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Condensation for random variables conditioned by
the value of their sum

Claude Godrèche

Institut de Physique Théorique, Université Paris-Saclay, CEA and CNRS,
91191 Gif-sur-Yvette, France

Abstract. We revisit the problem of condensation for independent, identically
distributed random variables with a power-law tail, conditioned by the value of
their sum. For large values of the sum, and for a large number of summands,
a condensation transition occurs where the largest summand accommodates the
excess difference between the value of the sum and its mean. This simple scenario
of condensation underlies a number of studies in statistical physics, such as, e.g.,
in random allocation and urn models, random maps, zero-range processes and
mass transport models. Much of the effort here is devoted to presenting the
subject in simple terms, reproducing known results and adding some new ones.
In particular we address the question of the quantitative comparison between
asymptotic estimates and exact finite-size results. Simply stated, one would like
to know how accurate are the asymptotic estimates of the observables of interest,
compared to their exact finite-size counterparts, to the extent that they are known.
This comparison, illustrated on the particular exemple of a distribution with Lévy
index equal to 3/2, demonstrates the role of the contributions of the dip and large
deviation regimes. Except for the last section devoted to a brief review of extremal
statistics, the presentation is self-contained and uses simple analytical methods.
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1. Introduction

A question underlying a number of studies in statistical physics or in probability
theory is the following. Let X1, . . . , Xn be n independent, identically distributed
(iid) positive random variables with finite mean. Assume that n is large and that
the sum of these random variables is conditioned to take a fixed value, which can be
smaller, equal to or larger than its mean. The question is to know how the (positive or
negative) difference ∆ between the fixed value of the sum and its mean is distributed
amongst the summands Xi, once a dependency between them has been introduced by
the conditioning.

The answer to this question can be informally summarised as follows. If the
common density of the random variables Xi is exponential, then, after conditioning,
each of the summands takes a bit of the difference ∆, whether negative or positive.
The system is said to be in a ‘fluid phase’. If this density is subexponential (power law,
stretched exponential), the same holds when the difference ∆ is negative. However,
when it is positive (i.e., in excess) and large, in contrast to the exponential case, in
general only one of the summands, the ‘condensate’, bears this excess. The remaining
n − 1 summands, which form the so-called ‘critical background’, are essentially
unconstrained. This means that the dependency between the summandsXi introduced
by the conditioning goes asymptotically in the condensate. One then speaks of a
‘condensation transition’. When ∆ = 0 the system is again essentially made of a
critical background.

This phenomenon can be illustrated by considering a random walk whose steps
are the summands Xi, and which is conditioned to end at a given position at time
n. Figure 1 depicts six histories of such a random walk with a power-law distribution
of steps with tail index θ = 3/2, conditioned to end at four times its mean, 4n〈X〉,
at time n. For each trajectory one can observe the occurrence of a ‘big jump’ whose
magnitude fluctuates around ∆ = 3n〈X〉. In other words a large deviation of the sum
is typically realised by a single big jump. The latter, i.e., the greatest summand, is the
condensate referred to above. After removing this condensate the resulting histories
are essentially unconstrained. In figure 1 one may note the presence of an history
(in green) made of two big jumps. The role of such trajectories will be discussed in
section 6 and later sections.

The analytical formulation of this question is as follows. The summands Xi are,
from now on, except at the end of this paper, continuous random variables. Their
common density is denoted by fX(x), with mean 〈X〉 ≡ c1 (c1 is the first cumulant).
Denoting by y the value taken by their sum, Sn =

∑
iXi, the joint density of the Xi

and of Sn is

f(x1, . . . , xn, y) = fX(x1) . . . fX(xn)δ
( n∑
i=1

xi − y
)
.

Summing upon all variables but y yields the density of Sn,

fn(y) =
d

dy
Prob(Sn < y) =

∫
dx1 . . . dxnfX(x1) . . . fX(xn)δ

( n∑
i=1

xi − y
)
.

The joint conditional density of the random variables X1, . . . , Xn under the condition
Sn = y, denoted for short by f(x1, . . . , xn|y), therefore reads

f(x1, . . . , xn|y) =
fX(x1) . . . fX(xn)δ(

∑
i xi − y)

fn(y)
,
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Figure 1. Six trajectories of a random walk Sn =
∑n

i=1Xi made of steps

with power-law distribution fX(x) = 3x−5/2/2 (x > 1), for which 〈X〉=3.
The random walk is conditioned to end at position 4〈Sn〉 = 6000 at time
n = 500. For each trajectory one can observe the occurrence of a ‘big jump’
whose magnitude fluctuates around ∆ = 3〈Sn〉 = 4500. Note however that
the green history is made of two big jumps (see section 6 for a discussion
of this point).

the presence of the denominator ensuring the normalisation.
We shall mainly be interested in the marginal conditional distribution of one of

the Xi, denoted for short by f(x|y), obtained from the previous expression by summing
upon all Xi but one, to give

f(x|y) = fX(x)
fn−1(y − x)

fn(y)
, (1.1)

which can be interpreted as the “dressed” distribution of one of the Xi as opposed to
the ‘bare’ distribution fX(x). The associated conditional average is thus

〈X|Sn = y〉 =

∫ y

0

dx f(x|y) =
y

n
≡ ρ. (1.2)

The difference ∆ between the value of the sum Sn and its mean 〈Sn〉 = nc1 can
be therefore simply expressed in terms of the difference between the conditional and
unconditional averages

∆ = y − nc1 = n(ρ− c1) ≡ n[〈X|Sn = y〉 − 〈X〉].
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Looking again at figure 1, the marginal f(x|y) can be operationally seen as the
limiting distribution of the summands (i.e., the step lengths of the random walk) for
a large number of trajectories. Since the largest summand, the condensate, appears
to be clearly separated from the other ones, the marginal f(x|y) is expected to have a
hump shape in a neighbourhood of ∆, representing the fluctuations of the condensate.

There are numerous studies related to this subject, dealing with urn models
[1, 2, 3, 4], zero-range processes [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 4], mass-
transport models [18, 19, 20], random allocation or random tree problems [21], to
quote but a few. Large deviations for random walks with sub-exponential increments
are considered in [22].

In the present work we revisit this very question with two more specific aims
in mind. Firstly, we shall devote special care to the analysis of the distribution of
the sum, fn(y), and of the marginal distribution of the summands, f(x|y), in the
various regimes of interest, with emphasis on the role of rare events. Secondly, for
a particular example of power-law distribution of the summands, we shall confront
the asymptotic predictions obtained for a large but finite number of summands to
their exact counterparts. This gives a hint of the accuracy of the predictions of
asymptotic analysis for more general distributions where exact finite-size expressions
are not available.

In what follows we focus on the case where the density fX(x) of the random
variables Xi has a power-law tail,

fX(x) ≈
x→∞

c

x1+θ
, (1.3)

with θ > 1 in order to have a finite mean c1. We shall however begin, in section
2, by the analysis of the simpler situation where fX(x) is exponential, for which
condensation does not occur. We shall then proceed by analysing the general case of
a power-law distribution (1.3). As can be seen on the expression (1.1), the knowledge
of the distribution of the sum, fn(y), allows to infer the marginal distribution f(x|y).
The detailed analysis of fn(y) in the different regimes is therefore the building block
for the study of the marginal f(x|y) (section 4). This analysis will be done in Laplace
space, using the preparatory material contained in section 3. The results thus obtained
are then applied, in section 5, to the special instance of the distribution (5.1) with
power-law exponent θ = 3/2, where exact expressions at finite n can be derived, in
order to illustrate and validate the asymptotic analysis made in the general case of
section 4. Section 6 is devoted to the derivation of the marginal distribution f(x|y) in
the various regimes, both for a generic power-law distribution (1.3) and for the special
case (5.1). The question of the unicity of the condensate and the statistics of extremes
are reviewed in sections 7 and 8. The case of discrete random variables is summarised
in Appendix A.

The present study builds upon previous works, especially [18, 19, 12], and consists,
to a large extent, of an update of [19], with some effort devoted to giving a self-
contained presentation, using simple analytical methods. It has no pretension to being
exhaustive on all aspects of the field. In particular, reviewing the vast mathematical
literature on sums of iid subexponential random variables and on the distribution
of such random variables conditioned by a large value of their sum is beyond the
scope of this work. The mathematical references most relevant to the present work
are [8, 13, 15, 16, 17, 21], mentioned above. Let us finally mention [23], devoted to
finite-size effects in zero-range condensation as manifested for example in the current
overshoot, which shares some common features with the present work.
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2. Exponentially distributed iid random variables

We start with the simple case of the exponential distribution

fX(x) =
e−x/c1

c1
,

for which the distribution of the sum fn(y) and the marginal f(x|y) are known exactly.
First, the sum, Sn, has a gamma distribution

fn(y) =
yn−1e−y/c1

cn1 Γ(n)
, (2.1)

which is the inverse Laplace transform (with Re s > −1/c1) of

f̂n(s) = (f̂X(s))n =
1

(1 + sc1)n
,

as can be checked by inspection. Therefore the marginal distribution f(x|y) (1.1) is
inferred from the exact expression (2.1) to give

f(x|y) = (n− 1)
(y − x)n−2

yn−1
. (2.2)

It does not depend on c1 and is monotonically decreasing with x, which is a
manifestation of the absence of condensation. The conditional average 〈X|Sn = y〉
(1.2) computed from (2.2) is equal to ρ, as it should.

Setting y = nρ in (2.2) and letting n → ∞, with ρ and x fixed yields the
asymptotic estimate‡

f(x|y) ≈ n

y
(1− x/y)n ≈ e−x/ρ

ρ
. (2.3)

This estimate holds irrespectively of whether ρ is smaller or larger than 〈X〉 = c1. In
other words, the system adjusts itself in such a way that the conditional distribution
f(x|y) is still given by the ‘bare’ distribution, fX(x), with only a change of the
parameter from c1 to ρ ≶ c1.

We now turn to the large deviation estimate of fn(y). We set, as above, y = nρ
in the expression (2.1) of fn(y) and take the limit n→∞. This yields

fn(y) ≈ en(1−ρ/c1+ln ρ/c1)

√
2πn ρ

, (2.4)

which reproduces the exact distribution (2.1) up to the replacement of Γ(n) by its
Stirling approximation. With exponential accuracy we can write

fn(y) ∼ e−nI(ρ),

where the large deviation function,

−I(ρ) = 1− ρ

c1
+ ln

ρ

c1
, (2.5)

is defined for any value of the density ρ and is minimal and vanishes at ρ = c1.
Using (2.5) yields an accurate estimate of f(x|y) for all values of x. In particular,

(2.3) is recovered in the same limit as above, setting y = nρ and letting n→∞, for ρ
and x fixed.

‡ The symbol ≈ stands for asymptotic equivalence. The symbol ∼ stands either for ‘of the order of’,
or for ‘with exponential accuracy’.
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Anticipating on the sequel (compare to (6.3)), the rightmost expression in (2.3)
can be recast as

f(x|y) ≈ e−sρxfX(x)∫∞
0

dx e−sρxfX(x)
, (2.6)

where

sρ =
1

ρ
− 1

c1

can be positive, negative or zero. The denominator in (2.6) ensures normalisation. If
we use (2.6) to compute the density ρ by (1.2), we find a relation between sρ and ρ,

ρ ≈ 〈Xe−sρX〉
〈e−sρX〉

. (2.7)

As shown later, (2.7) is the saddle-point equation for the inverse Laplace representation
of fn(y).

To conclude, there is no condensation in the present case. The system is always
in a fluid phase where, irrespectively of its sign, the difference ∆ is evenly distributed
over all summands.

3. Laplace space and singularities

In what follows the asymptotic analysis of the distribution fn(y) of the sum Sn is
performed in Laplace space. The Laplace transform of fn(y) with respect to y is

f̂n(s) = (f̂X(s))n,

where f̂X(s) ≡ 〈e−sX〉, hence, by inversion,

fn(y) =

∫
C

ds

2πi
esy(f̂X(s))n, (3.1)

where C is a Bromwich contour located on the right of the origin. The analysis of
the distribution of the sum Sn therefore relies upon the analysis of the singularities
of f̂X(s) in the complex s−plane. For the power-law distribution (1.3) the Laplace

transform f̂X(s) has a cut extending along the negative real axis. When n is large

(f̂X(s))n is dominated by f̂X(s) ≈ 1, i.e., s small. The analytical structure of the

Laplace transform f̂X(s) in the vicinity of the origin will therefore play a crucial role
in the analysis of the distribution of Sn.

For a density fX(x) with a power-law tail (1.3) the expansion of f̂X(s) for s→ 0,
can be decomposed into a regular and a singular part

f̂reg(s) = 1− sc1 +
s2

2
〈X2〉+ · · · , (3.2)

f̂sing(s) = asθ + · · · , (3.3)

where the parameter a is related to the tail parameter c by [24]

a = Γ(−θ) c. (3.4)

The parameter a is negative if 0 < θ < 1, positive if 1 < θ < 2, and so on. For instance,
Γ(−1/2) = −2

√
π, Γ(−3/2) = 4

√
π/3, Γ(−5/2) = −8

√
π/15. The number of non-zero

moments in the expansion of the regular part depends on the value of θ. For 1 < θ < 2
the first moment is defined, for 2 < θ < 3 the second moment is also defined, and so
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on. The expansion of the generating function of cumulants K(s) = ln f̂X(s) follows
from (3.2) and (3.3)

K(s) = −sc1 +
s2

2
c2 − · · ·+ asθ + · · · , (3.5)

where

c2 ≡ VarX,

denotes the second cumulant. The first dots stand for higher-order regular terms
(s3, . . .) and the second dots stand for higher-order singular terms (sθ+1, . . .).

4. Sum of iid positive random variables with a power-law tail

We now focus on the case where the density fX(x) has a power-law tail (1.3) with
exponent θ. We will investigate successively the bulk of the distribution of Sn
(generalised central limit theorem), then its left and right tails.

4.1. Generalised central limit theorem

Reminder. We start with a reminder of well-known results on the generalised central
limit theorem. By completeness we consider also the case where θ < 1, though it is
not relevant for the present study since the first moment 〈X〉 = c1 is infinite.

The generalised central limit theorem [25] states that, for iid random variables
with density (1.3), there exists two positive sequences an and bn such that, when
n→∞, the centered and scaled sum

Un =
Sn − bn
an

converges (in distribution) to a stable law with index α, where

α =

{
θ if θ < 2,

2 if θ > 2,
(4.1)

and asymmetry parameter β = 1. Indeed, in the general case of a distribution fX(x)
with right and left power-law tails c±/|x|1+θ (x→ ±∞), the asymmetry parameter β
is, by definition, the ratio (c+− c−)/(c+ + c−). In the present case of positive random
variables the parameter c− = 0, and β is thus equal to unity. We denote c+ by c, as
in (1.3). If 0 < α < 2, this stable law also depends on the tail parameter c. If α = 2
the stable law is a Gaussian, the expression of which neither contains the asymmetry
parameter β nor the tail parameter c.

The scale parameter an is equal to n1/α, where α is given by (4.1), the centering
parameter bn is equal to nc1 when the mean is finite (θ > 1), and to zero otherwise
(0 < θ < 1). Thus, for θ > 2 (α = 2), the usual central limit theorem is recovered,

Prob(u1 ≤ Un ≤ u2) −→
n→∞

1√
2πc2

∫ u2

u1

du e−u
2/2c2 , (4.2)

while for 0 < θ < 2 (α = θ), the generalised central limit theorem reads

Prob(u1 ≤ Un ≤ u2) −→
n→∞

∫ u2

u1

duLα,c(u),
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where Lα,c(u) is the density of the stable law of index α, asymmetry parameter β = 1
and tail parameter c. To summarise, the (generalised) central limit theorem gives the
universal behaviour of the distribution of the sum Sn in the bulk, namely

fn(y) ≈ 1

n1/2
G

(
y − nc1
n1/2

)
, (4.3)

if θ > 2 (α = 2), where G(u) is the Gaussian defined in (4.2),

fn(y) ≈ 1

n1/θ
Lθ,c

(
y − nc1
n1/θ

)
, (4.4)

if 1 < θ < 2 (α = θ), and

fn(y) ≈ 1

n1/θ
Lθ,c

( y

n1/θ

)
, (4.5)

if 0 < θ < 1 (α = θ).

Examples. For instance, for α = 1/2, this distribution, the so-called Lévy law of
index 1/2, is explicit and reads

L1/2,c(u) =
c e−πc

2/u

u3/2
, (u > 0), (4.6)

L̂1/2,c(s) = e−2c
√
πs. (4.7)

Another example, analysed in detail later, is the stable law with index α = 3/2, which
is explicitly given in terms of the Airy function (see (5.5)). More generally the Laplace
transform of any stable law with index 0 < α < 2 (α 6= 1) and asymmetry parameter
β = 1 reads

L̂α,c(s) = eas
α

, (4.8)

where the parameter a is defined in (3.4). Thus in direct space

Lα,c(u) =

∫
C

ds

2πi
esu+asα , (4.9)

where C is a Bromwich contour located on the right of the origin. For 0 < α < 1 the
density of the stable law is only defined for u > 0, while for 1 < α < 2 the support of
the density is the whole real axis, implying that its Laplace transform is bilateral.

Short proof of the generalised central limit theorem. We start with the case 1 < θ < 2.
The generating function of cumulants K(s) is, for small s, keeping the leading terms,

K(s) = ln f̂X(s) ≈ −sc1 + asθ, (4.10)

so, in this regime, the estimate of (3.1) is

fn(y) ≈
∫
C

ds

2πi
es(y−nc1)+nasθ . (4.11)

Setting

y − nc1 = un1/θ, s = t n−1/θ, (4.12)

yields (4.4), using (4.9). The regime considered here thus corresponds to ρ→ c1. We
proceed likewise for θ > 2. Keeping the leading terms in the expansion of K(s), we
obtain

fn(y) ≈
∫
C

ds

2πi
es(y−nc1)+nc2s

2/2. (4.13)
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We now set

y − nc1 = u
√
n, s = t/

√
n, (4.14)

which leads to the usual central limit theorem (4.3). The third case (4.5) can be
proven likewise.

Asymptotic behaviours of stable laws. In both cases (i.e., if either 0 < α < 1 or
1 < α < 2) Lα,c(u) has the same right tail (1.3) as the initial distribution fX(x),

Lα,c(u) ≈
u→∞

c

u1+α
, (0 < α < 2), (4.15)

as can be seen by linearising the integrand of (4.9) with respect to sα, and folding the
contour around the negative real axis (see for details in section 4.3 where the same
reasoning is used).

The asymptotic behaviour of the stable law on the left can be obtained by the
saddle-point method. We have

Lα,c(u) ≈
u→0

B

uν
e−A/u

µ

, (0 < α < 1), (4.16)

Lα,c(u) ≈
u→−∞

B|u|νe−A|u|
µ

, (1 < α < 2), (4.17)

with exponents

µ =
α

|1− α|
, ν =

2− α
2|1− α|

,

and where the two positive constants A and B read

A =
|1− α|
α

(α|a|)1/(1−α)
, B =

(α|a|)1/(2(1−α))√
2π|1− α|

.

For example, if α = 1/2, the asymptotic estimate (4.16) reproduces identically the
whole law (4.6). For α = 3/2 we obtain, using (3.4),

L3/2,c(u) ≈
u→−∞

√
|u|

2πc
e−|u|

3/(12πc2), (4.18)

a result related to (5.6) below.

Away from the bulk. The generalised central limit theorem does not predict the
behaviour of the distribution of the sum Sn in the tails. We now investigate the
behaviour of fn(y) away from the bulk, that is, when the difference |∆| = |y − nc1| is
extensive, i.e., of order n, (while in the regimes (4.12 and (4.14) it was subextensive),
first to the left (y < nc1), then to the right (y > nc1), restricting the study to the case
θ > 1, such that c1 is finite.
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4.2. Left tail: large deviations

The left tail of fn(y) corresponds to those rare events where ρ < c1, hence ∆ large
and negative. In this regime, which is far away from the regime of validity of the
generalised central limit theorem, the large deviation estimate of the density fn(y) is
non universal and depends on the details of the distribution fX(x). We first present
the general framework for the computation of the large deviation function I(ρ) (4.22),
valid for any θ > 1. There is no explicit expression of this function in general for
distribution of the type (1.3). We shall later find an explicit expression of this large
deviation function for the distribution (5.1) with tail index θ = 3/2, valid in all regimes
(see section 5). For the time being, we will content ourselves with the expressions
(4.26) and (4.27) of the large deviation function in the scaling regime where ρ is close
to c1, for a general distribution (1.3). Equation (4.26) restores the generalised central
limit theorem in the regime (4.17). Equation (4.27) restores the usual central limit
theorem.

General framework. Let us come back on (3.1) that we recast as

fn(y) =

∫
C

ds

2πi
esy+nK(s) =

∫
C

ds

2πi
e−nI(ρ,s), (4.19)

with

−I(ρ, s) = sρ+K(s). (4.20)

If n is large it is natural to perform a saddle-point analysis of (4.19). The saddle-point
equation reads

dI(ρ, s)

ds

∣∣∣∣
sρ

= 0,

that is to say§

−K ′(sρ) =
〈Xe−sρX〉
〈e−sρX〉

= ρ. (4.21)

The position of the saddle point sρ on the real axis depends on the value of ρ = y/n.
This saddle point only exists if ρ < c1. Indeed, if ρ = c1, the saddle point sρ = 0 hits
the head of the cut of K(s) (see (3.5)), hence the saddle-point equation (4.21) cannot
be satisfied beyond ρ = c1. Defining the large deviation function as

−I(ρ) ≡ −I(ρ, sρ) = sρρ+K(sρ), (4.22)

we finally obtain

fn(y) ≈
n→∞

e−nI(ρ)√
2πnK ′′(sρ)

, (ρ < c1), (4.23)

with

K ′′(s) =
〈X2e−sX〉
〈e−sX〉

−
( 〈Xe−sX〉
〈e−sX〉

)2

. (4.24)

§ The saddle-point equation (4.21) was anticipated in (2.7).
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Scaling regime. Determining the large deviation function in the scaling region ρ→ c1
implies expanding the expressions above for sρ → 0.
• We start with 1 < θ < 2. The saddle-point equation

−K ′(sρ) ≈ c1 − aθsθ−1
ρ = ρ,

yields

sρ ≈
(
c1 − ρ
aθ

)1/(θ−1)

, (4.25)

only defined if ρ < c1. We thus find, using (4.10), the expression of the large deviation
function in this regime,

I(ρ) ≈ θ − 1

θ(aθ)1/(θ−1)
(c1 − ρ)θ/(θ−1). (4.26)

The right side of this equation can be identified with A|u|µ/n in (4.17). Actually, in
this scaling regime, the full large deviation estimate (4.23) reduces to (4.4) with (4.17).
The left tail (4.17) can indeed be seen as the large deviation estimate of Lθ,c(u).

The special case of θ = 3/2 is treated in detail in section 5. The universal part
of the large deviation function (4.26) gives (5.7).
• For θ > 2 we have −K ′(sρ) ≈ c1 − c2sρ = ρ, hence sρ ≈ (c1 − ρ)/c2, yielding the
quadratic form

I(ρ) ≈ (c1 − ρ)2

2c2
. (4.27)

Thus (4.23), with K ′′(sρ) ≈ c2, gives the central limit theorem (4.3) back.

Remark. The two equations (4.22) and (4.23) provide a parametric representation of
I(ρ), i.e., of K ′(sρ)sρ − K(sρ) against −K ′(sρ) (which is ρ), which can be used for
numerical purposes.

4.3. Right tail: ‘deep in the condensed phase’

Again the regime considered here, where ρ > c1, is different from that prevailing for
the central limit theorem. Recall that, for any value of θ > 1, using (3.5),

fn(y) =

∫
C

ds

2πi
es(y−nc1)+···+nasθ+···. (4.28)

Now ∆ = n(ρ−c1) is of order n, so s ∼ 1/n, implying that nsθ ∼ n1−θ is subextensive.
Therefore the two terms s(y − nc1) and nasθ are no longer balanced as in (4.11) and
(4.12). The contour C is deformed to encircle the real negative axis. The leading
contribution to fn(y) comes from linearising with respect to the leading singular term:

fn(y) ≈ na
∫

C

ds

2πi
es(y−nc1) sθ.

Using the Hankel representation of the reciprocal Gamma function

1

Γ(θ)
=

∫
C

ds

2πi
ess−θ,

we obtain

fn(y) ≈ na

Γ(−θ) (y − nc1)1+θ
.



Condensation for random variables conditioned by the value of their sum 12

Finally, using (3.4), we have, for any value of θ > 1, if ρ > c1, thence for y− nc1 ∼ n,

fn(y) ≈ nc

(y − nc1)1+θ
, (4.29)

where c is the tail coefficient of fX(x). Similar considerations can be found in [12, 11].
This result matches with the asymptotic estimate (4.15) for y − nc1 = n1/θu (u

large), if 1 < θ < 2 (see (4.4)). This prediction holds further away in the tail, where
the excess difference is extensive. Furthermore (4.29) also holds for θ > 2. In other
words, while at the scale y − nc1 ∼ n1/2 the tail is Gaussian, at the scale y − nc1 ∼ n
it is given by (4.29). Equating (4.3) and (4.29) shows that the matching between the
two behaviours occurs for

y − nc1 ∼
√

(θ − 2)c2
√
n lnn. (4.30)

See [17] for related considerations.
As a last comment, let us remark that the contributions coming from the next

terms (nasθ)p in the expansion of enas
θ

in (4.28) are subleading by successive factors
n−(p−1)(θ−1) with respect to the contribution of the first term nasθ. These subleading
probabilities will be recovered otherwise in section 7.

5. The example of a distribution with power-law tail exponent θ = 3/2

For the distribution

fX(x) =
2√
π

e−1/x

x5/2
, (x ≥ 0), (5.1)

such that 〈X〉 ≡ c1 = 2, the exact distribution of the sum Sn is explicit and reads [19]

fn(y) =
n e−n

2/y

√
πy(n+3)/2

[
Hn

(
y + 2n

2
√
y

)
−√yHn−1

(
y + 2n

2
√
y

)]
, (5.2)

where the Hn are Hermite polynomials. This exact result will provide an illustration of
the statements made in the previous section as well as a benchmark for the asymptotic
estimates given there. In Laplace space

f̂X(s) = (1 + 2
√
s)e−2

√
s,

as can be found by taking the derivative of (4.6) and (4.7) with respect to the tail
parameter c. So, for small s,

f̂X(s) ≈ 1− 2s+
8

3
s3/2, (5.3)

which is the beginning of the expansion 1− sc1 + asθ + · · ·, with c1 = 2 and a = 8/3
obtained from (3.4) for c = 2/

√
π and θ = 3/2. The generating function of cumulants

is thus equal to

K(s) = ln f̂X(s) ≈ −2s+
8

3
s3/2.
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Figure 2. Density fn(y) of the sum Sn of n = 500 random variables with
density (5.1) (θ = 3/2), against y. We compare the exact density (5.2), the
prediction (5.4) of the generalised central limit theorem (clt), the exact
large deviation estimate (5.11) and the estimate (5.6) of this expression in
the scaling regime ρ . c1 = 2, which is also the left tail estimate of (5.4).
(See the text for comments and the short summary below.)

Central limit theorem. The generalised central limit theorem states that the bulk
(i.e., for ρ ≈ 2) of the distribution of the sum Sn is given by (4.4),

fn(y) ≈ 1

n2/3
L3/2,c

(
y − 2n

n2/3

)
, (5.4)

where the stable law L3/2,c(u) is explicitly known in terms of the Airy function and
its derivative [26]. With c = 2/

√
π it reads

L3/2,c(u) = −1

2
exp

(
u3

96

)[
u

4
Ai

(
u2

16

)
+ Ai′

(
u2

16

)]
, (5.5)

with Laplace transform

L̂3/2,c(s) = e
8
3 s

3/2

.
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Figure 3. Same as figure 2 in linear-log. (See the text for comments.)

Left tail of (5.4). For u = (y− 2n)/n2/3 large negative, the behaviour of L3/2,c(u) is
given by (4.18), thus, in this regime, (5.4) yields

fn(y) ≈
√

2− y/n
4
√
nπ

e−n(2−y/n)3/48. (5.6)

Comparing (5.6) to the general expression (4.23) yields the large deviation function
I(ρ) in the scaling regime ρ . 2,

I(ρ) ≈ 1

48
(2− ρ)3. (5.7)

This expression, which is universal, is a particular form of (4.26), with θ = 3/2 and
c1 = 2.

The large deviation function. Following the scheme given in section 4.2 for the
determination of the full large deviation function yields the saddle-point equation
(4.21)

−K ′(sρ) =
2

1 + 2
√
sρ

= ρ, (5.8)

hence
√
sρ =

1

ρ
− 1

2
, (5.9)
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confirming that the saddle point only exists for ρ < c1 = 2. For ρ = c1, the saddle-
point value sρ vanishes. We thus find the expression of the large deviation function
(as defined in (4.22)), which reads

−I(ρ) ≡ sρρ+K(sρ) =
ρ

4
− 1

ρ
+ ln

2

ρ
, (ρ < 2), (5.10)

and K ′′(sρ) = ρ3/(2− ρ). Using (4.23), we finally obtain

fn(y) ≈
√

2− ρ√
2πnρ3

exp

[
n

(
ρ

4
− 1

ρ
+ ln

2

ρ

)]
(5.11)

=
n(2n)ne−n

2/y+y/4
√

2− y/n√
2πyn+3/2

. (5.12)

Two remarks are in order. Firstly, for ρ → c1, i.e., sρ → 0, K ′′(sρ) → ∞. The
reason is that, according to (4.24), K ′′(0) = VarX, which is infinite in the present
case. Hence one does not expect good accuracy of this prediction when approaching
c1. Secondly, the expansion of (5.10) for ρ . 2 yields (5.7) as it should. In this regime
the large deviation estimate (5.11) takes the universal form (5.6).

Right tail of fn(y). When the difference ∆ = y − 2n is positive and extensive, the
distribution of Sn is given by (4.29), with c = 2/

√
π, that is

fn(y) ≈ 2n√
π(y − 2n)5/2

. (5.13)

Remark: asymptotics of fn(y) in the tails. The results (5.11) (left tail) and (5.13)
(right tail) can also be obtained by a direct asymptotic analysis of the exact expression
(5.2), as we now show. In (5.2) the argument of the Hermite polynomial,

z =
y + 2n

2
√
y
,

defines a function z(y) which is minimum at y = 2n, where z =
√

2n. For y smaller
or greater than 2n, z is always larger than

√
2n.‖ We therefore need an asymptotic

estimate of Hn (z) for z >
√

2n. This is obtained by a saddle-point analysis of the
generating function of Hermite polynomials yielding (see Appendix B)

Hn(z) ≈ e(z2−zV−n)/2(z + V )n
√

(1 + z/V )/2, V =
√
z2 − 2n. (5.14)

Using this estimate in (5.2), then setting y = nρ with ρ < 2, and expanding for n→∞
yields (5.11). Likewise setting y = nρ with ρ > 2, then expanding for n → ∞, yields
(5.13).

Numerical comparisons of exact predictions and asymptotic estimates. In figures 2
and 3 we compare the analytical prediction (5.2) for the distribution of the sum of
n = 500 random variables with density (5.1) and tail index θ = 3/2, with

? the prediction (5.4) of the generalised central limit theorem,

? the full large deviation estimate (5.11),

‖ In the language of a quantum harmonic oscillator, this means that the region explored in the
variable z when y varies from zero to infinity is the forbidden region where the Hermite polynomials
do not oscillate.
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? and the estimate (5.6) of the latter in the scaling regime ρ . c1 = 2; equation (5.6)
is equivalently the estimate for the left tail of the scaling form (5.4).

These figures illustrate the following facts:

(i) The right tail of the exact expression (5.2) is in excellent numerical agreement
with the right tail of the scaling form (5.4). (See the comments below (4.29).)

(ii) The left tail of the exact expression (5.2) is in excellent numerical agreement with
the large deviation estimate (5.11).

(iii) The left tail of the central limit expression (5.4) is in excellent numerical
agreement with its estimate (5.6).

Figure 4 depicts the centered and scaled exact result (5.2) for n = 125, 250, 500,
together with the stable law (5.5), illustrating the slow convergence of the former to
the latter.

A short summary. The main equations obtained in this section and in section 4 can
be summarised as follows,

exact (5.2) − −
clt (full) (5.4) (4.4) (4.3)
ld (full) (5.11) − −

deep (5.13) (4.29) (4.29){
clt (tail)
ld (scaling)

(5.6) (4.23), (4.26) (4.23), (4.27)

These equations are identified by short names or acronyms in the left column (clt:
central limit theorem, ld: large deviation, deep: deep in the condensed phase). The
second column refers to results concerning the distribution (5.1), the third column
refers to results concerning the generic case (1.3), with 1 < θ < 2, and the rightest
column refers to the case θ > 2.

In the generic case (1.3) no exact expression for the distribution fn(y), as in (5.2),
is known. Neither is there in general an exact expression of the full large deviation
estimate, as in (5.11). The (generalised) central limit theorem reproduces correctly
the behaviour of the left tail of fn(y) in the universal scaling region only, i.e., for
y close to nc1. For ∆ negative and extensive, only the full large deviation estimate
is faithful, which, as said above, is not explicitly known in general. The right tail
expression (4.29) is valid for any θ > 1.

Comparison with the case of a discrete distribution. Finally, to complete this study,
figure A1 depicts a comparison between the exact density fn(y) (5.2) and its discrete
counterpart, the partition function ZL,N of the zero range process with hopping rate
(A.15), where b = 5/2. The partition function is obtained recursively using (A.14).
The curves are centered and scaled, in order to highlight the universality of the bulk
in the continuum limit. The parameter r is the ratio of the tail parameters of the two
functions, namely c = 2/

√
π for the first one and c = (b − 1)Γ(b) = 9

√
π/8 for the

second one (see (A.16) or (A.17)). The lower plot demonstrates the non universality
of the large deviations in the left tail.
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Figure 4. Comparison between the stable law (5.5) and the exact result
(5.2) centered and scaled for n = 125, 250, 500.

6. Marginal conditional density and condensation

We are now in position to compute the marginal conditional distribution (1.1),
repeated here for convenience,

f(x|y) = fX(x)
fn−1(y − x)

fn(y)
, (6.1)

where the density fX(x) is given by (1.3). This conditional density is a function of x,
while y plays the role of a parameter. We thus have to study separately f(x|y) for the
different regimes of y/n = ρ. The study hereafter parallels that made in [19].

Subcritical regime (ρ < c1 ⇔ ∆ < 0). We start again from (3.1). Thus

fn−1(y − x) =

∫
C

ds

2πi
esy+nK(s)−sx−K(s).

Let us assume that x is of order 1. So, at the saddle point, for n large, we have, within
exponential accuracy (see section 4.2),

fn−1(y − x) ∼ e−nI(ρ)−sρx−K(sρ), (6.2)
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where sρ satisfies the equation −K ′(sρ) = ρ. This yields, for any θ > 1, the handy
expression

f(x|y) ≈
n→∞

fX(x)e−sρx

f̂X(sρ)
, (6.3)

which is well normalised and has its first moment equal to ρ. Its physical interpretation
is appealing: there is ‘compression’ of the Xi, since each one of them bears a part of
the negative difference ∆. This accounts for the fluid phase. When x becomes large
(6.2) and (6.3) are no longer correct. It is necessary to use the large deviation estimate
(4.23) in order to obtain an accurate expression of the marginal density (6.1).

This study can be illustrated on the example of fX(x) given by (5.1) (θ = 3/2).
Equation (6.3) yields (using the accurate expression (5.9) for sρ)

f(x|y) ≈
n→∞

ρ√
πx5/2

exp

(
−
[

(2− ρ)x+ 2ρ

2ρ
√
x

]2
)
. (6.4)

This expression is in excellent numerical agreement with the exact prediction for f(x|y)
derived from (5.2) if x is of order 1, as soon as n is large enough. In contrast, the
estimate obtained for f(x|y) using the scaling estimate (4.25) for sρ compares well
to the true distribution only when ρ is not too far away from c1. Finally, if x is
no longer of order 1, the large deviation estimate (5.12) inserted into (6.1) provides
an accurate estimate of the marginal distribution f(x|y). Starting from this very
expression, setting y = nρ and letting n→∞ restores (6.4), since x becomes � y in
this limit.

Critical regime (ρ = c1 ⇔ ∆ = 0). Note that if ρ = c1 = 2, then sρ = 0 and both
asymptotic estimates (6.3) and (6.4) reduce to fX(x). These estimates are obtained
in the limit n→∞ (in order for the saddle-point method to be valid). Therefore the
reduction of f(x|y) to fX(x) only holds in this limit. Otherwise there are finite-size
corrections given by the expressions (6.5) and (6.6) below, where the estimate of fn(y)
in the bulk is used. For 1 < θ < 2,

f(x|y) ≈ fX(x)
Lθ,c((c1 − x)/n1/θ)

Lθ,c(0)
, (6.5)

and for θ > 2,

f(x|y) ≈ fX(x)
G((c1 − x)/n1/2)

G(0)
= fX(x)e−(x−c1)2/2nc2 . (6.6)

Again, if n → ∞, one recovers the fact that f(x|y) → fX(x). For x of order n, one
should use the large deviation estimate (4.23) for fn−1(y − x) (e.g. (5.11) for fX(x)
given by (5.1), with θ = 3/2).

Supercritical regime (ρ > c1 ⇔ ∆ > 0). In this regime fn(y) is always given by its
right-tail estimate (4.29)

fn(y) ≈ nc

∆1+θ
. (6.7)

The discussion therefore only focusses on fn−1(y − x), where x should be compared
to ∆, which is of order n. Beyond the obvious regime where x is of order unity, hence
f(x|y) ≈ fX(x), there are three other regimes to consider, corresponding respectively
to the bulk, the right-tail and the large deviations of fn−1(y − x).
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(a) Condensate. If x ≈ ∆ (that is ∆ − x ∼ n1/α), the ratio of fX(x) ≈ c/∆1+θ to
fn(y) given by (6.7) yields one piece of f(x|y)

fX(x)

fn(y)
≈ c/∆1/θ

nc/∆1/θ
=

1

n
.

The other piece, fn−1(y − x), is given by its bulk since y − x ≈ nc1. Hence, if
1 < θ < 2,

f(x|y)|cond ≈
1

n
fn−1(y − x) ≈ 1

n

1

n1/θ
Lθ,c

(
∆− x
n1/θ

)
, (6.8)

and, if θ > 2,

f(x|y)|cond ≈
1

n
fn−1(y − x) ≈ 1

n

1

n1/2
G

(
∆− x
n1/2

)
. (6.9)

These expressions describe the bulk of the fluctuating condensate which manifests
itself by a hump shape of the marginal f(x|y) for x ≈ ∆ on figure 5. For any
θ > 1 we have, from (6.8) or (6.9),∫
x∈hump

dx f(x|y)|cond ≈
1

n
, (6.10)

which demonstrates that the excess difference ∆ is borne by only one summand.
(See also the discussion in section 7.)

(b) Dip. The range of values of x such that x� 1, ∆− x� 1, interpolates between
the critical part of f(x|y), for x or order 1, and the condensate, for x close to ∆.
It corresponds to the dip region on figure 5. In this region, fn−1(y − x) is given
by its right tail (4.29) or (6.7). So, for any θ > 1,

f(x|y)|dip ≈ c
[

∆

x(∆− x)

]1+θ

≈ fX(x)fX(∆− x)

fX(∆)
. (6.11)

The interpretation of this result is that in the dip region typical configurations
where one summand takes the value x are such that the remaining ∆ − x
excess difference is borne by a single other summand. The dip region is
therefore dominated by configurations where the excess difference is shared by
two summands [12].
The weight of these configurations can be estimated as follows. Let ξ be some
positive number less than 1/2. Then∫ (1−ξ)∆

ξ∆

dx f(x|y)|dip =

∫ (1−ξ)∆

ξ∆

dx
fX(x)fX(∆− x)

fX(∆)
∼ ∆−θ ∼ n−θ. (6.12)

The relative weights of the dip and condensate regions is therefore of order
n−(θ−1), i.e., the weight of events where the condensate is broken in two pieces
of order n is subleading with respect to events with a single big jump. This will
be restated in section 7. The reduction factor n−(θ−1) is the same as that met in
the discussion at the end of section 4.
An illustration of this phenomenon is given in figure 1. The overwhelming
contribution to the statistics of trajectories comes from those exhibiting a single
big jump of order n, approximately equal to ∆. Some rare trajectories, as the
green one, exhibit two big jumps instead of a single one, both of order n. These
trajectories contribute to (6.11).
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(c) Large deviations. Finally, if x > ∆, one should use the large deviation estimate
for fn−1(y − x) (e.g. (5.11) for fX(x) given by (5.1)).

In summary, the contribution of the condensate to the total weight is equal to
1/n. The contribution of the dip region is subleading by a power-law factor. The
contribution of the large deviations is exponentially subleading. The main contribution
comes from the region where x is of order unity where f(x|y) ≈ fX(x).

Quantitative comparison. Figure 5 summarises this study. It depicts the marginal
distribution f(x|y), with fX(x) given by (5.1), for n = 500, y = 4nc1, ∆ = y − nc1 =
3000 (c1 = 2). The curves named condensate, dip and large deviations correspond
respectively to the cases (a), (b) and (c) above. The curve named Fréchet represents
f (2)(x)/n as defined in (8.1) and will be commented on in section 8.

0 1000 2000 3000x
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ln
 f(
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large deviations
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Figure 5. Linear-log plot of the marginal distribution f(x|y) in the
supercritical regime for fX(x) given by (5.1) (θ = 3/2). Here n = 500,
ρ = y/n = 4c1 = 8, hence ∆ ≡ y − nc1 = 3000. The exact marginal
distribution f(x|y) is reproduced by the union of three pieces, respectively
the condensate, the dip and the large deviation contributions. The curve
named Fréchet represents f (2)(x|y)/n as defined in (8.1) (see section 8).
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7. Unicity of the condensate

The analysis of the marginal distribution f(x|y) made in section 6 showed that the
distribution f(x|y) has a hump shape for x ≈ ∆, the weight of which is equal to 1/n
according to (6.10). This means that the largest summand is the only one to ‘bear’
the excess difference ∆ and therefore that asymptotically the condensate is unique.

However, as discussed below (6.11), there exist configurations where the excess
difference is shared by two summands (i.e., with now a leader and a subleader instead
of a unique condensate) and whose weight is subleading by a factor of order n−(θ−1)

with respect to configurations with a single big jump. Such configurations are those
which dominate in the dip region.

We present hereafter another argument in favour of the unicity of the condensate
which is independent of that recalled above, even if it is akin to it. The aim is to show
that the event with a unique Xi bearing all the excess difference ∆ is much more likely
than the event corresponding to two summands Xi sharing it. This issue has been
previously discussed in [11] for discrete variables, in the context of the statics of the
zero-range process. Uniqueness of the condensate has also been established rigorously
in the discrete and continuous cases in [15] and [16] (see also [10]).

The probability associated to the event where X1 bears the excess difference is

Prob(∆ < X1 < ∆ + dx|Sn = y) = f(∆|y)dx, (7.1)

with

f(∆|y) = fX(∆)
fn−1(y −∆)

fn(y)
, (7.2)

and where y−∆ = nc1. This probability has to be multiplied by a factor n since any
of the Xi can be chosen to bear the excess difference.

The probability corresponding to the event where X1 and X2 are both large and
share the excess difference ∆ reads

Prob(∆ < X1 +X2 < ∆ + dx|Sn = y) =

(∫ (1−ξ)∆

ξ∆

dx′f (x′,∆− x′|y)

)
dx, (7.3)

with

f (x,∆− x|y) = fX(x)fX(∆− x)
fn−2(y −∆)

fn(y)
, (7.4)

and where ξ is some positive number less than 1/2, as in (6.12). The probability (7.3)
has to be multiplied by the binomial coefficient

(
n
2

)
which counts the possible choices

of two Xi amongst n. The ratio fn−1(nc1)/fn−2(nc1) is asymptotically equal to one,
so remains to estimate

nfX(∆) ∼ n∆−1−θ ∼ n−(θ−1)−1, (7.5)

and (
n

2

)∫ (1−ξ)∆

ξ∆

dxfX(x)fX(∆− x) ∼ n2∆−1−2θ ∼ n−2(θ−1)−1. (7.6)

The ratio of these two estimates scales as nθ−1 � 1 as soon as θ > 1, which is precisely
the condition for the existence of a condensate. This result can be generalised to the
case of p variables sharing the excess difference ∆. We now have to estimate(
n

p

)∫
dx1 . . . dxp f(x1) . . . f(xp)δ

(∑
i

xi −∆
)
∼ np ∆p−1

∆p(1+θ)
∼ n−p(θ−1)−1.

Thus the ratio of (7.5) to the latter yields n(p−1)(θ−1).
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Remarks.

(i) The factor nθ−1 is precisely that found at the end of section 4 by a different line
of reasoning.

(ii) Performing the integral in (7.6) from 0 to ∆ would yield f2(∆) which scales as
∆−1−θ instead of ∆−1−2θ as in (7.6). Multiplied by

(
n
2

)
this yields n1−θ, which

dominates (7.5) by a factor n, as it should.

(iii) As a last remark, let us note that the ratio of (7.2) to (7.4) gives

f(x,∆− x|y)

f(∆|y)
≈ fX(x)fX(∆− x)

fX(∆)
,

which is the expression (6.11) for f(x|y)|dip.

8. Largest summands

Investigating the statistics of extremes for the problem at hand is a natural question
since the condensate is the largest summand. A number of works have been devoted
to this question [8, 13, 15, 20, 21]. The discussion hereafter concerns the case where
fX(x) has a power-law tail (1.3).

In [8] the greatest summand is proven to scale as n in the supercritical regime, as
n1/θ in the critical regime and as lnn in the subcritical regime. In [13] it is shown that
if the largest summand is removed, the measure on the remaining summands converges
to the product measure with density ρ = c1, when the number of summands n is fixed
and the value of the sum y increases to infinity. This means that the remaining
background is critical, a feature which is apparent in figure 1, as already mentioned.

Let us denote the k−th largest summand by X(k) (k = 1, . . . , n). The densities
of these ranked summands, denoted by f (k)(x|y), sum up to

n∑
k=1

f (k)(x|y) = nf(x|y).

The distribution of the largest summand X(1) is investigated in [20, 15, 21]. The result
is that, if y = nρ, ρ > c1, n→∞, the rescaled variable

Zn = n−1/α(∆−X(1))

converges to a stable law of index α, with α defined in (4.1) (i.e., α = θ if θ < 2
or α = 2 if θ > 2). This means that, asymptotically, the density of X(1) coincides,
up to a factor n, with the estimates of the marginal density in the condensate region
(∆− x ∼ n1/α), that is with (6.8) or (6.9) according to the value of θ,

f (1)(x|y) ≈ n f(x|y)|cond , (∆− x ∼ n1/α).

This result conforms with the intuition that, in the condensate region, the only
contribution to the marginal f(x|y) comes from the largest summand.

One can already guess from the statements made in [8, 13] and recalled above
that the distribution of the second largest summand, X(2), should be asymptotically
Fréchet, and that the subsequent ones, X(k) (k ≥ 2), should be the order statistics of
n−1 iid random variables Xi with density fX(x) (i.e., before conditioning), which can
be summarised by saying that, in the supercritical regime, the dependency between
the summands Xi introduced by the conditioning goes asymptotically in the big jump
X(1). Reference [21] indeed states that the rescaled variables

W (k)
n = n−1/θX(k), (k ≥ 2),
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have asymptotic densities

f
(k)
W (w) =

c

w1+θ
e−c/(θw

θ)

[
c/(θwθ)

]k−2

(k − 2)!
,

independently of the value of y. Hence, for k ≥ 2,

f (k)(x|y) ≈ 1

n1/θ
f

(k)
W

( x

n1/θ

)
=

nc

x1+θ
e−nc/(θx

θ)

[
nc/(θxθ)

]k−2

(k − 2)!
.

For instance the curve named Fréchet in figure 5 represents

1

n
f (2)(x|y) ≈ 2√

πx5/2
e−4n/(3

√
πx3/2). (8.1)

Since X(1) typically scales as n, while X(2), X(3), . . . typically scale as n1/θ, the
condensate is increasingly separated from the background as n increases, leaving space
to the dip region (x� 1, ∆− x� 1). We know from the analysis made in section 6
(see discussion following (6.11)) that this region is dominated by configurations where
the excess difference is shared by two summands, namely X(1) and X(2), so

f (1)(x|y) + f (2)(x|y) ≈ n f(x|y)|dip , (x� 1,∆− x� 1), (8.2)

and that the contributions of these events to nf(x|y) are of order n−(θ−1). To the
right of ∆/2 the predominant contribution to the sum on the right side of (8.2) comes
from f (1)(x|y), to the left it comes from f (2)(x|y). In this respect it is worth noting
that, right in the middle of the dip, i.e., for x = ∆/2, the following relations hold, if
1 < θ < 2,¶

f(x|y)|dip ≈ 41+θ c

∆1+θ
,

f(x|y)|cond ≈
1

n
f (1)(x|y) ≈ 1

n
f (2)(x|y)

≈ fX(x) ≈ 21+θ c

∆1+θ
,

where f(x|y)|cond is continued outside its region of validity (∆−x ∼ n1/θ). The ratio
between the two quantities on the left side of the equations is therefore a universal
number, only depending on the tail exponent θ. Up to adding a tail correction to
f (1)(x|y) the same results are equally valid for θ > 2.

Remark. The random variable Zn is scaled by n1/α, where α is defined in (4.1), while

the random variables W
(k)
n are scaled by n1/θ. In the first case α saturates at α = 2,

in the second case θ can take any value.+

9. Discussion

In this work we have revisited the statistics of iid random variables with a power-
law distribution (1.3) conditioned by the value of their sum. For large values of the
latter, a condensation transition occurs where the largest summand accommodates the
excess difference between the value of the sum and its mean. This simple scenario of

¶ The crossing of f(x|y)|cond and f (2)(x|y)/n at x = ∆/2 is visible on figure 5.
+ Compare to theorem 19.34 in [21] where the distinction between these two exponents is not made.
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condensation underlies a number of studies in statistical physics, usually formulated in
terms of discrete random variables such as, e.g., in random allocation and urn models,
or condensing zero-range processes at stationarity. The present study extends easily
to other subexponential distributions of the summands.

Much of the effort here has been devoted to presenting the subject in simple
terms, reproducing known results (especially from [19] and [12]) and adding some new
ones. In particular the comparison between asymptotic estimates and their finite-size
counterparts demonstrates the role of the contributions of the dip and large deviation
regimes. The contribution of the dip region is of crucial importance for the analysis
of the stationary dynamics of the condensate [12]. The conclusions given in [12] have
been confirmed by rigorous mathematical studies [27, 28, 29, 30].

To close, let us mention several related topics or generalisations of interest in
[31, 32, 33, 34].
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Appendix A. Discrete formalism

All the questions investigated so far with continuous random variables have a
transcription in the language of discrete random variables. The resulting framework
is that used in the description of equilibrium urn models in statistical mechanics or
in the analysis of the stationary state of zero range processes. We successively review
these three facets of the subject. Table A1 summarises the correspondences between
the discrete and continuum formalisms.

Appendix A.1. Discrete random variables conditioned by the value of their sum

Let N1, N2, . . . , NL be iid positive discrete random variables with distribution

πk = Prob(N1 = k), (A.1)

and average

〈N1〉 =
∑
k≥0

kπk = ρc. (A.2)

The joint distribution of these random variables reads

Prob(N1 = n1, . . . , NL = nL) = πn1
. . . πnL . (A.3)

Assume now that their sum, denoted by SL, is conditioned to be equal to N . Then
the joint distribution of {N1, N2, . . . , NL} and SL is

Prob(N1 = n1, . . . , NL = nL, SL = N) = πn1
. . . πnLδ

(∑
i

ni, N
)
. (A.4)

Summing this expression on n1, . . . , nL yields the distribution of SL, or partition
function Z̃L,N ,

Z̃L,N ≡ Prob(SL = N)

=
∑
{ni}

πn1
. . . πnLδ

(∑
i

ni, N
)
. (A.5)
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The conditional joint distribution of N1, N2, . . . , NL, given SL, is the ratio of (A.4) to
(A.5), that is

Prob(N1 = n1, . . . , NL = nL|SL = N) =
1

Z̃L,N
πn1

. . . πnLδ

(∑
i

ni, N

)
, (A.6)

from which the marginal conditional distribution of one of the Ni (taken conventionally
to be N1), denoted by fk, ensues by summation

fk = Prob(N1 = k|SL = N) = πk
Z̃L−1,N−k

Z̃L,N
. (A.7)

The conditional average is thus

〈N1|SL = N〉 =
∑
k≥0

kfk =
N

L
= ρ, (A.8)

by definition of the density ρ. Summing (A.7) on k leads to a recursion relation on
the Z̃L,N

Z̃L,N =
∑
k≥0

πkZ̃L−1,N−k. (A.9)

Table A1. Correspondences between the discrete formalism of Appendix A.1
and the continuum formalism used in the bulk of the paper.

Discrete r.v. Continuous r.v.
L n

N1, . . . , NL X1, . . . , Xn

Prob(Ni = k) = πk fX(x)
〈N1〉 = ρc 〈X〉 = c1

SL = N1 + · · ·+NL Sn = X1 + · · ·+Xn

N y
ρ = N/L ρ = y/n

Prob(SL = N) = Z̃L,N fn(y)
fk = Prob(N1 = k|SL = N) f(x|y)

Π(z) f̂X(s)

Z̃L,N ∼ e−LF(ρ) fn(y) ∼ e−nI(ρ)

Thermodynamic limit. In the thermodynamic limit the large deviation function (or
free energy) reads

F = − lim
L,N→∞

1

L
ln Z̃L,N ,

i.e., with exponential accuracy,

Z̃L,N = Prob(SL = N) ∼ e−LF(ρ=N/L).

The large deviation function can be computed by the saddle-point method. Casting
the integral representation of the Kronecker function

δ(m,n) =

∮
dz

2πizn+1
zm,
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Figure A1. Comparison between the exact density fn(y) (5.2), for n = 125,
and the partition function ZL,N of the ZRP with hopping rate (A.15) where
b = 5/2, for L = 125, obtained recursively using (A.14). The curves are
centered and scaled. The parameter r is the ratio of the tail parameters of
the two functions (see text at the end of section 5). The lower figure is a
linear-log plot of the upper one.

in (A.5) yields

Z̃L,N = Prob(SL = N) =

∮
dz

2πizN+1
Π(z)L, (A.10)
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where Π(z) is the generating function of the πk

Π(z) = 〈zN1〉 =
∑
k

zkπk.

The contour integral in (A.10) can be evaluated by the saddle-point method. The
saddle-point equation is

zρ Π′(zρ)

Π(zρ)
= ρ,

where the saddle-point value zρ depends on the density ρ through this equation. The
discussion of this equation is analogous to that given in the continuum formalism.

Appendix A.2. Equilibrium urn models

The framework described in the previous section is naturally realised by classical urn
models, defined as follows. Consider a finite connected graph, made of L sites (or
urns), on which N particles are distributed. The number of particles on site i is the

random variable Ni, with SL =
∑L
i=1Ni = N . A configuration of the system is defined

by the values {n1, . . . , nL}, taken by the random occupations N1, . . . , NL. The energy
of such a configuration is the sum of the individual energies at each site,

E({ni}) =

L∑
i=1

E(ni).

The associated unnormalised Boltzmann weight attached to site i is

pni = e−βE(ni).

The probability of the configuration {ni} is therefore given by the product form

Prob(N1 = n1, . . . , NL = nL|SL = N) =
1

ZL,N
pn1
· · · pnLδ

(∑
i

ni, N
)
, (A.11)

where

ZL,N =
∑
{ni}

pn1 · · · pnL δ
(∑

i

ni, N
)
, (A.12)

is the canonical partition function of this statistical mechanical system. The single-site
occupation probability is

fk = Prob(N1 = k|SL = N) = pk
ZL−1,N−k

ZL,N
, (A.13)

and the partition function obeys the recursion relation

ZL,N =
∑
k≥0

pkZL−1,N−k. (A.14)

In order to make the link between the results of this section and those of Appendix
A.1 one normalises the pk as

πk =
pk∑
k pk

,

whenever the denominator is finite, thus recovering the probabilities πk defined in
(A.1). So doing, (A.12) is proportional to (A.5) and there is identity between (A.11)
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and (A.6), (A.13) and (A.7) and (A.14) and (A.9). For instance the ‘balls-in-boxes’
model [1] has energy function

E(ni) = ln(ni + 1),

yielding

pk =
1

(1 + k)β
, πk =

1

ζ(β)

1

(1 + k)β
,

where
∑
k pk = ζ(β) is the Riemann zeta-function. This model is the discrete

counterpart of the case considered in the bulk of the paper where fX(x) has a power-
law tail (1.3). Here πk ∼ k−β , with β playing the role of 1 + θ.

Appendix A.3. Zero range process

Definition. The zero range process can be seen as a dynamical extension of the class
of static urn models discussed above. We again consider a finite connected graph,
made of L sites. At any time t a configuration of the system is specified by the
values taken by the occupation numbers Ni(t), now functions of time. The dynamics
of the system consists in transferring a particle from the departure site with label d,
containing Nd = k particles, to the arrival site with label a containing Na = l particles.
By definition of a ZRP, the transfer rate is

W (d, a, k) = wd,auk,

where uk only depends on the occupation Nd = k of the departure site and wd,a
accounts for diffusion from site d to site a. To simplify, let us restrict the discussion
to diffusion processes such that the stationary state is uniform. The stationary
probability of a configuration has the product form (A.11) where the factor pk obeys
the condition pkuk = pk−1, which gives the explicit form

pk =
1

u1 . . . uk
.

The statics of this ZRP is therefore the same as that of the urn model sharing the
same pk. Its partition function (A.12) obeys the recursion relation (A.14) and the
stationary single-site occupation probability is given by (A.13).

Conversely, given an urn model, the corresponding ZRP has hopping rate uk =
pk−1/pk. For the balls-in-boxes model [1] this yields [3, 4]

uk =

(
1 +

1

k

)β
≈ 1 +

β

k
.

A prototypical condensing ZRP. The model with hopping rate

uk = 1 +
b

k
(A.15)

is a well studied example of condensing ZRP. The weights pk are given by

pk =
Γ(b+ 1) k!

Γ(k + b+ 1)
=

∫ 1

0

duuk b(1− u)b−1 ≈ Γ(b+ 1)

kb
,

with generating function

P (z) =
∑
k≥0

zkpk =

∫ 1

0

du
b(1− u)b−1

1− zu
= 2F1(1, 1; b+ 1; z),
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where 2F1 is the hypergeometric function. This function has a branch cut at
z = zc = 1, with a singular part of the form

Psg(z) ≈ AP (1)(1− z)b−1, A =
(b− 1)π

sinπb
so that P (z) is only differentiable n ≡ Int(b)− 1 many times at z = zc = 1:

P (z) ≈ P (1) + (z − 1)P ′(1) + · · ·+ (z − 1)n

n!
P (n)(1) + Psg(z),

with

P (1) =
b

b− 1
, P ′(1) =

b

(b− 1)(b− 2)
, . . .

In the thermodynamic limit (L → ∞ at fixed density N/L = ρ), the system has
a continuous phase transition at the critical density

ρc =
P ′(1)

P (1)
=

1

b− 2
,

whenever b > 2. The critical density separates a fluid phase from a condensed phase.
In the fluid phase (ρ < ρc), the occupation probabilities fk fall off exponentially. At
the critical density (ρ = ρc), they fall off as a power law:

fk =
pk
P (1)

≈ (b− 1)Γ(b)

kb
. (A.16)

In the condensed phase (ρ > ρc), for a large and finite system, the particles form a
uniform critical background and a macroscopic condensate, consisting (on average) of
∆ excess particles with respect to the critical state, where

∆ = N − Lρc = L(ρ− ρc).
The condensate appears as a hump in the stationary distribution fk. The expression
of the partition function ZL,N deep in the condensed phase, i.e., for ∆ = L(ρ−ρc)� 1
is [12]

ZL,N ≈ (b− 1)Γ(b)
L

∆b
P (1)L. (A.17)

Appendix B. Asymptotics of Hermite polynomials

We want to demonstrate (5.14) which holds if z >
√

2n. The generating function of
the Hermite polynomials, defined as

Hn(z) = (−)nez
2 dn

dzn
e−z

2

,

is ∑
n≥0

Hn(z)
un

n!
= e2zu−u2

.

Performing a saddle-point expansion of

Hn(z) = n!

∫
du

2πiu
e2zu−u2−n lnu,

one finds the saddle point

uc =
z − V

2
, V =

√
z2 − 2n,

finally yielding

Hn(z) ≈ e(z2−zV−n)/2(z + V )n
√

(1 + z/V )/2, (z >
√

2n),

which is (5.14).
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