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Abstract—During the last decade, time domain reflectometry
(TDR) methods have formed the cornerstone for the diagnosis of
transmission line networks. They have been adopted recently to
the blind characterization of networks, thanks to graph theory
and optimization based algorithms. Using a single testing point,
it became possible to reconstruct the topology of a black-boxed
network while returning precise estimates of branch lengths and
most importantly load impedances. In other words, disconnecting
the network for testing purposes is no longer needed. In this
paper, we opted to perform a comparative analysis to study
the effect of different optimisation based algorithms on the
applicability of the aforementioned method. Particularly, we
designed CAN bus networks based on real aeronautical cables of
increased complexity to investigate their performance in terms
of precision and computational burden.

Index Terms—Complex wire networks; topology reconstruc-
tion; inverse problems; optimisation algorithms.

I. INTRODUCTION

In the era of Internet of Things (IoT), electrical wiring and
interconnect systems (EWIS) are massively hosted everywhere
in many fields such as transportation systems, communication
networks, power grids, etc., where the transfer of energy and
information is a fundamental pillar to ensure the optimal
system operation [1]. Yet wiring faults and failures originated
from aging, corrosion and vandalism, etc., are inevitable
and can lead to problems with the quality of power and
communication, blackouts, aircraft crashes, and fires, etc.

Much research has been done to determine viable methods
for the location of wiring faults. This effort has been spurred
on by catastrophic accidents that has occurred. A reliable
method for locating wiring problems is needed for the safety
of the general public. With life and limb at stake, the expense
of maintaining faulty wiring is a driving force in funding
the development of better fault location methods. Currently,
several methods are available to determine wire fault locations.

The most widely used technique is reflectometry. Thereby,
a high-frequency signal is injected into the network under
test (NUT) [2]. The reflected signal is rich of information
about changes of cable impedances which is in turn valuable
to monitor wiring faults. Over the last decade, many vari-
ants of reflectometry have been developed targeting specific
applications and trying to bypass inherent limitations. This
included the well known Time Domain Reflectometry (TDR)
[3], Frequency Domain Reflectometry (FDR) [4], Ultra Wide
Band (UWB) based TDR [5], and Spectrum Time Domain
Reflectometry (STDR) [6], etc. They use different incident
signal and signal processing methods.

Raw reflectometry data can be quite complicated and very
difficult to analyze once branched networks are addressed [7].
In fact, this is mainly caused by junctions, network termina-
tions, etc. that lead to the occurrence of multiple reflections.
On the other hand, improved reflectometry methods used the
baseline approach to bypass this problem. In baselining, the
reflectometry response of the faulty NUT is compared with
that of a reference healthy version of it, which can be either
retrieved by measurements or computed from simulations.
This operation ideally removes the spurious echoes generated
by impedance discontinuities like junctions, leaving only those
echoes initially generated by the interaction between the
testing signals and the faults in order to enable the detection,
location, and characterization of different types of faults [8].

Accordingly, mapping the tested network is a direct way
to diagnose faults. In fact, this would allow reconstructing
the topology of a totally or partially unknown network, and
thus serve as a reference healthy model of the NUT. This will
later form the basis of baselining for reflectometry methods
enabling continuous monitoring of an EWIS. Besides, most
fault detection techniques outside the scope of reflectometry
also rely on the prior knowledge of the network’s topology for
their proper applicability [9].

Within this context, considerable work has been realized in
the state-of-art towards developing and optimizing techniques
dedicated for wired network mapping [10], [11]. A vast major-
ity relied on the tenets of reflectometry to measure the response
of a tested network from one or more of its extremities
[12]. This was followed by solving the inverse problem,
where a response provided by a direct model is iteratively
improved to finally align with the measured response. This
became possible, thanks to the wide selection of optimization
algorithms.

In literature, many authors have been working on merging
reflectometry with different optimization based techniques for
the sake of EWIS mapping [13]–[15]. However, most relied
on the prior knowledge of the network’s topology and were
confined to estimating the branch lengths. Besides, predefined
loads were imposed at the extremities of the tested network
which were mainly open or short circuits. In practice, discon-
necting the network from its loads is unattainable in many
applications (nuclear power-plants, aeronautics, etc.), and the
beforehand awareness of its scheme is generally impossible.

In a recent development, the authors of [16]–[18], proposed
integrating the graph theory with the optimization based
algorithms to solve the inverse problem of measured TDR



responses for totally unknown networks. These joint graph-
optimization-reflectometry (GOR) techniques enabled a blind
reconstruction of the tested network accompanied with esti-
mating branch lengths and returning precise assessment of the
load impedances.

The present paper, is intended to present a full-scale com-
parative study of several optimization techniques in the GOR
method and investigate thoroughly the advantages and disad-
vantages of each as a function of several parameters including
the computational time, complexity of the network, hardware
implementation, accuracy, etc. The study will be backed up
with experimental validations using real-life complex wiring
networks.

II. METRICS OF THE GOR BASED METHODS

The GOR methods have shown to be efficient in mapping
obscure wiring networks using a single-extremity measured
TDR response followed by resolving the inverse problem. In
what follows we will try to explain different elements and
stages composing these techniques.

A. Wave Propagation Model

A direct model is capable of describing the propagation of
high frequency electromagnetic waves along a Transmission
Line TL in the time domain: the model is based on the
telegrapher’s equations given by (1a) &(1b), where the per-
unit-length electrical parameters matrices R, L, C and G are
computed by a Finite Element Method FEM [19].

∂v(x, t)

∂x
= −Ri(x, t)− L

∂i(x, t)

∂t
(1a)

∂i(x, t)

∂x
= −Gv(x, t)− C

∂v(x, t)

∂t
(1b)

Despite the fact that time domain analysis as the Finite
Difference Time Domain method (ABCD) provides accurate
full-wave solutions over large frequency bands, they can be
computationally heavy, slow and inefficient. On the contrary,
frequency domain techniques, particularly, the ABCD matrix
method offers excellent fidelity and computational efficiency
since they avoid the explicit use of differential equations
[20]. An important advantage of this approach is that the
transmission line modelling arises naturally in the frequency
domain. Therefore the consideration of frequency dependent
parameters can be carried out in a simple way compared with
the time-domain.

ABCD parameters, also known as the transmission line
parameters, provide the link between the supply and receiving
end voltages and currents of a two-port network model. In
fact, any transmission line branch can be modeled as such.
The two-port network is regarded as a "black box" with its
properties specified by a matrix of numbers. This allows the
response of the network to signals applied to the ports to be
calculated easily, without solving for all the internal voltages
and currents in the network.

Since we are dealing with NUTs of tree-like structures,
ABCD matrix method makes it possible to analyze such

networks, thanks to its cascading property. As such, each
branch composing a NUT could be separately analyzed and
then cascaded with other branches splitting from it to return
the overall behavior of the NUT. With this in mind, an in-house
solver developed at CEA under MATLAB provided an accurate
model of reflectometry responses for any branched network.
Accordingly, the simulated TDR response of the NUT model
is simply the inverse Fourier transform (IFFT) of the computed
end voltage.

Having derived a direct model to provide the simulated TDR
response of an assigned NUT, solving the inverse problem of
the measured TDR response of the unknown network entails
several variable sets. This includes the NUT’s topology, the
branch lengths and the load impedances.

B. Branched network as a Graph

Network topology is a generic name that refers to all
properties arising from the structure or geometry of a network.
If each element or a branch of a network is represented on
a diagram by a line irrespective of the characteristics of the
elements, we get a graph. Hence network topology is network
geometry. Thus topology deals with the way in which the
various elements are interconnected at their terminals without
considering the properties and type of the elements connected.
This method is considered to be a more systematic approach
to the analysis of branched TL networks.

The Graph theory forms a convenient mathematical rep-
resentation of a network describing the relationship between
lines and points [21]. As such, a graph is a pair of sets
G = (N Ed), where N is a set of vertices or nodes and Ed
is a set of edges formed by pairs of nodes [22]. Accordingly,
a tree-liked TL network can be represented by a graph whose
nodes N are loads and junctions while the edges Ed are the
TL branches connecting the nodes. A hypothesized numerical
model of a generic network can thus be set based on the
tenets of Graph theory, whose components are to be iteratively
changed to meet those of the measured network. This an
inverse problem to be solved.

C. Solving the Inverse Problem

The term "inverse problem" is generally understood as the
problem of finding a specific physical property, or properties,
of the medium under investigation, using indirect measure-
ments [23]. It can be seen as the reverse process of a forward
problem, which concerns with predicting the outcome of some
measurements given a complete description of a physical sys-
tem. In our case study, having measured the TDR response of
an unknown TL network, retrieving the network’s parameters
(topology, branch lengths, and load impedances) is possible
by solving this inverse problem.

Optimization algorithms are central approaches in solving
inverse problems as the recovery of the unknown parameters is
formulated as an optimization problem [24]. An optimization
problem consists in maximizing or minimizing some function
relative to some set, representing a range of choices available



in a certain situation. The function allows comparison of the
different choices for determining which might be best.

More formally we define the optimization problem as

optimize f(x), x ∈ S (2)

where optimize stands for min or max f : IRn → IR
denotes the objective function, that we assume throughout at
least continuously differentiable, and S ⊆ IRn is the feasible
set, namely the set of all admissible choices for x. x represents
in our investigation the set of the NUT graph’s variables,
namely N and Ed. To obtain the best candidate solutions that
mostly align with the actual tested network, we will solve the
optimization problem of the following objective function

Fobj =

∫ ∞

t=0

‖Vs(t)−Vm(t)‖2
1 + t2

dt (3)

with Vs(t) and Vm(t) being the time domain reflectometry
responses of the hypothesized simulated and measured net-
works, respectively. From now on-wards, the temporal variable
t will be dropped for the sake of simplicity. Fig. 1 presents
a mesh plot of the objective function evaluation of eq. 3 for
a single point-to-point network with N being a single load
impedance, while Ed being the length of the sole branch.
Notably, the function appears to be non-convex with several
minima and maxima. Indeed, the situation is expected to
worsen with complex branched networks composed of several
junctions connecting numerous branches and terminated with
a number of loads.
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Fig. 1: A mesh plot of the fitness function evaluation of a single
branch network.

To cope with such a problem, global optimization algo-
rithms are efficient numerical techniques capable of solving
inverse problems with non-convex objective functions suffer-
ing from local minima and maxima [25]. In fact, they have
shown promising results in converging to the function’s global
minimum or maximum.

Accordingly, we have adopted several global optimization
algorithms in our study namely, the genetic algorithm (GA) as

in [17], [26], [27], particle swarm algorithm (PSO) as done in
[16], in addition to the surrogate (SG) and simulated annealing
(SA) algorithms for the first time to such application. The
purpose is to conduct a performance analysis to compare the
results obtained when applying each of the considered opti-
mization algorithms relative to several parameters as NUT’s
complexity, computational time, etc. In what follows we will
briefly explain each of the considered algorithms.

1) Genetic algorithm: GAs are adaptive heuristic search
algorithms based on the evolutionary ideas of natural selection
and genetics [28]. As such, they represent an intelligent
exploitation of a random search used to solve optimization
problems. GAs simulate the survival of the fittest by starting
with a random sample set (initial population) of potential
solutions (chromosomes). Each chromosome is coded as a
finite length vector of variables which are analogous to genes.
These solutions then undergo recombination and mutation
(like in natural genetics), producing new children, and the
process is repeated over various generations. Each individual
(or candidate solution) is assigned a fitness value (based on its
objective function value) and the fitter individuals are given a
higher chance to mate and yield more "fitter" individuals until
an eventual convergence is reached. As a result, an optimal
population is produced that will now contain the optimal
solutions.

2) Particle swarm algorithm: PSO is a relatively recent
heuristic search approach founded on the concept of swarm
intelligence (SI) that is based on the idea of collaborative
behavior and swarming in biological populations [29]. As a
population-based technique, PSO is regarded to be concep-
tually simple as only few parameters need to be regulated.
The population, often referred to as swarm, is composed
of n candidate solutions known as particles. Each particle
i = 1, 2, 3..., n in the swarm space has an identity defined
by its position pi, in addition to its moving velocity vi. In
fact, the displacement of a particle in space is controlled by
a well defined strategy based on its own best known position
pbesti as well as the global best known position gbesti of the
entire swarm. Equations 4 summarize the moving mechanism.
It is important to note that, wi is the inertia weight specific to
each particle, r1&r2 are random numbers uniformly generated
between [0, 1], while c1&c2 are learning acceleration factors.

vt+1
i = wiv

t
i + c1r

t
1(pbestti − pti) + c2r

t
2(gbestti − pti)

pt+1
i = pti + vt+1

i

(4)

As an illustration, the particles’ convergence towards the
best solution is likely determined by their fitness which is
controlled by a predefined objective function Fobj specific
to each application. Namely, the position pi determines each
particle’s fitness that is updated regularly at each iteration iter
of the PSO algorithm according to what has been defined in
equations 4. The process is repeated until a specific criterion is
reached which might be the maximum number of iterations,
the stalking state time after which no improvements can be
detected, etc.



3) Surrogate optimization algorithm: SG is a global solver
for time-consuming objective functions [30]. It is black-box
optimization technique that is well-suited for problems whose
objective functions are very expensive to evaluate with no
analytical or derivative information available. The main idea of
SG is to iteratively construct models to approximate the black-
box functions (globally) and use them to search for optimal
solutions. A common simple-form approach for surrogate-
based methods is as follows:
− Phase 1 (design): Let k := 0. Select and evaluate a set

S0 of starting points.
− While some given stopping criteria are not met:

. Phase 2 (model): From the data (x, f(x))|x ⊆ Sk,
construct a surrogate model sk(.) that approximates
the black-box function.

. Phase 3 (search): Use sk(.) to search for a new
point to evaluate. Evaluate the new chosen point, and
update the data set Sk. Assign k := k + 1.

4) Simulated annealing algorithm: SA is an optimization
method which mimics the slow cooling of metals, that is char-
acterized by a progressive reduction in the atomic movements
that reduce the density of lattice defects until a lowest-energy
state is reached [31]. In a similar way, at each virtual annealing
temperature, the simulated annealing algorithm generates a
new potential solution (or neighbour of the current state) to
the problem considered by altering the current state, according
to a predefined criterion. The acceptance of the new state is
then based on the satisfaction of the Metropolis criterion, and
this procedure is iterated until convergence.

It has been proved that by carefully controlling the rate of
cooling of the temperature, SA can find the global optimum.
SA’s major advantage over other methods is an ability to avoid
becoming trapped in local minima. The algorithm employs a
random search which not only accepts changes that decrease
the objective function, but also some changes that increase it.

D. GOR method implementation

The flowchart shown in Fig. 2, illustrates the step-by-step
the GOR procedure proposed to blindly reconstruct unknown
networks. As can be seen, it starts by measuring the TDR
response Vm of the tested NUT using one extremity while
others are left connected to their loads. Indeed, measuring
the reflectometry response can be accomplished by connecting
the testing extremity of the NUT to one of the ports of a
vector network analyzer (VNA), the TDR response is simply
the IFFT of the scattering parameter S11. However, that is
also possible by relying on any of the existing reflectometry
measuring devices.

Once Vm is collected, solving the inverse problem com-
mences by adopting graph theory to generate a generic net-
work model with two sets of variables N and Ed. The in-
house TL line solver described in sec. II-A is devoted to
return the TDR response Vs of any hypothesized NUT. N and
Ed are then iteratively changed, thanks to global optimization
techniques, until convergence occurs between Vs and Vm,

Based on the tenets of Graph theory, model a 

branched NUT as graph with nodes N being 

junctions and loads while edges Ed being branches 

Using one extremity of the 

black-boxed NUT, measure 

the TDR response 𝐕𝐦

Develop a direct numerical model capable of 

returning the TDR response of any simulated NUT 𝐕𝒔

Start with a hypothesized 𝐍𝐔𝐓𝐦with a 

random initial population for N and Ed

Evaluate the objective function 𝐅𝐨𝐛𝐣
and compute the fitness value 𝒇𝒗𝒂𝒍

𝒇𝒗𝒂𝒍≈𝟎

Network 

Reconstructed

Optimization 

Algorithm

No

Yes

Fig. 2: Flowchart of GOR methods.

i.e. the minimal fitness value of Fobj is reached. This marks
the proper reconstruction of the tested unknown network, by
retrieving its topology,branch lengths and load impedances.

III. PERFORMANCE ANALYSIS

A experimental setup based on practical industrial elements
is conducted in order to serve as a profound demonstration for
comparing the performance of the proposed GOR approach
relative to different optimization algorithms. Three different
complexity NUTs will be tested. Although, they canâĂŹt
cover the entire range of possible combination of networks,
but they are mostly found in practice.

A. Experimental setup

Figs. 3 show the three NUTs considered in our study. They
are Controller Area Network (CAN) bus NUTs commonly
used in aeronautics due to their reliability for data commu-
nication in mission and safety critical applications in aircrafts.
The least complex structure is a single Y-junction network
and the most complex is an NUT composed of 7 branches
connected via two junctions. The networks are designed using
RG−316 50 Ω coaxial cables. For simplicity, passive element
resistors with randomly chosen impedances were created to
serve as loads. In fact, this does not bring any limitation to
the application of our method, as any other kind of passive
loads could be considered. The testing port of each network
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Fig. 3: Topologies of the CAN bus wire networks used for the experimental validation of the GOR method with (a): single Y-junction, (b)
double Y-junction 5 branch, and (c) double Y-junction 7 branch networks.

was connected to an E5071C KEYSIGHT VNA covering a fre-
quency range from 9.5 KHz to 4.5 GHz. Acquisition was done
over a total bandwidth of 2 GHz, a frequency step 1 MHz, an
intermediate-frequency filter bandwidth set to 100 kHz and an
input power set to a 0-dBm harmonic excitation signal. The
time domain TDR response Vm is obtained by applying an
IFFT to the measured frequency domain S11 parameter.

B. Result discussion

Having acquired Vm for each NUT of Figs. 3, the GOR al-
gorithm detailed in sec. s applied. Each of the aforementioned
optimization algorithms explained in sec. II-C is enforced at a
time. Executing the GOR procedure was accomplished using
a state-of-art PC employing an Intel 2.53 GHz CPU processor.

Regardless the optimization algorithm deployed, the pro-
posed GOR methodology was capable of correctly returning
the network’s topology. However, the processing time differed
from one to another, as well as the estimated branch lengths
and load impedances. In order quantify the obtained results,
we opted to compute ∆L = (|(La − Lr)/La|) × 100 and
∆Z = (|(Za − Zr)/Za|) × 100, the length and impedance
% errors respectively. La and Za are the actual NUT branch
lengths and load impedances, while Lr and Zr are the re-
constructed ones. T is the time needed to execute the GOR
process. Fig. 4 presents a reflectogram showing the measured
Vm and reconstructed Vs TDR responses after applying the
GOR procedure implementing the GA algorithm on the single
Y-junction NUT of Fig. 3 (a). Actually, the right topology
was identified and precise estimates of the branch lengths and
load impedances were obtained which can be noticed from the
close agreement between Vm and Vs.

Tables I, II, III& IV display a qualitative assessment of
∆L, ∆Z , and T for each of the three NUTs of Figs. 3
with respect to the optimization algorithm deployed. Several
features need to be commented. First of all, as already stated
the right NUT topology was eventually reconstructed. Besides,
it can be noticed that the length error ∆L doesn’t exceed 2.8%
for the single Y-junction NUT for all adopted optimization
algorithms. GA and PSO appear to outperform SG and SA
algorithms with a ∆L below 0.5%, i.e. a roughly 8 mm
change estimate from the actual branch length. Although, it is
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Fig. 4: The measured and simulation-reconstructed TDR reflectome-
try responses of the unknown network of Fig. 3(a).

expected that this error increases with an increased complexity
of the network addressed, PSO does not over-top the 1% length
error even with the double Y-junction 7 branch NUT, which
is a remarkably great result. However, SG and SA show a
deteriorated performance with ∆L escalating to 7.5% for the
NUT of Fig. 3(c).

Estimating the impedances of loads at the extremities seems
to be a harder task, where results obtained show a ∆Z reaching
over 70% for the double Y-junction 7 branch network with
the SA algorithm. Nevertheless, the PSO algorithm keeps an
impedance error not exceeding 15%, which is quite acceptable
for the reconstruction of loads.

Noteworthy, the adopted algorithms show efficiency in
terms of the total duration needed for post-processing with
a maximum latency below half an hour for the most complex
network studied. Particularly, PSO needs no more than 3.5
minutes when testing the 7 branched network. Particularly, the
vast majority of NUTs in aeronautical applications have struc-
tures that do not surpass in complexity the three considered
topologies.



Single Y-Junction NUT

Algo. L1 (3 m) L2 (2.5 m) L3 (1 m) Z1 (100 Ω) Z2 (30 Ω) T

GA 3.005 0.16% 2.492 0.32% 1.008 0.8% 108 8% 27 10% 48 s

PSO 2.999 0.03% 2.498 0.08% 0.997 0.03% 102 2% 31 3.3% 30 s

SG 2.991 0.3% 2.485 0.6% 1.010 1% 112 12% 22 26% 65 s

SA 2.989 0.36% 2.512 0.48% 0.972 2.8% 117 17% 39 30% 90 s

TABLE I: Table showing the actual and estimated branch lengths and load impedances for the NUT of Fig. 3 (a) with the computing time.

Double Y-Junction 5-Branch NUT

Algo. L1 (3 m) L2 (2.5 m) L3 (3.5 m) L4 (2.75 m) L5 (1 m) Z1 (100 Ω) Z2 (70 Ω) Z3 (15 Ω) T

GA 3.006 0.2% 2.491 0.36% 3.485 0.42% 2.759 0.32% 0.992 0.8% 110 10% 82 17% 18 20% 2.5 min

PSO 2.998 0.06% 2.505 0.2% 3.488 0.34% 2.748 0.07% 1.002 0.2% 105 5% 76 8.5% 16 6.6% 1.5 min

SG 2.992 0.26% 2.483 0.68% 3.530 0.85% 2.760 0.36% 1.019 1.9% 122 22% 84 20% 10 33.3% 4 min

SA 3.098 3.2% 2.515 0.6% 3.600 2.85% 2.685 2.36% 0.958 4.2% 75 25% 40 30% 24 60% 7.5 min

TABLE II: Table showing the actual and estimated branch lengths and load impedances for the NUT of Fig. 3 (b) with the computing time.

Double Y-Junction 7-Branch NUT

Algo. L1 (3 m) L2 (2.5 m) L3 (1 m) L4 (3.5 m) L5 (2.75 m) L6 (3.65 m) L7(1.75m)

GA 3.009 0.3% 2.488 0.48% 0.987 1.3% 3.455 1.28% 2.725 0.9% 3.69 1.1% 1.79 2.28%

PSO 3.005 0.16% 2.511 0.44% 1.009 0.9% 3.532 0.91% 2.765 0.54% 3.635 0.4% 1.662 0.72%

SG 3.090 3% 2.475 1% 1.040 4% 3.430 2% 2.653 3.5% 3.496 4.2% 1.687 3.6%

SA 2.88 4% 2.437 2.5% 0.94 6% 3.307 5.5% 2.598 6.5% 3.387 7.2% 1.618 7.5%

TABLE III: Table showing the actual and reconstructed branch lengths for the network of Fig. 3 (c).

Double Y-Junction 7-Branch NUT

Algo. Z1 (100 Ω) Z2 (30 Ω) Z3 (70 Ω) Z4 (15 Ω) Z5 (150 Ω) T

GA 115 15% 24 20% 58.8 16% 19 26.6% 180 20% 6 min

PSO 109 9% 33 10% 69 12.8% 13 13.3% 172 8% 3.5 min

SG 121 21% 42 40% 52 25.7% 25 66.6% 110 26.6% 11.8 min

SA 128 28% 15 50% 96 37.1% 4 73.3% 98 34.6% 21.5 min

TABLE IV: Table showing the actual and reconstructed load impedances for the network of Fig. 3 (c) with the computational latency.

To sum up, PSO algorithm overshoots the other con-
sidered optimization algorithms when implemented in the
GOR method. It has surpassed them in terms of length and
impedance errors as well as the computational complexity.
GA comes in second place with good performance even with
complex branched networks. However, SA and SG can only
be applied for simple networks composed of no more than 4
branches but can mess-up once several junctions are addressed.

IV. CONCLUSION

In this paper we recalled the GOR method, a technique
capable of blindly reconstructing branched TL networks. It is
an incorporation of TDR techniques, graph theory and opti-
mization based algorithms. Particularly, the method’s ability to
retrieve the tested NUT’s topology with precise estimates of
branch lengths and load impedances using a single testing port
is an important feature for fault diagnosis of complex wiring
networks.

Several optimization algorithms, namely GA, PSO, SG,
and SA have been adopted to solve the inverse problem
of the measured TDR response in the GOR method. The
objective was to assess the performance of each in terms of
computational cost and precision. An experimental setup based
on real aeronautical CAN bus networks with an increasing
complexity were deployed for the purpose. Results obtained
have shown the ability of all algorithms to reconstruct the
right topology. However, PSO outperformed other algorithms
with a significant few mm error for branch lengths and several
ohms for load impedances when testing a complex network
composed of 7 branches interconnected by 2 junctions. More
importantly was the few minutes it took to execute the
whole process. In fact, this makes it well-suited for future
implementation of real-time monitoring.

Future work will need to deal with the applicability of the
presented techniques for a complete network scanning under



unstable network circumstances manifested by the presence of
vibrations, noise, etc.. Besides, executing the technique while
the NUT is normally operating shall be very interesting.
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