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ABSTRACT

We present a new shear calibration method based on machine learning. The method estimates the individual shear responses of the
objects from the combination of several measured properties on the images using supervised learning. The supervised learning uses
the true individual shear responses obtained from copies of the image simulations with different shear values. On simulated GREAT3
data, we obtain a residual bias after the calibration compatible with 0 and beyond Euclid requirements for a signal-to-noise ratio
>20 within ~15 CPU hours of training using only ~10° objects. This efficient machine-learning approach can use a smaller data set
because the method avoids the contribution from shape noise. The low dimensionality of the input data also leads to simple neural
network architectures. We compare it to the recently described method Metacalibration, which shows similar performances. The
different methods and systematics suggest that the two methods are very good complementary methods. Our method can therefore
be applied without much effort to any survey such as Euclid or the Vera C. Rubin Observatory, with fewer than a million images to

simulate to learn the calibration function.

Key words. gravitational lensing: weak — methods: numerical — methods: data analysis — methods: observational —

methods: statistical — cosmology: observations

1. Introduction

Weak gravitational lensing by the large-scale structure has
become an important tool for cosmology in recent years. Light
deflection by tidal fields of the inhomogeneous matter on very
large scales causes small deformations of images of high-
redshift galaxies. This cosmic shear contains valuable informa-
tion about the growth of structures in the Universe and can help
to shed light on the nature of dark matter and dark energy.
The amount of shear that is induced by weak lensing is very
small, at the percent level, and should be estimated based on
high-accuracy galaxy images for a reliable cosmological infer-
ence: measurement biases need to be reduced to the sub-percent
level to pass the requirement of upcoming large cosmic-shear
experiments, such as the ESA space mission Euclid (Laureijs
et al. 2011), the NASA space satellite Roman Space Telescope
(Akeson et al. 2019), or the ground-based Vera C. Rubin Obser-
vatory, previously referred to as the Large Synoptic Survey
Telescope (LSST Science Collaboration 2009).

Shear is estimated by measuring galaxy shapes and averaging
out their intrinsic ellipticity. This estimate is in general biased by
noise, inappropriate assumptions about the galaxy light distribu-
tion, uncorrected point spread function (PSF) residuals, and detec-
tor effects such as the brighter-fatter effect or the charge transfer
inefficiency (Bridle et al. 2009, 2010; Kitching et al. 2011, 2012,
2013; Refregier et al. 2012; Kacprzak et al. 2012; Melchior &
Viola 2012; Taylor & Kitching 2016; Massey et al. 2007, 2013;

Voigt & Bridle 2010; Bernstein 2010; Zhang & Komatsu 2011;
Kacprzak et al. 2012, 2014; Mandelbaum et al. 2015; Clampitt
et al. 2017). The resulting shear biases are complex functions of
many parameters that describe galaxy and instrument properties.
These include the galaxy size, flux, morphology, signal-to-noise
ratio (S/N), intrinsic ellipticity, PSF size, anisotropy and its align-
ment with respect to the galaxy orientation, and many more (Zuntz
et al. 2013; Fenech Conti et al. 2017; Hoekstra et al. 2015, 2017;
Pujol et al. 2020)

To achieve the sub-percent shear bias that is expected in
future cosmic-shear surveys, the shear estimates typically need
to be calibrated using a very high number of simulated images,
for instance to overcome the statistical variability induced by
galaxy intrinsic shapes (Massey et al. 2013). Furthermore, these
simulations need to adequately span the high-dimensional space
of parameters that determines the shear bias. Otherwise, regions
of parameter space that are underrepresented in the simulations
compared to the observations can lead to incorrect bias correc-
tion. The selection of objects needs to closely match the real
selection function to avoid selection biases.

Existing calibration methods requiring extensive image sim-
ulations select a few parameters of interest a priori, often galaxy
size and S/N, for which the shear bias variation is estimated (Zuntz
et al. 2018). The shear bias is computed using various methods
such as fitting to the parameters (Jarvis et al. 2016; Mandelbaum
et al. 2018a) or k-nearest neighbours (Hildebrandt et al. 2017).
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Machine-learning techniques have also been employed for
shear estimation and calibration. Gruen et al. (2010) trained an
artificial neural network (NN) to minimise the shear bias from
parameters measured in the moment-based method KSB (Kaiser
et al. 1995). More recently, Tewes et al. (2019) presented an arti-
ficial neural network for supervised learning to obtain shear esti-
mates from a few fitted parameters from images using adaptive
weighted moments via regression and using image simulations
with varying galaxy features as a training set.

An alternative shear calibration method that does not require
image simulations and is based on the data themselves is the
so-called meta-calibration (Huff & Mandelbaum 2017). This
approach computes the shear response matrix by adding low
shear values to deconvolved observed galaxy images. A hybrid
method is a self-calibration (Fenech Conti et al. 2017), for
which noise-free simulated images are created and re-measured,
according to the best-fit parameters measured on the data, to
reduce noise bias.

This paper extends previous work of machine learning for
shear calibration. In the companion paper, Pujol et al. (2020),
hereafter Paper I, we have explored the dependence of shear
bias on various combinations of input and measured parameters.
We demonstrated the complexity of this shear bias function and
showed that it is important to account for correlations between
parameters. A multi-dimensional parameter space of galaxy and
PSF properties is therefore set up to learn the shear bias function
using a deep-learning architecture to regress the shear bias from
these parameters.

This paper is organized as follows. Section 2 presents the
definition of shear bias and a review of our method for mea-
suring shear bias that was introduced in Pujol et al. (2019;
hereafter PKSB19). In Sect. 3 we introduce our new shear cali-
bration method. Section 4 presents the simulated images and the
input data used for the training, testing, and validation of our
method to produce the results of this paper, which are discussed
and compared to an existing method in Sect. 5. After a discus-
sion of several points regarding the new method in Sect. 6, we
conclude with a summary of the study in Sect. 7.

2. Shear bias
2.1. Shear bias definition

In the weak-lensing regime, the observed ellipticity of a galaxy
e;’bs is an estimator of the reduced shear g; for component i =
1, 2. In general, however, this estimator is biased by pixel noise,
PSF residuals, inaccurate galaxy models, and other effects (see
Mandelbaum 2018 for a recent review). The bias of the estimated
shear, g°*, is usually expressed by the following equation:
€™y = g™ = ¢; + (1 + my)g,

; )]
where ¢; and m; are the additive and multiplicative shear biases,
respectively. For a constant shear, if the mean intrinsic ellipticity
of a galaxy sample is zero, we can measure the shear from the
average observed ellipticities using the above relation.

We can also define the response of the ellipticity
measurement of an image to linear changes in the shear (Huff
& Mandelbaum 2017),

Jeobs
1
dg;

The multiplicative bias of a population can be obtained from
the average shear responses, as described in Pujol et al. (2019),

1 +m; =(Ry). 3)

Rij = ()
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In a similar way, the additive population shear bias can be
obtained from the average of the individual additive biases,

¢ = <e?bs obs>,

— e} — Riigi) = (¢ 4

where e{ is the intrinsic ellipticity, and the second equality holds

if (eiI) = 0 and (R;;g;) = 0 (which is true if R;; is not correlated
with g; and (g;) = 0).

2.2. Shear bias measurements

We used two methods to estimate shear bias, both of which we
briefly describe in this section. For more details on the differ-
ent methods for estimating shear bias in simulations we refer to
PKSB19.

First, to test the residual shear bias after calibration, we used
the common approach to measure shear bias from a linear fit
to Eq. (1). We simulated each galaxy with its orthogonal pair
to guarantee that the average intrinsic ellipticity is zero. This
improves the precision of the shear bias estimation by a factor
of ~3, as shown in PKSB19.

Second, to study the shear bias dependences, we used the
method introduced in PKSB19: We measured the individual
shear responses and additive biases from each galaxy image by
using different sheared versions of the same image. The mul-
tiplicative and additive bias of a population was then obtained
from the average of these quantities. This method has been
proven to be more precise by a factor of ~12 than the linear fit
with orthogonal-pair noise cancellation (PKSB19).

These individual shear responses and additive biases are also
used as quantities for the supervised machine-learning algorithm
of our calibration method (Sect. 3.2). We denote the biases mea-
sured from simulations as described here “true” biases m},c},
indicated with the superscript “#’. Our goal in this paper is
to regress these biases in a high-dimensional parameter space
where this function is living.

2.3. Dependences

Shear bias depends in a complex way on various properties of
the observed galaxy and image properties. In Paper I we explore
some of these dependences using the same simulated GREAT3
images as in this paper.

In Fig. 1 we show an example of shear bias dependences
with respect to three galaxy properties. These properties are true
parameters from the image simulations, therefore they do not
correspond to noisy measurements. Each panel shows that the
multiplicative bias m; depends on the Sérsic index n and the half-
light radius Ry. In addition, these dependences change with the
galaxy flux F (the three panels show increasing ranges of flux
from top to bottom). We therefore need to know all three quan-
tities to constrain m;, and its dependence on n, Ry, and F can-
not be separated. This is just one example, but it illustrates the
general very complex functional form of shear bias with respect
to many galaxy properties. For shear calibration of upcoming
high-precision surveys, this sets very high demands on image
simulations, which need to densely sample a high-dimensional
parameter space of galaxy and image properties.

3. Deep-learning shear calibration

3.1. Why choose machine learning for shear calibration?

Section 2.3 and Paper I gave a glimpse of shear bias as a
very complex, non-linear function acting in a high-dimensional



A. Pujol et al.: Calibration methods

mt, F<20
¢ 0.04
41 0.02
c | 0.00
(X}
21 3, ecee e * | }-0.02
Him A —0.04
[ [ [
0.1 0.2 0.3
Rp
mi,20<F<70
* 0.04
41 0.02
° [ ]
< . .| B0.00
| e b
] . S, e, ~0.02
I I}
!U' i f ~0.04
[ [
0.2 0.4
Rp
6 mt, F>70
e o 0.04
. ...
als v, . 0.02
c [t e e . 0.00
2 . | -0.02
"':O‘ .0 .‘ L4
M8 Y —0.04
| | |
0.25 0.50 0.75
Rp

Fig. 1. Colour-coded true multiplicative shear bias m| as a function of
input galaxy properties. The y-axis shows the Sérsic index n, and the
x-axis is the half-light radius Ry,. Top, middle, and bottom panels: galax-
ies with different fluxes, corresponding to F' < 20, 20 < F < 70, and
F > 70, respectively. Each point is to the mean over an equal number
of galaxies, and the point size is inversely proportional to the error bar,
such that large points are more significant.

parameter space of galaxy and image properties. For a successful
shear calibration to sub-percent residual biases as is required for
large upcoming surveys (e.g. Massey et al. 2013), this function
needs to be modelled very accurately. This is true whether the
calibration is performed galaxy by galaxy or globally by forming
the mean over an entire galaxy population: shear bias measured
on simulations is always marginalised over some unaccounted-
for parameters, explicitly or implicitly. If shear bias depends on
some of the unaccounted parameters, then the mean bias is sen-
sitive to the distribution of these parameters over the population
used, and a mismatch of this distribution between simulations

and observations produces an incorrect shear bias estimate and
calibration. For this reason, it is crucial to model shear bias as a
function of a wide range of properties to minimise the effect of
the remaining unaccounted-for parameters. With this we would
still not have control of the shear bias dependence on the distri-
bution over the remaining unaccounted-for parameters, but we
would have already captured the most significant dependences.
Generating a sufficiently large number of image simulations in
this high-dimensional, non-separable space obviously sets enor-
mous requirements for computation time and storage for shear
calibration.

The exact form of the shear bias function is not interesting
perse. In addition, it is very difficult to determine this function
from first principles, based on physical considerations (Refregier
et al. 2012; Taylor & Kitching 2016; Hall & Taylor 2017;
Tessore & Bridle 2019). In general, for most simulation-based
calibration methods, empirical functions are fitted. However,
we can make a few very basic and general assumptions about
this function. For example, galaxies with similar properties are
expected to have a similar shear bias under a given shape mea-
surement method. Furthermore, this function is expected to be
smooth (with a possible stochasticity coming from noise). These
basic properties make the shear bias function ideal to be obtained
with machine-learning (ML) techniques.

The problem of estimating the shear bias from galaxy image
parameters requires finely capturing the dependences described
above. On the one hand, and from a mathematical point of
view, the smoothness of the relationship between shear bias and
parameters tells us that shear bias should belong to a smooth
low-dimensional manifold. Estimating such a manifold struc-
ture then is reduced to some regression problem. On the other
hand, the relationship between the measured parameters and the
sought-after shear is very intricate, which impedes the use of
standard regression methods, but for which ML methods are very
well suited.

Machine learning can account for many parameters and
model a very complex, high-dimensional function of shear
bias. The dependence on unaccounted-for parameters of the
marginalised shear bias is expected to be weak, and the cali-
bration becomes less sensitive to the particular population that
is simulated. If properly designed, we do not need to know
the exact important properties that affect shear bias beforehand
because the algorithm can learn the important combination of
parameters to constrain shear bias. We still need to know the
property distribution of the observed galaxies, which are noisy
and might be biased. However, as we show below, the ML train-
ing set can be different from the test set to some extent, with
only relatively small calibration bias; see also the discussion in
Sect. 6.2.

3.2. Neural network shear correction

In this section we describe our new method based on ML that we
call neural network shear correction (NNSC). We describe the
concepts of the ML approach, the learning, and the calibration
steps. We have made the code publicly available'.

3.2.1. Concept

The objective of the ML here is to infer an estimate of the
shear bias from a large number of galaxy image measurement
parameters. To this end, a deep neural network (DNN), and more

! https://github.com/arnaupujol/nnsc
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Fig. 2. Visual schema of the ML approach of the method. A set of
measured image properties is used as input features for the neural net-
work. The system is then trained to produce the shear bias parameters as
output.

Size

precisely, a multi-layer feed-forward neural network, is particu-
larly well adapted to solve the underlying regression problem.

More precisely, a feed-forward neural network is composed
of L layers, taking measured image properties as inputs and pro-
viding the shear bias as output. The resulting network aims at
mapping the relationship between the measured properties of the
galaxy images and the shear bias. The parameters of the network
are then learnt in a supervised manner by minimising the resid-
ual between the true and the estimated shear bias. The shear bias
is estimated individually for each galaxy given their measured
properties.

If x; denotes a vector containing m measured properties x;[ j]
for j =1,...,m for a single galaxy i, then the output of the first
layer £ = 1 of the neural network is defined by some vector h;l)
of size my,

WY = A(Wx; +50), (5)

where W (D) stands for the weight matrix (the bias vector)
at layer £ = 1, x; is the vector of the galaxy with index i, and
j is the index referring to a measured property. The term A is
the so-called activation function, which applies entry-wise on
its argument. For a layer £ = n, the output vector of size m,
is defined as

W = A(WORD + b)), (6)

For ¢ = 5, the output vector h;L) stands for the estimated shear
bias components. Only in this last layer is the activation function
not used, so that we gain a linear function to obtain the shear bias
components. A visual schema of the method is shown in Fig. 2.

3.2.2. Learning

The learning stage amounts to estimating the parameters
{W“),b(")}[_ , by minimising the following cost function

defined as some distance (the )(2) between the shear bias
components and their estimates:

R
b Z Z m, = mf )+, = 65, (7
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where m.,, ¢!, and m¢, ¢ are the true and estimated ath compo-
nent of the shear multiplicative and additive bias, respectively,
and by is the number of objects used in each training step (also
referred to as the batch size). We use as true shear bias the values
from Eqgs. (2) and (4) obtained as described in Sect. 2 and pre-
sented in Pujol et al. (2019). The NNSC learns to estimate these
shear biases.

We used m = 27 measured properties used as input for the
model as described in Sect. 4.2, and details of the network archi-
tecture and the implementation of the learning stage are given in
Appendix A.

3.2.3. Calibration

The NNSC method estimates the shear responses and biases
of individual galaxies from the measurements of 27 properties
applied to the images. The shear bias and the corresponding cal-
ibration were made for a previously chosen shape measurement.
Any shape measurement algorithm can be chosen for this pur-
pose. We used the estimation from the KSB method using the
software SHAPELENS. When these estimations were completed,
we applied the shear calibration over the statistics of interest,
in our case, the estimated shear from Eq. (1). The bias calibra-
tion was applied as (R)™'(¢°® — (c)), where R and c are the
estimated average shear response and additive bias, respectively
(see Sheldon & Huft 2017). This calibration is similar to other
common approaches, and we expect similar behaviours for the
post-calibration bias as discussed in Gillis & Taylor (2019).

Our method gives estimates for the individual shear bias of
objects, in common with the new method METACALIBRATION.
However, the two methods are very different. While NNSC
relies on image simulations for a supervised ML approach,
METACALIBRATION uses the data images themselves to obtain
the individual shear responses. To do this, the original data
images are deconvolved with an estimated PSF, and after some
shear is applied, they are re-convolved with a slightly higher
PSF. Because this method is very complementary with respect
to NNSC and has recently been used in surveys such as the
Dark Energy Survey (DES; Zuntz et al. 2018), we used it in
this study for a calibration comparison of both models. For more
details of METACALIBRATION, we refer to a description of the
implementation in Appendix B and the original papers (Huff &
Mandelbaum 2017; Sheldon & Huff 2017).

4. Data

4.1. Image simulations

We considered two sets of GALSIM simulations (Rowe et al.
2015). They correspond essentially to the control-space-constant
(CSC) and real-space-constant (RSC) branch simulated in
GREAT3 (Mandelbaum et al. 2014), with some modifications to
ensure precise measurement of the shear response as prescribed
in PKSB19.

The CSC branch contains galaxies with parametric profiles
(either a single Sérsic or a de Vaucouleurs bulge profile to which
an exponential disc was added) obtained from fits to Hubble
Space Telescope (HST) data from the COSMOS survey with
realistic selection criteria (Mandelbaum et al. 2014). This data
set is intended to provide a realistic distribution of galaxy prop-
erties (in particular in terms of morphology, size, and S/N),
which we therefore used for training and testing our calibration
network.
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Table 1. Measured properties for the training process of NNSC.

GFIT SEXTRACTOR KSB

Galaxy ellipticity e; griT, €2.6FIT Galaxy flux Foy Ellipticity e xsg, €2.xss

Axis ratio Galaxy size Ellipticity with respect to the PSF e, g, €x xss
Orientation angle S /Nops Axis ratio ggsp

Galaxy flux Galaxy magnitude Orientation angle Sxsp

Disc radius PSF flux Window function size

Bulge radius PSF size S/N

Disc fraction PSF S/N

Number of y? evaluations PSF magnitude

Noise level PSF FWHM

As for GREAT3, the two million galaxy images were divided
into 200 images of 10000 galaxies, to each of which a different
pre-defined shear and PSF was applied. Each galaxy was ran-
domly oriented, and its orthogonal version was also included in
the data set to allow for nulling the average intrinsic ellipticity.
Out of these 200 images, we selected a first set for training and a
second set for testing and comparing calibration approaches. For
the training set, we followed the approach of PKSB19 described
above to obtain an estimate of the true shear response that
needed to be learnt. For each galaxy in the training set, five
sheared versions were simulated keeping PSF and noise reali-
sations the same. The shear g for each galaxy was chosen as
9i = {(gl’ g2)i} = {(09 O)’ (10029 0)9 (O, i002)}

To further investigate the effect of model bias on our pro-
cedure, the network predictions were also tested for more real-
istic galaxies simulated as in the RSC branch of GREATS3.
These galaxies are based on actual observations from the HST
COSMOS survey, fully deconvolved with the HST PSF (see the
procedure in Mandelbaum et al. 2013), before we applied ran-
dom rotation, translation, and the prescribed shear followed by
convolution with the target PSF and resampling in the target grid.
In this scenario, the same procedure as for CSC was followed to
obtain estimates of the shear response for these realistic galax-
ies, which were then compared to the network predictions based
on the CSC training set.

4.2. Learning input data

The image properties that are used to estimate the shear bias can
be chosen depending on the interest. The NNSC learns to esti-
mate shear bias as a function of these properties, which means
that the more properties we use, the more capable the NNSC
is to learn complex dependences (if we use the appropriate
training).

We used 27 measured properties as input for the NNSC.
These properties correspond to the output from the GFIT
(Gentile et al. 2012; Mandelbaum et al. 2015) software (prop-
erties such as ellipticities, fluxes, sizes, fitted disc fraction, and
other fitting statistics), the SHAPELENS (Viola et al. 2011) KSB
implementation (ellipticities, S/N, and the size of the window
function) and SEXTRACTOR (Bertin & Arnouts 1996) software
(properties such as flux, size, S/N, and magnitude from both the
galaxy and the PSF). We refer to Paper I for the details on the
algorithms and implementations and to Table 1 for the list of
measured properties we used for the training. In the following we
report the results obtained with the selected network as described
in Appendix A associated with the superscript “fid”, referring to
the fiducial implementation of the method.

Amfd=(=5+1) x 1074

-0.4

—0.4 -0.2 0.4

Fig. 3. Comparison between true and estimated shear bias. The mul-
tiplicative shear bias m; is shown in the top panel, and in the bottom
panel, we show the additive bias c;.

5. Results
5.1. Bias predictions

In Fig. 3 we show the distribution of estimated and true shear
biases in the validation set of the CSC branch. We show m; (top
panel) and c; (bottom panel), but similar results are found for m,
and c¢;. The estimated and true biases are correlated, although the
relation is scattered. The value distribution is also narrower for
the estimated than for the true biases because the estimated bias
is a function of the measured parameters with no noise stochas-
ticity. This has been learned from the stochastic true values that
are affected by noise (which is the main cause of the scatter of
the true-bias values), but the estimated function is not stochastic.
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Fig. 4. Comparison of estimated vs. true multiplicative shear bias m, as a function of several properties. Top panels: m as a function of galaxy flux;
bottom panels: m as a function of S/N. Left panels: input simulation properties from the galsim parameters; right panels: the measured parameters

from SEXTRACTOR that were used as inputs in training the NN.

The errors on the estimated average biases, defined as
Amy, = (m?% - m‘1 ,) (and analogous for cyy), are Am; =

(4.9+1.1)x10™* and Ac; = (=3.1+0.7)x10™* (similar values are
found for the second components, with Am, = (0.0 +1.1) x 107#
and Ac; = (1.6 £ 0.7) x 107*). These values are well below
the Euclid requirements (Am < 2 x 1073 and Ac < 5 x 107%),
although a proper test of Euclid simulations should be made to
quantify the performance for this mission and to quantify the
effct on post-calibration bias, for which the requirements are set
(Massey et al. 2013). However, this performance was obtained
using only 128 000 objects with ~15 CPU training hours.

To obtain this precision, we used a validation set of about
1800000 objects. According to the results from PKSB19, we
expect an error on the mean bias of ~3 x 10~*. However, here we
show the error on m|—mS*. If these two quantities are correlated
(as they are), the error on their difference can be smaller, as we
show.

5.2. 1D dependences

In Fig. 4 we show some examples of shear bias dependences
for different cases. In black we show the true multiplicative
bias obtained as described in Sect. 2.2 that was used for the
supervised training. The dark red line corresponds to the per-
formance of the NNSC estimation, referred to as mfid because
it represents the fiducial training parametrisation used for this
paper (for other parametrisations, see Appendix A). In the left
panels we show dependences on input simulation parameters.
These are parameters that were used to generate the image sim-
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ulations with GALSIM, but they were not used for NNSC. The
training therefore does not have access to these properties. In the
right panels we show dependences on measured parameters that
were used for the training. The top panels show the m depen-
dence on galaxy flux, and the bottom panels the dependence on
S/N. The excellent performance in the right panels shows that the
training correctly reproduces the dependences on the measured
parameters that were used as the training input. The left panels
show that although the performance is not perfect, the measured
parameters used in NNSC capture enough information to repro-

duce the dependences with good precision?.

5.3. 2D dependencies

Figure 5 shows examples of the multiplicative shear bias 2D
dependences. Here the multiplicative bias m, is represented in
colour, the left panels show the true bias, and the right panels the
estimates from NNSC. In this case, the top four panels show the
dependences as a function of input simulation parameters (not
accessible for NNSC), and the bottom panels show the depen-
dences on measured parameters used for the training. NNSC
clearly predicts the shear bias as a function of combinations of
two input properties well. As before, the method was trained to

2 Only single Sérsic galaxies were used in the top left panel because
the true bulge flux only contains a fraction of the flux information for
disc galaxies. For this reason, the average difference between estimated
and true bias is different than in the rest of the panels, where the whole
population was used.
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Fig. 5. Simultaneous comparison of true (left panels) and estimated (right panels) multiplicative shear bias m, as a function of two properties.
The multiplicative shear bias is represented in colours. Each point is to the mean over an equal number of galaxies, and the point size is inversely
proportional to the error bar, so that large points are more significant. Top panels: dependences on Sérsic index n and bulge half-light radius in the
simulation. Middle panels: dependences on intrinsic ellipticity modulus ¢ and orientation angle 3 in the simulation. Botfom panels: dependences

on the measured flux and S/N from SEXTRACTOR.

describe shear bias as a function of the measured properties, in
consistency with the good performance in the bottom panels,
but the predictions on the input simulation parameters depend
on how strongly these properties are constrained by the mea-
sured parameters. The method describes shear bias as a function
of shape parameters very well (middle panels), but it underesti-
mates the values for some galaxies with a very low Sérsic index
n and intermediate radius because n was not estimated and no
properties referring to this parameter were used for the training.
The performance of the model would improve when more mea-
sured properties on the training that are correlated with n were
used (e.g. a fitting parameter estimation of the galaxy profile).

5.4. Residual bias

In order to test the performance of the shear calibrations, we
analysed the residual bias estimated from a linear fit of Eq. (1)
after the galaxy samples were corrected for their bias. Here we
include METACALIBRATION as a reference for an advanced shear
calibration method so that we can compare our performance with
currently used approaches. With this we do not aim to show
a competitive comparison of the methods, but to confirm the
consistency of NNSC with respect to what can be expected for
a reliable method. The two methods are intrinsically different
and affected by different systematics, therefore a combination
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of the two methods can be a very complementary and robust
approach for scientific analyses. Moreover, the two methods can
be differently optimised for the performance in different types
of data, and here we do not pretend to show the best-case sce-
nario for any of them. For details of the implementation done for
METACALIBRATION, see Appendix B.

In Fig. 6 we show the residual multiplicative bias m as a
function of several input properties found for three different
approaches. In black, the calibration was made using the true
shear bias obtained from the image simulations. This represents
the best-case scenario where the shear bias has been perfectly
estimated and gives an estimate of the statistical uncertainty
of the measurement. The red and cyan lines show the residual
biases from METACALIBRATION and NNSC, respectively.

Both methods show a residual bias of less than 1% for
most of the cases, and the performance depends on the galaxy
populations. In general, very good performances are found
for both methods for bright or large galaxies. In the case of
METACALIBRATION, the residual multiplicative bias increases to
about 2% for small and dim galaxies, showing that the sensitivity
of the method depends on the signal of the image, as expected.
For NNSC, the performance depends on the explored property;
it extends from negligible residual bias for any S/N to a residual
bias of up to 4% for galaxies with a very dim disc. We recall
that these input properties from the simulations that were not
used for the training, therefore the performance of the calibration
depends on the correlation between the measured properties and
these input properties. Because we use an estimate of the S/N in
the training, the performance of the calibration is excellent even
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for galaxies with a very low S/N. On the other hand, galaxies
with a low disc flux are not well characterised from the measured
properties we used in the training. They can be a combination of
dim galaxies and galaxies with a very small disc fraction, and no
measured properties aim to describe the morphology of the disc
regardless of the contribution from the bulge. Because of this, the
NNSC performance on those galaxies is worse. However, in real
data applications we will never have access to this input infor-
mation, and the galaxies will always be selected from measured
properties that can be included in the training set, so that this
problem will not appear on real data applications as it does here.
Instead, this will produce selection effects that are discussed in
Sect. 6.1.1.

5.5. Robustness with realistic images

The NNSC model has been trained with a specific set of image
simulations based on the CSC branch from GREAT3. To eval-
uate the potential effect of applying this model to real data
with no further training, we used the NNSC model that was
trained with the GREAT3-CSC images but applied to calibrate
GREAT3-RSC images instead. In Fig. 7 we show the estimated
bias compared to the real bias obtained from sheared versions
of the images as in Pujol et al. (2019) using Egs. (3) and (4).
The top panel shows the dependence of m on S/N, the bottom
panels shows the error on the estimation of m. An error of up
to 6% for the lowest S/N and of about 1% for galaxies with
S/N > 20 is evident. This indicates that the model trained on
analytic, simpler galaxy images does not yield perfect estimate
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for realistic galaxy images, but it still obtains errors of about 1%
for the majority of the cases.

Figure 8 shows the residual bias after the calibration
was applied to the GREAT3-RSC images for NNSC and
METACALIBRATION. Again, the training for the NNSC calibra-
tion was that of the CSC branch. The difference in S/N values
with respect to previous figures is that now we use the S/N esti-
mate from KSB (we used the input parameter for GALSIM or the
S/N from GFIT for the remainder). For NNSC a residual bias

is visible that decreases with S/N, consistent with the bias esti-
mates from Fig. 7. It is beyond the scope of the paper to improve
this calibration by applying a refinement to these images because
we wish to show, on the one hand, the potential performance of
the method (Sects. 5.1-5.3), and on the other hand, the effect
of applying a crude calibration to a realistic data set for which
the model was not trained (this section). Otherwise, an easy
improvement could be achieved with a refinement of the model
on realistic galaxy images, or by identifying poorly estimated
objects (we found that the main contribution of this error comes
from objects whose shear responses were estimated outside the
range of values represented by the training, indicating a misrep-
resentation of these objects).

METACALIBRATION also shows a significant residual bias
dependence on S/N for GREAT3-RSC images. Although the
residual bias over the entire population is very weak and con-
sistent with previous analyses (Huff & Mandelbaum 2017), the
method shows a negative residual bias for galaxies with a low
S/N and a positive one for galaxies with a high S/N. We found
this to be specific for the RSC images and this particular imple-
mentation. Different from CSC images, the estimated shear
responses of METACALIBRATION show a weak dependence on
S/N. This is caused by some images that our KSB implemen-
tation interprets to be small, and a small window function was
applied to them for the shape measurement. This produces a
very similar calibration factor (~5% positive) for all S/N values,
producing a shift of about 5% in the residual bias. We ignored
the origin of this low sensitivity; it can come from a combina-
tion of factors. First, RSC images are created from pixelated and
noisy real images that have been deconvolved with their PSF to
which then a shear was applied, making these images imperfect.
In additiont, METACALIBRATION is ran, which again modified
the images with a deconvolution, shearing, re-convolution, and
a noise addition. Finally, KSB estimates the optimal size of the
window function to estimate the galaxy shape.

6. Discussion
6.1. Potential limitations and solutions for NNSC
6.1.1. Selection bias

The aim of this paper is to show the performance of NNSC in
calibrating shear measurement bias. To this end, we applied the
following catalogue selection in order to remove any selection
bias from the data. Any galaxy whose detection or shape mea-
surement failed in any of the processes was removed from the
catalogue, together with all its shear versions. This included not
only the shear versions that were simulated with GALSIM, but
also the images derived from the METACALIBRATION processing
so that METACALIBRATION has no selection bias either. More-
over, when the data were split into bins of a measured variable,
all the shear versions were removed as well if a galaxy fell in
different bins for different shear versions. With this, the selected
data of our results were identical for all shear versions, and selec-
tion bias was forced to be zero.

This procedure can be applied here for the purpose of pre-
senting a method in simulations, but in real data selection,
effects cannot be avoided and need to be calibrated. In par-
ticular, selection bias comes from the fact that the selection
function depends on the shear and is usually of the same order of
magnitude as shear measurement bias (Fenech Conti et al. 2017;
Mandelbaum et al. 2018b). METACALIBRATION takes into acc-
ount the shear dependence of selection effects and also calibrates
selection bias in a similar procedure as it does for measurement
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bias, as described in Sheldon & Huff (2017). Sheldon et al.
(2020) also explored a calibration of selection and measurement
bias simultaneously in the presence of blended objects.

Analogously, NNSC can potentially be used to also calibrate
selection bias. This would involve applying the same selection
process to all galaxies independently of the shear and measuring
the shear responses to this selection, as described in Sheldon &
Huff (2017) and in Sect. 7.2 of PKSB19:

obs,+ obs,—
<R >~<ea >_<eﬂ > @)
ap | ~ ) Agﬁ B

where the ellipticities are measured for the case with no shear,
and the + and — superscripts refer to the applied selection, cor-
responding to the catalogues obtained from the positive and neg-
ative shear versions, respectively. A supervised training could
be applied to learn the shear response on selection. This would
involve adapting the method so that the selection is specified in
the input data (e.g. with weights specifying the selection for each
shear version). Then the cost function involves the average selec-
tion shear response over a subset of the catalogue, as
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where w?’_ specifies the selection of galaxy i for the cases with
positive or negative shear (it can be a weight from 0 for unde-
tected cases to 1 for detected cases with the full signal), eg';s is
the observed ellipticity for the case with no shear, and szﬁ is the
output estimated shear response of the training.

6.1.2. Model bias

For the results of our method in this paper, we used the same
type of population for the training process as for the test and
calibration. However, it is known that shear bias depends on
the galaxy profile models (known as model bias). The images
used in this paper consist of a mix of single Sérsic galaxies and
galaxies with the sum of a bulge (de Vaucouleurs) and a disc
(exponential). For the original training, testing, and calibration,
we used a population in which 61% of the galaxies have single
Sérsic profiles (this corresponds to the fraction in the whole set
of images).

Here we quantify the effect of the model bias on our method
that comes from these two different models by testing the perfor-
mance of the method when different single Sérsic fractions are
used for the training and the testing steps. In Fig. 9 we show the
performance of the estimated multiplicative bias using different
Sérsic population fractions for the training data as specified in
the legends ("¢ corresponds to the original fraction of 61%, and
m' shows the true bias). The top panels show the results applied
to the original population with a Sérsic fraction of 61%, in the
middle panels we show the results on galaxies with a bulge and
a disc (Sérsic fraction of 0%), and in the bottom panels we show
the results applied to Sérsic galaxies (Sérsic fraction of 100%).
The left panels show the bias dependence, and the differences
with respect to the true are shown in the right panels.

In all the cases, the best performance is obtained when the
training population coincides with the test population. On the
other hand, all the cases give different shear bias predictions for
the different test populations. For example, the model trained
with only Sérsic galaxies predicts m ~—0.06 for the galaxies
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with a disc and a bulge and m ~ —0.02 for the single Sérsic galax-
ies. Although the true m changes a 5—6% between the two pop-
ulations, training with the single Sérsic population alone gives
~1% error on the other population. In the opposite case, the
model trained with disc and bulge galaxies predicts m ~ 0.08
for the same population and m ~ 0.02—0.08 for the single Sérsic
population. This means that all the predictions are sensitive to
the differences between the different populations, although the
model bias still remains non-zero. This means that we have cap-
tured only a part of the dependency of the bias on S/N and type
of galaxy. The red lines in the middle panel and the light green
lines in the bottom panels show the extreme cases when the mod-
els were trained with a completely different population, and they
give a model bias of ~1% for bright galaxies. Possible ways to
reduce this model bias could be (a) training with more complex
models, (b) using more input measured complementary proper-
ties that can help to increase the sensibility to more complex
images, and (c) using convolutional neural networks (CNNs) to
exploit the information at the pixel level.

Finally, in Fig. 10 we show the same bias predictions, but
now applied to RSC images. This shows the effect of model bias
when different analytical models are trained and applied to real-
istic images. The fiducial model gives better predictions on RSC
images than the extreme cases where the training is only made
with one galaxy model, at least for S/N > 20. A good per-
formance is encouraging for the practical effect of model bias
in real observations with our training, and using more sophisti-
cated or realistic models for image simulations would potentially
improve the performance, as discussed in Sect. 5.5.

6.2. Advantages of the NNSC method

We presented NNSC as a new method for shear calibration.
The method is different from others such as METACALIBRATION,
self-calibration methods, the commonly applied calibration from
shear bias measurements in binned properties from simula-
tions or other ML approaches. We do not claim one method or
approach to be better than the other, but we highlight several
strengths of our method.

First, NNSC has the advantage that it can obtain a good
performance in a matter of hours with a few thousand images,
which is a very efficient ML approach for shear calibration. This
is because, on the one hand, the input data are a reduced set
of measured properties that significantly reduce the architecture
dimensionality (compared to other ML approaches such as con-
volutional neural networks), and on the other hand, by focus-
ing on minimising the error on the estimated individual shear
response, we avoided the shape noise contribution of the intrinsic
ellipticity (see PKSB19 for a detailed discussion of this contri-
bution). It could also be possible to build an estimate of the shear
bias straight from the galaxy and PSF images (e.g. from aCNN),
but this would require a much more complex network architec-
ture (e.g. accounting for the effect of the PSF, galaxy morphol-
ogy, etc.). Learning from image properties already reduces the
complexity of the images, without losing too much information
of the shear bias.

As an example of an ML approach, Tewes et al. (2019) min-
imised the residual bias over the average measured ellipticities
so that the output wass an unbiased shear estimator. Because
of the intrinsic ellipticity contribution, the method requires a
very large catalogue (10°—107 objects) and uses a batch size of
500000 objects (distributed so that the intrinsic ellipticity
cancels out) to ensure that in each minimisation step, the shape
noise from the intrinsic ellipticity is low. One suggestion to
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Fig. 9. Shear bias predictions using only single Sérsic (in red), only bulge+disc (in blue), or the real population (green) tested on the whole
population (top), on only disc+bulge galaxies (middle) and on single Sérsic galaxies (bottom). Solid lines show the true bias of the populations,
and the dashed black lines show the shear bias of the excluded population (the true bias for single Sérsic galaxies in the middle panels and for

bulge+disc in the bottom panel).

improve the computational performance of Tewes et al. (2019)
would be to minimise the individual responses (using sheared
versions of the same images as in this paper and in PKSB19)
instead of the residual bias over average ellipticities.

In another approach, Gruen et al. (2010) minimised shear
bias for a KSB estimator by training the ellipticity measure-
ment errors using the original measurements from KSB, the flux
measured from SEXTRACTOR, and some tensors involved in the
shape measurement process. The approach is similar to ours in
the sense that they considered a set of properties to estimate
errors on the shape measurements, but our method directly esti-

mates the shear response, which avoids shape noise. As in Tewes
et al. (2019), Gruen et al. (2010) used ~107 objects for the train-
ing sets.

Another potential of the NNSC method is that it can be
easily implemented for any survey for which we have image
simulations (this is required for a good validation of the sur-
vey exploitation). To apply NNSC, we only need to produce
copies of the same image simulations with different shear values
applied, so that we can obtain individual shear responses. The set
of measured properties to be used for the training is arbitrary and
can be chosen according to the interests and the pipeline output
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Fig. 10. Same as in Fig. 9, but applied to the realistic RSC images.

of the surveys. Even a simple application using a few proper-
ties of interest will already be an improvement with respect to
common calibrations obtained from shear bias measurements in
simulations as a function of two properties only. Moreover, as
described in Sect. 6.1.1, the method can be extended to also cal-
ibrate selection bias.

Finally, the method allows us to use a large set of measured
properties as input. When properly trained, this allows the cal-
ibration to be more reliable than the particular population dis-
tribution of the training with respect to the real data. If the bias
dependences on many properties are correctly learnt, the partic-
ular distribution of the population over these properties should
not affect the performance of the calibration (provided that no
other unaccounted-for properties affect shear bias and that the
simulated population is representative of the real data).

6.3. Importance of using complementary methods

We have used two different methods (METACALIBRATION and
NNSC) and analysed their performances in image simula-
tions. Both methods perform well, and they are complemen-
tary because they do not share the same systematics. Different
implementations of the METACALIBRATION pipeline, as well as
using other shape estimators, might improve or better adapt to
the particular data. As for our model, the scope of this paper is
not to show the best implementation of METACALIBRATION for
these particular data, but to include it to compare NNSC with an
advanced modern code.

Because the two models are complementary, using both for
the same scientific analyses is a more suited approach to ensure
the reliability of the results. For this reason, we encourage
researchers to include at least two independent shear measure-
ments and calibration methods for scientific analyses on galaxy
surveys, as was done in Dark Energy Survey (Jarvis et al. 2016;
Zuntz et al. 2018). This allows us to better identify systemat-
ics from the discrepancies between the methods that otherwise
might be missed. At the same time, consistent results from two
different and independent methods always give reliability to the
scientific results, a crucial aspect for future precision cosmol-
ogy. The combination of NNSC and METACALIBRATION brings
a good complementarity because it uses an ML approach based
on measurements from image simulations and a method that is
independent of image simulations, but limited by other numeri-
cal processes.
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7. Conclusions

Machine learning is a promising and emerging tool for astro-
nomical analyses because it can characterise complex systems
from large data sets. It is then especially well suited for shear
calibration, where many systematics complicate the behaviour
of shear bias and its calibration.

We presented a new shear calibration method based on ML
that we call neural network shear correction (NNSC). We have
also made the code publicly available. The method is based on
galaxy image simulations that are produced several times with
different shear versions, but the remaining conditions are pre-
served. With this, we obtained the individual shear response of
the objects that served us for a supervised ML algorithm for esti-
mating the shear responses of objects from an arbitrarily large set
of measured properties (S/N, size, flux, ellipticity, PSF proper-
ties, etc.) through a regression approach.

This ML approach allowed us to characterise the complexity
of shear bias dependences as a function of many properties, a
complexity that we explored in Pujol et al. (2020). The advan-
tage of ML is that it is an especially well suited approach to
reproducing very complex systems so that we can include a large
set of properties on which shear bias can depend. With these,
the algorithm identifies the contribution of each of the properties
and their correlations to estimate shear bias. With the individual
shear bias estimates of galaxies, we can then apply a shear cali-
bration based on the average statistics of shape measurements as
in many other shear calibration approaches.

We used image simulations based on the GREAT3
(Mandelbaum et al. 2014) control-space-constant branch to
explore the method, apply the training algorithm of NNSC,
and evaluate its performance through tests and validations. We
obtained a performance beyond Euclid requirements (Am; =
49+ 1.1)x 107 Amy = (0.0 = 1.1) x 107, Ac; = (-3.1 =
0.7) x 107 and Ac, = (1.6 + 0.7) x 107*) for the estimates
of the average shear biases, and we showed shear bias depen-
dences on one and two properties below the 1% error. This per-
formance was achieved with only ~15 CPU training hours using
128 000 objects, which is a very cheap and fast training com-
pared to common ML approaches (the method from Tewes et al.
2019 takes about two CPU days with 10°~107 objects). This
means that the NNSC approach has great potential, but is also
very easy to apply to galaxy surveys because it only requires
different shear versions of the same image simulations and low
computational and storage capacities.
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We compared the residual bias after calibration as a func-
tion of several input properties with the advanced method
METACALIBRATION. This resulted in similar performances
and showed different dependences because of the differences
between the approaches and their systematics.

We quantified the effect of model bias by applying the cal-
ibration to different galaxy morphologies than were used for
the training. We found errors of a few percent in some extreme
cases that could be improved by refining the training with a more
proper or sophisticated data set. Although it is not developed in
this paper, the method can be easily adapted to also learn selec-
tion bias and calibrate for it just by adding information about the
data selection as input data for the training and applying small
changes in the cost function.

Our method is an implementation of ML based on a simple
DNN architecture leading to fast calibration that can be easily
applied to weak-lensing analyses of current and future galaxy
surveys and can be a good complementary method to combine
with other approaches and gain sensitivity to systematics and
robustness to the science.
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Appendix A: Details of the training

In this section we describe the training procedure and the archi-
tecture, cost function, and hyper-parameters we implemented for
the results. This configuration was chosen according to the per-
formances found during the optimisation process. Even if these
optimisation parameters could be further studied and optimised,
we already obtained competitive results with the procedure and
the optimisation tests described below.

Our configuration consists of a DNN with four hidden lay-
ers of 30 units per layer. The input consists of the 27 measured
properties as described before, and the output consists on the
four shear bias components.

We first applied a whitening with principal component anal-
ysis (PCA) to the input data in order to decorrelate the 27 prop-
erties, and we normalised them to be between O and 1. This
procedure aims at avoiding some properties or information
to dominate their contribution due to their value ranges or
correlations.

Here we recall the cost function C, which minimises the y?
on the estimated shear biases,

s

by 2
t
E (mm

i=0 a=1

1
CZE_ —m$ )+ (¢, = €5), (A.1)

where ml,, ¢!, and mS,, ¢5, are the true and estimated ath compo-
nent shear multiplicative and additive bias, respectively, and by
is the batch size. Given that usually m;, > ¢; o, the contribution
of m; , in the current approach dominates the minimisation pro-
cess, but additional weights can be applied to some biases when
the performance of the estimation of these biases is to be differ-
ently. Here we include the four bias components in the cost func-
tion to estimate them simultaneously, but separate trainings for
each of the components can also be made. Separate trainings for
each of the components might allow using simpler architecture
and faster learning, but it would miss the correlation between the
components in the learned model.

We constrained the hyper-parameters of the algorithm (con-
tamination level, number of training objects, number of epochs,
batch size, learning rate, and learning decay rate) by analyz-
ing the performance and convergence in a wide hyper-parameter
space, choosing the final hyperparameter set from the best cases
that we found by avoiding overfitting according to the cost func-
tion values of the training and test sets (see Fig. A.1 for the
evolution of the cost function during the training of the fiducial
example). For this, we evaluated the cost function in the training
and the test sets to ensure that, on one hand, the costs converge
during the training, and on the other hand, that the cost in the
training set is not significantly lower than the cost in the test set,
which would be a symptom of overfitting. In some cases, the
cost in the test set was found to be lower than in the training set.
These cases were also discarded for this accidental overfitting.

In Fig. A.2 we show the performance of the shear bias esti-
mates for different hyper-parameters of the ML optimisation.
The left panels show the shear bias dependence as a function
of S/N for the true multiplicative bias and the estimated biases.
The right panels show the difference between the estimated and
true bias as a function of S/N.

In the top panel we show the performance for a different
number of objects used in the training set, going from 16 000
to 256 000 objects (the fiducial case was computed with 128 000
objects). More objects improve the performance, which reaches
some plateau for more than 50 000 objects. This is a very small
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Fig. A.1. Evolution of the cost function for the training and the test sets
during the training on the fiducial implementation of NNSC.

number of objects compared with most of the shear calibration
approaches (Zuntz et al. 2018; Tewes et al. 2019; Kannawadi
et al. 2019).

The middle panels show the performance as a function of the
number of epochs used in the training (with 6000 epochs for the
fiducial case). In this case, the training converges for more than
6000 epochs. For our final case we used 6000 epochs, which took
about 15 CPU hours of training, but we note that similar results
are obtained with longer trainings. This shows that our method
has a very fast training compared to other ML approaches.

In the bottom panels we compare the performance using dif-
ferent architectures. Our final case uses four hidden layers with
30 nodes in each layer, but here we compare it with a case of
a narrower architecture (with four hidden layers with 30, 20,
10, and 10 nodes), a shallow one (with two hidden layers of
90 and 10 units), and a larger one (with four hidden layers of
50 nodes each). The performances as a function of S/N are very
similar, with no obvious conclusion about which architecture is
giving better predictions. However, Fig. A.3 shows the interest
of using a wider and deeper architecture. In the top left panel, we
show the true m; as a function of two properties (the two ellip-
ticity components measured by KSB). The other panels show the
difference between the estimated and the true m; for the large
architecture (top right), the shallow (bottom left), and the narrow
(bottom right) architectures. The narrow and shallow architec-
tures are not able to capture the entire complexity of the 2D
dependence as efficiently as our fiducial architecture. This is
proof that a wide and deep neural network allows us to better
capture the complexity of the system. Although not shown here,
the performances of the larger architecture are very similar to
those of the fiducial one, and the performance is poorer for the
same training time. This indicates that the largest architecture
does not help improve the performance and loses efficiency of
the training, and for this reason, we kept the four hidden layers
of 30 nodes as the fiducial model for the purpose of this paper.

For the remaining hyper-parameters we did not find a
strong dependence on the batch size, showing good performance
between 16 and 256 (32 were finally chosen), and we found that
adding no noise contamination to the input data was optimal for
the performance. About the activation function of the layers, we
used a leaky ReL.U function for the nodes. We found similar
performances using tanh functions or combinations of both, but
with a significantly slower convergence. The results shown in the
paper for the chosen model were obtained with about 15 CPU
hours.
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Fig. A.2. Comparison of estimated multiplicative shear bias m; (left) and its error Am,; (right) as a function of S/N for different ML hyper-
parameters. Top panels: performance for different numbers of objects used in the training, from 10000 to 400 000. Middle panels: performances
for the chosen architecture for different number of epochs, from 1000 to 9000. Bottom panels: performance for different architectures. The chosen
one, shown in blue, corresponds to four hidden layers of 30 nodes each. The shallow architecture, shown in green, has only two hidden layers of
30 nodes. The narrow architecture, shown in orange, corresponds to four hidden layers of 30, 20, 10, and 10 nodes.
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Fig. A.3. Comparison of estimated multiplicative shear bias m; as a function of galaxy measured ellipticities. Top left panel: true values of m,,
and the remaining panels show the difference between the estimated and the true for the fiducial architecture (top right), the shallow architecture

(bottom left), and the narrow one (bottom right).

Appendix B: Metacalibration

The calibration method METACALIBRATION has been presented
in Huff & Mandelbaum (2017) and Sheldon & Huff (2017), with
a publicly available implementation®. It has been tested on sim-
ulations and applied to the Dark Energy Survey (DES) Y1 data
(Zuntz et al. 2018), showing a very good performance. We used
this as a reference recent calibration method for comparison with
our new approach. We briefly describe the idea of this method
and refer to Huff & Mandelbaum (2017) and Sheldon & Huff
(2017) for more details.

METACALIBRATION is based on measuring the shear
response of the individual galaxy images without any need of
image simulations. To do so, METACALIBRATION uses the orig-
inal real image to generate sheared versions of it. With these
sheared versions, the shear response is obtained using Eq. (2)
as in our method. The shear calibration is then applied to the
data using the mean of these individual shear responses and their
propagation through the statistics of interest.

To generate the sheared versions of the original image,
METACALIBRATION first deconvolves the image with the PSF
(which is assumed to be perfectly known). Then the shear dis-
tortion is applied, and the image is reconvolved with a slightly
higher PSF. As this process induces correlated sheared noise, a
noise image following the same procedure but with opposite sign

3 https://github.com/esheldon/ngmix/wiki/
Metacalibration
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shear is also added to reduce the effect of this correlated shear
on the shear response. The final noise realisations can be signifi-
cantly different than the original one, which can have an effect on
the shear response. Because of this, a non-sheared new image is
also generated with the same process. On this new image, shear
is measured and calibrated for science analyses. In addition,
the additive bias can be measured using Eq. (18) from Huff &
Mandelbaum (2017), and the shear response coming from selec-
tion biases can be estimated (Sheldon & Huff 2017).

METACALIBRATION has the advantage that no image simu-
lations for the calibration are required (although its performance
can only be tested in simulations). On the other hand, the method
depends on the numerical processes involving deconvolution,
reconvolution, and the treatment of noise.

METACALIBRATION allows for different implementations
regarding the characterisation of the PSF, including a Gaussian
parameter fitting of the PSF (so that a combination of Gaussian
profiles is used as the PSF), a symmetrisation (where three dif-
ferent rotations of the PSF are stacked to avoid a contribution
of its ellipticity), and using the true PSF directly. We used the
true PSF, but we found very similar results using the symmetri-
sation. Moreover, METACALIBRATION can be applied for any
shape measurement algorithm for which the method calibrates
its shear bias. We used METACALIBRATION to calibrate the KSB
mesurements from the software SHAPELENS.
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