate the χ2 as

χ2
k =

∑
i j

(
β̂i − 〈β̂i〉k

)
C−1

i j

(
β̂ j − 〈β̂ j〉k

)
, (18)

where k denotes whether the expectation value in the sum is
taken over the simulations that do or do not include the CMB
term. For definiteness we define the null hypothesis H0 (k = 0)
to not include the CMB term, while hypothesis H1 (k = 1) does

5 Note this means that our simulations contain no non-Gaussianities,
unlike the real SZ data; however, this should have no effect on the power
spectrum, since non-Gaussianities are only detectable at higher order
such as the bispectrum (see e.g., Lacasa et al. 2012). For further discus-
sion of see Appendix A.
6 Note that β̂i is used here to denote the estimator, not a unit vector.
7 It makes no appreciable difference whether we use the simulations
with or without the dipole term to calculate the covariance.
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Table 1. Values of χ2 (with Nd.o.f. = 3) under the assumption of no
dipolar modulation term (“No dipole”), and assuming the presence of
the dipolar modulation term (“With dipole”) for the 2D-ILC CMB tem-
plate map.

No dipole With dipole

Method χ2 P(H0|β̂i) χ2 P(H1|β̂i)

Harmonic-space analysis
2D-ILC . . . . 39.5 4.0 × 10−9 0.8 1−4.0 × 10−9

MILCA . . . . . 42.4 8.4 × 10−10 0.7 1−8.4 × 10−10

Map-space analysis
2D-ILC . . . . 38.6 1.8 × 10−8 3.0 1−1.8 × 10−8

MILCA . . . . . 24.8 5.0 × 10−6 0.4 1−5.0 × 10−6

Notes. We include the probability that hypotheses of “No dipole” and
“With dipole” are true. All data and analysis combinations are consis-
tent with the dipole modulation term. The deviations range from 6.2
to 6.6σ for the harmonic-space analysis, and from 5.0 to 5.9σ for the
map-space analysis.

include the CMB term. We can then directly calculate the prob-
ability that Hk is true given the data (β̂i) as

P(Hk |β̂i) = P(β̂i|Hk)P(Hk), (19)

P(β̂i|Hk) =
1

√
|2πC|

e−χ
2
k/2. (20)

We can calculate the odds ratio, O10, on the assumption that the
two hypotheses are equally likely,

O10 ≡
P(H1|β̂i)
P(H0|β̂i)

=
e−χ

2
1/2

e−χ
2
0/2
· (21)

This quantity tells us to what degree H1 should be trusted over
H0. Assuming that the two hypotheses are exhaustive, it is
directly related to the probability that the individual hypotheses
are true:

P(H0|β̂i) =
1

1 + O10
, (22)

P(H1|β̂i) =
O10

1 + O10
· (23)

These quantities and the χ2
k values are given in Table 1.

We can also generate a likelihood for our parameters with
the same covariance matrix:

L(βi) =
1

√
|2πC|

e−χ
2/2, (24)

where we define the modified χ2 as above. We can then apply
Bayes’ theorem with uniform priors on the βi, equating the pos-
terior of βi with Eq. (24). A simple conversion allows us to obtain
the posterior of the parameters in spherical coordinates (β̃, l̃, b̃).
We show this in Fig. 2 for our two analyses, using the 2D-ILC
and MILCA maps.

In the following subsections we describe two methods of
cross-correlation: the first we perform directly in map-space;
and the second is performed in harmonic space. An advantage
of using two independent methods is that their noise properties
are different; for example, working in harmonic space introduces

complications with masking, whereas in map space, although it
may not be clear how to optimally weight the data, the estima-
tor has less sensitivity to large-scale systematic effects. Thus, the
advantage of using two approaches will become apparent when
we try to assess the level of systematic error in our analysis.

4.1. Map-space method

First we apply our mask to the templates Bi and y map. Then
we locate all peaks (i.e., local maxima or minima) of the tem-
plate map Bi and select a patch of radius 2◦.0 around each peak.
Our specific implementation of the peak method follows ear-
lier studies, for example Planck Collaboration VII (2020). The
weighting scheme has not been shown to be optimal, but a sim-
ilar approach was used for determining constraints on cosmic
birefringence Contreras et al. (2017) and gave similar results to
using the power spectra (and the issue of weighting is further
discussed in Jow et al. 2019). Intuitively we would expect that
sharper peaks have a higher signal, and hence that influences our
choice for the weighting scheme described below. For every peak
we obtain an estimate of β̂i by the simple operation

β̂i,p = β

∑
k∈D(p) Bi,kyk∑

k∈D(p) B2
i,k

, (25)

where D(p) is the collection of all unmasked pixels in a 2◦.0
radius centred on pixel p, and p is the position of a peak.
Equation (25) is simply a cross-correlation in map space and by
itself offers a highly-noisy (and largely unbiased8) estimate.

We then combine all individual peak estimates with a set of
weights (wp) to give our full estimate:

β̂i =

∑
p wi,pβ̂i,p∑

p wi,p
· (26)

The values of wi,p depend solely on the templates Bi, and they
can be chosen to obtain the smallest uncertainties. We choose wp
to be proportional to the square of the dipole, which ensures that
peaks near the dipole direction (and anti-direction) are weighted
more than those close to the corresponding equator. We further
choose that the weights are proportional to the square of the
Laplacian at the peak (Desjacques 2008); this favours sharply
defined peaks over shallow ones. Finally we account for the scan
strategy of the Planck mission by weighting by the 217 GHz
hits map (denoted H217

p Planck Collaboration VIII 2016), though
this choice provides no appreciable difference to our results. The
weights then are explicitly

wi,p = |n̂ · m̂i|
2
p

(
∇2(Bi)

∣∣∣
p

)2
H217

p . (27)

We evaluate the Laplacian numerically in pixel space at pixel
p. The weighting scheme closely resembles the bias factors
that come about when relating peaks to temperature fluctuations
(Bond & Efstathiou 1987), as used in Komatsu et al. (2011),
Planck Collaboration Int. XLIX (2016) and Jow et al. (2019).

Combining Eqs. (26) and (27) gives us our estimates, β̂i. We
apply the method for each of our simulated y maps, in exactly
the same way as for the data.
8 This is strictly true for β̂1 only; the presence of a strong signal in
the data is correlated in orthogonal directions due to the mask and thus
may appear as a mild bias in β̂2 and β̂3. There is also a bias due to the
correlations between the templates. The weighting in harmonic space is
much simpler, and so this effect is taken into account in the harmonic-
space method; however, due to the complicated nature of the weighting
in the map-space method it is not included in this section. We discuss
this further in Sect. 5.
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Fig. 2. Posteriors for the CMB dipole parameters using the map-space analysis (top) and harmonic-space analysis (bottom). The left panels use
the SMICA-NOSZ CMB maps, whereas the right use the 2D-ILC CMB maps. MILCA y map results are shown in orange, and 2D-ILC y map results
are shown in blue. Black dashed lines show the best-fit parameters from direct measurements of the CMB dipole. Dark and light contours enclose
68% and 95%, respectively. Titles for each panel give the best-fit results, along with the 68% uncertainties.

4.2. Harmonic-space method

The alternative approach is to directly cross-correlate Eq. (17)
with the y map, and compare this to the auto-correlation of
Eq. (17).

Our first step is identical to the previous method in that we
mask the templates Bi and ymaps. Under the assumption that the
y map contains the template (Bi), the y multipoles are Gaussian

random numbers with mean and variance given by

si
`m =

∫
dΩ β m̂i · n̂

δT
T0

M(Ω)Y∗`m, (28)

σ2
` = Cy

`
+ Ny

`
, (29)

respectively, where M(Ω) is the mask over the sphere, Y`m are the
spherical harmonics, and the m̂i are as defined in Eq. (17). Thus
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we can obtain an estimate of βi by taking the cross-correlation
with inverse-variance weighting. We can demonstrate this sim-
ply by writing our y map as a sum of our expected signal plus
everything else9,

y`m =
βi

β
si
`m + η

y
`m. (30)

Here our signal is of course given when βi = βδ1i and all
sources of noise, such as tSZ, are given by ηy

`m. We then cross-
correlate with our template and sum over all multipoles with
inverse-variance weighting. We explicitly consider noise in our
template, that is our template (s̄i

`m) is related to Eq. (29) via,
s̄i
`m = si

`m + ηt
`m, where ηt

`m is the noise in our template. Then the
cross-correlation looks like,∑
`m

s̄i′
`my
∗
`m/σ

2
` =

βi

β

∑
`m

s̄i′
`m(si

`m)∗/σ2
`

+
∑
`m

s̄i′
`m(ηy

`m)∗/σ2
` , (31)

and expanding it out, this becomes∑
`m

si′
`my
∗
`m/σ

2
` +

∑
`m

ηt
`my
∗
`m/σ

2
` =

βi

β

∑
`m

si′
`m(si

`m)∗/σ2
`

+
βi

β

∑
`m

ηt
`m(si

`m)∗/σ2
`

+
∑
`m

si′
`m(ηy

`m)∗/σ2
`

+
∑
`m

ηt
`m(ηy

`m)∗/σ2
` . (32)

The last term on the left and last three terms on the right are all
statistically zero, since our template does not correlate with tSZ
or any other types of noise and the noise in our template does not
correlate with the template itself or with noise in the y map (by
assumption). Hence we can solve for βi neglecting those terms,
to produce our estimator β̂i:

β̂i = β
∑

i′

`max∑
`m

si
`m(si′

`m)∗/σ2
`


−1 `max∑

`m

si′
`m(y`m)∗/σ2

` . (33)

It is important to note that in practice we do not have si
`m, since

we do not know the exact realization of noise in the CMB, so we
instead use s̄i

`m. Using Weiner-filtered results would allow us to
calculate si

`m, but adds complexity in the masking process. We
can compare what the Weiner-filtered results would be,∑
`

(CTT
` )2

CTT
`

+ NTT
`

(2` + 1)
σ2
`

, (34)

to our results,∑
`

(CTT
` + NTT

` )
(2` + 1)
σ2
`

(35)

and find the bias to be on the order of 2% for `max = 1411, jus-
tifying our use of the cut-off. Equation (33) is in fact a direct
solution for βi in the absence of noise, since it is the direct solu-
tion of Eq. (32) in the absence of noise.

9 Note that here ηy`m is different to that in Eq. (15), since it now also
includes the y signal, which is treated as a noise term in this analysis.

Table 2. As in Table 1 but using SMICA-NOSZ CMB template maps.

No dipole With dipole

Method χ2 P(H0|β̂i) χ2 P(H1|β̂i)

Harmonic-space analysis
2D-ILC . . . . 41.9 1.5 × 10−9 1.2 1−1.5 × 10−9

MILCA . . . . . 45.4 3.1 × 10−10 1.6 1−3.1 × 10−10

Map-space analysis
2D-ILC . . . . 40.1 8.9 × 10−9 3.0 1−8.9 × 10−9

MILCA . . . . . 27.9 1.1 × 10−6 0.4 1−1.1 × 10−6

Relating back to the map-space method, si
`m are the spherical

harmonic coefficients of the templates denoted previously by Bi,
and y`m are the spherical harmonic coefficients of the y map. The
values for si

`m(si′
`,m)∗ and si

`m(y`m)∗ may be computed using the
maps with the HEALPix (Górski et al. 2005) routine anafast.
In the case of the term si

`m(si′
`,m)∗ this results in a 3× 3 matrix for

each `, with the cross-power spectrum for the three templates on
the off diagonals.

In the absence of a mask M the signal |s`m|2 induces power in
a cos2 θ pattern. The presence of a mask (being largely quadrupo-
lar in shape) induces power in a more complicated way, but has
strong overlap with a cos2 θ pattern as well. Therefore the appli-
cation of a mask necessarily makes this method sub-optimal;
however, since the template is masked in the same way, the
method is unbiased.

We apply the method for each of our simulated y maps, in
exactly the same way as for the data, in order to assess whether
the dipole modulation is detected.

5. Results

The main results of this paper are presented in Tables 1 and 2 and
Fig. 2. They show how consistent the data are with the presence
(or non-presence) of the dipole term, and the recovered posteri-
ors of the dipole parameters, respectively. In the following sub-
sections we describe our results for each method in more detail.

5.1. Map-space results

First we compare the consistency of the data with our two sets of
simulations (with and without the dipole term). This comparison
shown in Fig. 3, with blue histograms being the simulations with
the dipole term and orange histograms without. The data (black
line) for 2D-ILC and MILCA can clearly be seen to be consistent
with the simulations with the dipole term; this observation is made
quantitative from examination of the χ2 (see Tables 1 and 2). The
map-space method is more susceptible to biases induced by the
mask, particularly in the off-dipole directions, β̂2 and β̂3; this is
due to subtle correlations between the mask and templates, but
has only a small effect in those directions (at the level of a few
tenths ofσ), as can be seen in Fig. 3. Converted into the equivalent
probabilities for Gaussian statistics, we can say that the dipole
modulation is detected at the 5.0 to 5.9σ level.

5.2. Harmonic-space results

Figure 4 is the equivalent of Fig. 3, but for the harmonic-
space analysis. Similar to the previous subsection the data are
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Fig. 3. Histograms of β̂i/β values (with 1, 2, and 3 corresponding to the CMB dipole direction, Galactic plane, and a third orthogonal direction)
using the map-space analysis for MILCA (top) and 2D-ILC (bottom) y maps, and for CMB template maps SMICA-NOSZ (left) and 2D-ILC (right).
Blue histograms are simulations with the dipolar modulation term, and orange histograms are simulations without. Black vertical lines denote the
values of the data, demonstrating that they are much more consistent with the existence of the dipolar modulation term than without it. Dashed
lines show the 68% regions for a Gaussian fit to the histograms.

Fig. 4. As in Fig. 3, except now for the harmonic-space analysis.

much more consistent with the modulated simulations than the
unmodulated simulations. Tables 1 and 2 contain the explicit
χ2 values and verify this quantitatively. The harmonic-space
method is somewhat susceptible to biases induced by the mask,
due to the complex coupling that occurs, mainly between the
` and ` ± 2 modes. This can be seen in the slight bias in
the results for β̂2 and β̂3. Nevertheless, we can say that we

confidently detect the dipole modulation at the 6.2 to 6.6σ
level.

6. Systematics

We have generated results using two distinct methods, namely
the map-space method and harmonic-space method, with two
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distinct CMB maps and two distinct y maps, and have shown the
results to be consistent with the presence of a dipole-modulation
signal in the expected direction. Each test is subject to slightly
different systematics, but since the results are consistent, we can
conclude that there is likely no significant systematic interfering
with the results. Further tests, relaxing the limits of `max = 1411
show that it is possible to achieve even higher levels of signifi-
cance using smaller-scale data (see Appendix C). In that sense,
the results in this paper are conservative; however, if it becomes
possible to construct reliable y maps out to higher multipoles
then it should be possible to achieve a detection of the dipole
modulation at perhaps twice the number of σ as found here.

6.1. Residuals in the component separation

The NILC ymaps are known to contain some remnant CMB con-
tamination, unlike the MILCA and 2D-ILC y maps, which have
been generated with the express purpose of eliminating the CMB
contribution. This contaminates the signal we are looking for;
the results from the NILC y maps may be seen in Appendix B.
Any contamination remaining in the MILCA and 2D-ILC y maps
is sufficiently low that is does not hide the dipole modulation
signal.

6.2. Galactic foregrounds

It is known that the y maps are contaminated by Galactic fore-
grounds; however, as the results here are from a cross-correlation
of the modulated CMB maps with the y maps such contamina-
tion does not have a large effect on the results. To further support
this, a number of different mask sizes and combinations were
tested, with the final mask selected because among those choices
consistent with the more conservative masks, it gave the highest
signal-to-noise ratio. Larger masks serve only to decrease the
signal-to-noise of the data. This suggests that foregrounds have
only a small effect on the detection of the dipole modulation.
Foregrounds have been mentioned as a potential issue in previ-
ous results (Planck Collaboration XXII 2016).

7. Conclusions

Due to the existence of the CMB dipole, a tSZ map necessarily
contains a contaminating signal that is simply the dipole modula-
tion of the CMB anisotropies. This occurs because CMB exper-
iments do not directly measure temperature anisotropies, but
instead measure intensity variations that are conventionally con-
verted to temperature variations. This contamination adds power
to the tSZ map in a Y20 pattern, with its axis parallel to the dipole
direction. We have measured this effect and determined a statis-
tically independent value of the CMB dipole, which is consistent
with direct measurements of the dipole. Using a conservative
multipole cut on the y map, the significance of the detection
of the dipole modulation signal is around 5 or 6σ, depending
on the precise choice of data set and analysis method. This
is a significant improvement from the 2 to 3σ results in Planck
Collaboration XXVII (2014). We also find that the contamina-
tion of the tSZ map contributes negligible noise to the bispec-
trum calculations (see Appendix A).
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Appendix A: The tSZ bispectrum

Fundamentally the modulation is a correlation between C` and
C`±1. The signal considered here therefore shows up most promi-
nently in the 4-point function (i.e., trispectrum) and thus we do
not expect it to bias the measurements of the tSZ bispectrum;
however, since the bispectrum is an important quantity for char-
acterizing the tSZ signal, it is worth checking to ensure that
the dipolar modulation does not add significant noise. In other
words, we want to check if it is important to remove the dipole
modulations before performing analysis of the tSZ bispectrum.
Lacasa et al. (2012) and Bucher et al. (2010) describe in detail
the calculation of the bispectrum and the binned bispectrum, and
this is summarized below. The reduced bispectrum is given by

B`1`2`3 = (N`1`2`3 )−1/2

×
∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)
a`1m1 a`2m2 a`3m3 , (A.1)

where(
`1 `2 `3
m1 m2 m3

)
represent the Wigner-3 j functions and

N`1`2`3 =
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)2

. (A.2)

The normalized bispectrum is non-zero for terms where m1 +
m2 + m3 = 0, |`2 − `2| ≥ `3 ≥ `1 + `2, and `1 + `2 + `3 is
even (this is due to the term before the sum with m1,m2,m3 =
0). Typically, the binned bispectrum is analysed to reduce the
number of terms calculated and saved, which constitutes only a
small loss of information because the bispectrum is expected to
vary slowly with ` (Lacasa et al. 2012). The data are binned by
breaking down the interval from `min to `max into i bins, denoted
by ∆i. An average for the bispectrum of a particular bin can then
be calculated using

Bi1i2i3 =
1

Ξi1i2i3

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

B`1`2`3 , (A.3)

where Ξi1i2i3 is the number of non-zero elements in the given bin.
Both the bispectrum and the binned bispectrum may be calcu-
lated using an integral over the map space as well, rather than in

harmonic space. This is achieved by first generating the binned
scalemaps defined by

y∆i (n̂) =
∑
`∈∆i,m

y`mY`m(n̂), (A.4)

where the sum goes from `min to `max in the bin ∆i. We can then
use

Bi1i2i3 =
1

Ni1i2i3

∫
d2 n̂y∆1 (n̂) y∆2 (n̂) y∆3 (n̂) (A.5)

which gives the weighted average of the bispectrum within the
bins (Lacasa et al. 2012).

In Figs. A.1 and A.2 we show a subset of the binned normal-
ized bispectra for the y maps, with and without the dipole mod-
ulation. For simplicity, since we are just comparing the results
of two simulated maps, there are no non-Gaussianities and no
mask applied. This analysis was performed using the MILCA y
map and the SMICA-NOSZ CMB temperature map. Plots are con-
structed in the style suggested by Lacasa et al. (2012) for an `max
of 500 (and an Nside of 512 to speed up computation).

Useful definitions here are

σ1 = `1 + `2 + `3, (A.6)
σ2 = `1`2 + `1`3 + `2`3, (A.7)
σ3 = `1`2`3, (A.8)

σ̃2 = 12σ2/σ
2
1 − 3, ∈ [0, 1], (A.9)

σ̃3 = 27σ3/σ
3
1, ∈ [0, 1], (A.10)

F = 32(σ̃2 − σ̃3)/3 + 1, (A.11)
S = σ̃3, (A.12)
P = σ1, (A.13)

where P is the perimeter, each plot represents the results of a par-
ticular perimeter size, F is plotted along the y-axis of the panels
and S is plotted along the x-axis of the panels.

Our main goal is to determine whether the dipole modu-
lation contamination of the y maps is significant, and to what
degree it is significant for current and future analysis as data
improves. For this purpose a subset of the tested perimeter val-
ues are plotted, for data with the dipole modulation and without,
and the absolute value of the differences. It does not appear that
the dipole modulation has a noticeable effect on the bispectrum
results.
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Fig. A.1. Binned bispectrum, for simulated y maps, with `max = 500 and bin sizes of 10, and “scalemaps” defined in Eq. (A.4), of Nside = 512. Left
panels: bispectrum for a simulated y map with the dipole modulation; right panels: same with no dipole-modulation. The quantities P, F, and S
are as defined in Eq. (A.13).
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Fig. A.2. Absolute (left) and relative (right) difference between the bispectrum with and without the dipole-modulation term.
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Appendix B: NILC y-map results

Fig. B.1. As in Figs. 3 (top) and 4 (bottom), except using the NILC y maps. Top panels: results from the map-space method, bottom panels: those
from the harmonic-space method.

In creating the Planck y maps using NILC, the choices were opti-
mized for removal of the contamination by CMB, foregrounds,
and noise. With the MILCA y maps there was an additional con-
straint added to fully eliminate the CMB, at the expense of
adding more foregrounds and noise contamination. For this rea-
son the CMB contamination in the NILC ymaps is too high for us
to robustly detect the dipole modulation. The 2D-ILC y map was
also produced with the express intent of removing all CMB con-
tamination, and both it and the MILCAmaps clearly show that the
dipole modulation is present. For completeness, here we present
the effect of the contamination in the NILC y maps in Fig. B.1.
The dipole modulation signal is seen to be completely hidden by
the CMB contamination.

Appendix C: Increased `max results

In our analysis for the harmonic-space method the results were
truncated at `max = 1411, since this is the recommendation
from Planck Collaboration XXII (2016) to avoid the correlated
noise and foreground contaminations present in higher `. If we
were to assume that the simulations model the data properly
up to a higher `max, and that we also trust the data up to this
higher `max, then we would be able to achieve a greater signifi-
cance than reported in the conclusions. This can be seen in the

Fig. C.1. As in Fig. 4, but with `max = 2750 compared to `max = 1411
used in the paper. If we were to trust the y map out to these multipoles,
then these results would have a significance of >12σ.

simulation results using the MILCA y map and the SMICA-NOSZ
CMB templates. These particular results are from 500 simu-
lations for Nside = 1024, and `max = 2750. The significance
appears to be at the >12σ level. To do the analysis fully at this
`max the Weiner filter would also need to be applied to the CMB
maps, as without it the bias would be much larger than the 2%
found in our analysis.
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