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Within the complex phase diagram of the hole-doped cuprates, seizing the nature of the mysterious
pseudo-gap phase is essential to unravel the microscopic origin of high-temperature superconductiv-
ity. Below the pseudo-gap temperature T⋆, evidences for intra-unit-cell orders breaking the 4-fold
rotation symmetry have been provided by neutron diffraction and scanning tunneling spectroscopy.
Using polarized neutron diffraction on a detwinned YBa2Cu3O6.6 sample, we here report a distinct
a-b anisotropy of the intra-unit-cell magnetic structure factor below T⋆, highlighting that intra-
unit-cell order in this material breaks the mirror symmetry of the CuO2 bilayers. This is likely to
originate from a crisscrossed arrangement of loop currents within the CuO2 bilayer, resulting in a
bilayer mean toroidal axis along the b direction.

PACS numbers: 74.72.Gh,74.72.Kf

Upon doping with charge carriers, the lamellar copper
oxides evolve from antiferromagnetic (AF) Mott insula-
tors to high temperature superconductors (SC). On the
underdoped side of their phase diagram (Fig. 1.a), hole-
doped cuprates exhibit unusual electronic and magnetic
properties in the so-called pseudo-gap (PG) phase be-
low T⋆ [1]. Among cuprate families, various studies in
YBa2Cu3O6+x (YBCO) have enabled researchers to get
a particularly deep understanding of the PG phase. This
bilayer system, whose structure is shown in Fig. 1.b, be-
comes weakly orthorhombic owing to the formation of
CuO chains upon increasing oxygen stoichiometry from
x=0 to 1, but the CuO2 layers are commonly believed
to retain a nearly tetragonal structure which leaves room
for spontaneous breaking of the C4 rotational symmetry
(into C2) in the electronic and/or magnetic structure.
As a strain field, the weak orthorhombicity can facil-
itate observation of such symmetry breaking by elimi-
nating one of the two possible domains, yielding an a-
b anisotropy of physical properties that is much more
pronounced than the structural orthorhombicity itself.
Such an anisotropy has been reported in electrical trans-
port [2], spin dynamics [3–5], Nernst coefficient [6, 7]
and nuclear magnetic resonance [8] measured on de-
twinned single crystals. In the PG state of another bi-
layer cuprate Bi2Sr2CaCu2O8+δ [9], scanning tunneling
microscopy also highlighted an intra-unit-cell (IUC) elec-
tronic nematic state with unbalanced electronic density
on oxygen sites along a and b.

The breaking of time reversal symmetry (TRS) is an-
other feature of the PG physics. Indeed, an IUC mag-
netic order develops below a temperature Tmag, match-
ing T⋆, as reported by polarized neutron diffraction in
four cuprates families [10–15]. In YBCO, this order is
long-ranged at low doping [11, 13], becomes short-ranged
around optimal doping [16] and vanishes at high dop-
ing. This IUC magnetic order indicates that translation
invariance is preserved, but TRS is broken in the PG
state. In addition, resonant ultrasound measurements re-
ported a weak anomaly at T⋆, indicating that PG phase

is a true broken symmetry state [17]. Recently, opti-
cal second-harmonic generation measurements in YBCO
have further reported a global broken inversion symme-
try at T⋆ [18], confirming that the pseudogap region co-
incides with an hidden order. Among other theoretical
proposals [19–21], the most consistent interpretation of
the IUC magnetism [16] remains the loop current (LC)
model for the PG state [22, 23, 25]. It is found to co-
exist with electronic nematic order [26] as well as charge
density waves states [27, 28]. The most promising type of
LC pattern consists of two counter-propagating LCs flow-
ing over copper and neighboring oxygen sites within each
CuO2 unit cell, producing a pair of out-of-plane staggered
orbital magnetic moments (Mi = ±M) separated along
a given diagonal (Fig.1.c). For a single CuO2 layer, four
degenerate LC patterns exist, identified by their toroidal
moment or anapole [23], T =

∑

i ri ×Mi (red arrow in
Fig. 1.c) along the other diagonal, along which the in-
version symmetry is also broken. The associated IUC
magnetic structure factor probed by neutron diffraction
can therefore be anisotropic along both diagonals, but no
a-b anisotropy is expected, as far as a single CuO2 layer
is concerned.

Motivated by the fact that in underdoped YBCO for a
hole doping larger than p∼ 0.1, both the a-b anisotropy
in Nernst coefficient[6] and the IUC magnetic order set
in below T⋆ (Fig.1.a), we have carried out a polarized
neutron diffraction in a detwinned YBCO sample. We
observe an a-b anisotropy in the IUC magnetic structure
factor with distinct magnetic intensities along a∗ and b∗

which show that the mirror symmetry of the CuO2 bi-
layers is broken below T⋆. Our data can be described by
a crisscrossed arrangement of loop currents within the
CuO2 bilayer, with a resulting toroidal axis along the
CuO chain, b, direction.

We here report polarized neutron measurements on a
low doped YBa2Cu3O6.6 (Tc = 63K, p=0.12) detwinned
single crystal, previously used to study the spin dynam-
ics [3]. The polarized neutron experiments have been
performed on the triple axis spectrometer 4F1 (Orphée,
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FIG. 1. (color online) YBa2Cu3O6+x phase diagram and
structure, and the loop currents as a possible model
for the cuprates. (a) YBa2Cu3O6+x phase diagram as a
function of hole doping (p), showing the pseudo-gap (PG),
the incipient charge density wave (CDW) and superconduct-
ing (SC) phases. Are reported: T⋆

us from resonant ultrasound
measurements [17], Tmag the temperature of the magnetic
IUC order [15, 16], Tν the onset of a-b anisotropy from Nernst
effect [6] and TCDW the onset of CDW correlations from reso-
nant X-ray measurements [31]. (b) Crystal structure of the bi-
layer compound YBa2Cu3O6+x with the CuO chains running
along b. (c) Loop current model [22, 23]: each loop induces
an orbital magnetic moment Mi (green arrows) perpendic-
ular to the CuO2 plaquette, located at the triangle center,
x0 = 0.146. The red arrow represents the associated anapole
or toroidal moment T ≃

∑

i
Mi × ri (ri stands for the vector

connecting the center of the unit cell and the location of the
i-th moment). (d) Location of the studied magnetic Bragg
reflexions: wave-vectors, given in reduced lattice units, of the
form of Q = (1, 0,L) (blue circles) and Q = (0, 1,L) (red
circles) have been studied.

CEA-Saclay). A polarizing super-mirror (bender) and a
Mezei flipper are inserted on the incoming neutron beam
in order to select neutrons with a given spin. In addi-
tion, a filter (Pyrolytic Graphite) is put before the ben-
der to remove high harmonics. After the sample, the
final polarization, P, is analyzed by an Heusler analyzer.
The incident and final neutron wave vector are set to
kI = kF = 2.57Å−1. Following previous studies [10–16],
the search for magnetic order in the pseudo-gap phase is
performed on Bragg reflections Q = (1,0,L)/(0,1,L) with
integer L=0,1 values. The general methods to extract
the IUC magnetic signal have already been discussed in
Refs. [10–16], the important steps for our analysis are
reported in the Supplemental Material[24].

In order to compare the magnetic signals along the di-
rections a⋆=[1,0] (blue symbols in Fig. 1.d) and b⋆=[0,1]
(red symbols), measurements were carried out at Bragg
reflections of the form of Q = (1, 0,L)/(0, 1,L) with L=0
or 1 in reduced lattice units. Here, we focus on the
scattered magnetic intensity for two neutron spin polar-
izations P (see Supplemental Material[24]) (i) P ‖ Q

which measures the full magnetic scattering intensity, (ii)
P ⊥ Q in the scattering plane, where predominantly the
out-of-plane magnetic component, Mc, is probed.

Fig. 2 shows the raw neutron intensity on two Bragg
peaks along the directions a⋆ and b⋆ for L=0 and P ‖ Q.
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FIG. 2. (color online) Raw Bragg peaks intensity. Tem-
perature dependence of the Spin-Flip (SF) (red circles) and
Non-Spin-Flip (NSF) (blue squares) neutron intensity for a
neutron polarization P ‖ Q. a) At Q = (1, 0, 0) (along a⋆).
b) At Q = (0, 1, 0) (along b⋆). In the SF channel, a magnetic
signal is observed below Tmag ∼ 240K on top of the NSF in-
tensity normalized at high temperature by a constant flipping
ratio, FR0 ∼ 40. Data have been averaged over a temperature
range of 25K to improve the statistics. Error bars of standard
deviation are about the size of the points.

The intensities for 2 neutron spin states are shown, in the
spin flip (SF) channel when the scattering process flips
the neutron spin at the sample position and non spin flip
(NSF) when it is preserved. Following a standard proce-
dure [10–16], both curves have been normalized at high
temperature over some temperature range (here between
250K and 330K). On the one hand, NSF measures the
nuclear Bragg peak intensity which exhibits a continuous
decay when increasing the temperature as expected for
a Debye-Waller factor. As the sample is detwinned, the
NSF intensity along b⋆ (Fig. 2.b) is weaker than along a⋆

(Fig. 2.a)). On the other hand, the SF scattering inten-
sity probes a true SF magnetic scattering (if any) on top
of a polarization leakage of the NSF channel into the SF
channel. The latter is given by the NSF intensity divided
by the flipping ratio FR0. For a perfectly spin polarized
neutron beam, FR0 goes to infinity and the leakage van-
ishes. On top on the normalized nuclear scattering, the
SF intensity then exhibits an extra scattering at low tem-
perature that is attributed to the IUC magnetic compo-
nent (Fig. 2). In both a⋆ and b⋆ directions, the magnetic
signal appears below Tmag ∼ 240K, in agreement with
Tmag = 220K± 20K determined in an early study on the
same sample matching T* ∼ 230K deduced from resistiv-
ity measurement at that doping [10]. Qualitatively, the
magnetic signal for Q = (0, 1, 0) is much weaker than for
Q = (1, 0, 0), which underlines an a-b anisotropy of the
Q=0 IUC magnetic signal.

To perform a more quantitative analysis of the mag-
netic scattering, we need to calibrate the change of neu-
tron polarization with temperature. We perform a sys-
tematic analysis based on generic procedure improved in
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FIG. 3. (color online) Temperature dependence of the
IUC magnetic intensity in both directions a⋆ (blue
squares) and b⋆ (red circles). (left panels) polarization
P ‖ Q: (a) at L=0 and (b) at L=1. (right panels) polar-
ization P ⊥ Q: (c) at L=0 and (d) L=1. Magnetic inten-
sities are obtained using the procedure described in Supple-
mental Material[24]. Each curve is described by the func-
tion I0(1 − T/Tmag)

2β where I0 is fitted with β = 0.25 and
Tmag = 240K being fixed. Below this temperature, the am-
plitude of the magnetic intensity Imag differs as a function
of wave-vector and polarization. Error bars are of standard
deviation.

previous studies [15, 16]. We then determined the IUC
magnetic intensity, that we report in Fig. 3, at 4 different
Bragg spots for 2 different neutron polarization states.
Fig. 3.a shows the full magnetic intensity for P ‖ Q at
L=0 as a function of temperature. Quite remarkably, the
full magnetic intensity exhibits a net difference between
the two directions, being ∼ 3 times larger at Q = (1, 0, 0)
than at (0, 1, 0). Increasing L to 1, Fig. 3.b, the mag-
netic intensity becomes almost identical in both direc-
tions, with slightly more intensity for (0, 1, 1). A net a-b
anisotropy of the IUC magnetic intensity thus exists, but,
remarkably, changes as a function of L.

Rotating P ⊥ Q in the scattering plane, one selec-
tively probes the scattering intensity ∝ M2

c , which corre-
sponds to the out-of-plane components of the magnetic
moments. In Fig. 3.c, the magnetic intensity is at least
6 times larger at Q = (1, 0, 0) than at (0, 1, 0), where the
magnetic intensity vanishes within error bars. At L=1
(Fig. 3.d), the a-b anisotropy is fully reversed. There-
fore, the anisotropy is more pronounced for the polariza-
tion P ⊥ Q than for the polarization P ‖ Q. Clearly,
the out-of-plane components of the magnetic moments
are mainly responsible for the observed a-b anisotropy
varying with L (Results on the in-plane moment, which
exhibits less anisotropy, will be presented elsewhere).

Our study puts stringent constraints on the possible
nature of the IUC magnetic order: (i) the magnetic struc-
ture factor has to be maximum at L=0, (ii) the IUC or-
der must produce a scattering pattern characterized by
a remarkable a-b anisotropy varying with L, as revealed

a
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FIG. 4. (color online) Possible model for the a-b
anisotropy of the IUC magnetic intensity. Choosing
one possible loop current state over the four existing ones
for the lower plane (1) and varying the state for the upper
plane (2), one obtains four different types of configurations:
in-phase, out-of-phase anapoles/LC correlations, and two sit-
uations where the sum of anapoles in both planes gives a
resultant either along a or b. The last one is selected by
the experimental results. Each of these configurations are
4 times degenerate as one could select a different LC state
for the lower plane. However, the upper plane configuration
would be always correlated with the first plane as discussed
here. The LC structure factor depends only on the relative
configurations of both planes (see Supplemental Material[24]).

LCs in-phase out-of-phase (T1 +T2)‖a (T1 +T2)‖b

(1, 0,L) ∝ cos2(π d
c
L) ∝ sin2(π d

c
L) ∝ sin2(π d

c
L) ∝ cos2(π d

c
L)

(0, 1,L) ∝ cos2(π d
c
L) ∝ sin2(π d

c
L) ∝ cos2(π d

c
L) ∝ sin2(π d

c
L)

TABLE I. L-dependence of the out-of-plane magnetic struc-
ture factor for each group of LC magnetic patterns (dif-
ferent bilayer correlation) of Fig. 4 at Q = (1, 0,L) and
Q = (0, 1,L) (see the structure factor calculation in Sup-
plemental Material[24]).

by a closed comparison of magnetic intensities at (1,0,L)
and (0,1,L). The change of the structure factor along c⋆

- odd in L along a⋆ and even in L along b⋆ -suggests
that the bilayer structure of IUC order does not repre-
sent the symmetries of the higher-temperature phase i.e.
that the symmetry is truly broken. More specifically,
that indicates that the bilayer mirror plane across the
Y site is broken in the pseudogap phase of YBCO. In
particular, the abovementionned requirements cannot be
fulfilled by magnetic nematic states, that involve spin or
orbital moments located on oxygen sites [10, 19]. Indeed,
these magnetic patterns fail to reproduce a L-dependent
a-b anisotropy for the out-of-plane magnetic scattering
intensity. This is at variance with a crisscrossed arrange-
ment of loop currents that we describe below.

The LC model naturally induces staggered out-of-
plane magnetic moments. For a single CuO2 layer, as
discussed above, there are 4 LC degenerate patterns,
none of which is expected to give rise to the observed a-b
anisotropy. However, in a bilayer system such as YBCO,
one needs to consider the relative arrangement of LC pat-
terns in the two CuO2 layers, labeled (1) and (2), sepa-
rated along the c axis by a distance d=0.28c. This yields
to 4x4 possible magnetic configurations, which can be
classified into four distinct groups of LC patterns (Fig. 4)
and identified by the resulting toroidal axis (T1 + T2).
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Each group breaks different symmetries: in the first two
groups, the different configurations are connected by C4

rotation, whereas in the last two groups the configura-
tions are connected by C2 rotation (equivalent to time-
reversal) and breaks the bilayer mirror symmetry. Each
group is characterized by a specific magnetic structure
factor shown in Table I.
If within the bilayer LC patterns are either in-phase

or out-of-phase (where T1 and T2 are parallel or anti-
parallel), the scattered magnetic intensity is respectively
modulated by |2cos(π d

c
L)|2 or |2sin(π d

c
L)|2 along both

a⋆ or b⋆. The in-phase configuration has been previ-
ously favored [10, 13–16] since the IUC intensity is the
strongest at Bragg peaks with L=0 (that actually dis-
misses the out-of-phase case). However, we here observe
that the IUC intensity varies with L differently along the
directions a⋆ and b⋆. Both of these configuration groups
are thus inconsistent with our observations.
The two other configuration groups are featured by

a crisscrossed arrangement of LC patterns, and are fur-
ther identified owing to the orientation of their resulting
toroidal axis (T1 + T2) parallel to either a or b. These
two configurations are breaking the mirror symmetry at
the middle of the bilayers (the Y site) as requested by the
experiment. Importantly, the energy difference between
these two groups is expected to be linearly coupled to the
orthorhombicity. Therefore, any orthorhombic distortion
would remove the degeneracy between both configura-
tions. Interestingly, they exhibit out-of-phase modula-
tions of the scattering intensities at (1,0,L) and (0,1,L),
yielding a L-dependent a-b anisotropy of the scattering
intensity (Tab. I). Only the configuration (T1 + T2) ‖ b

gives rise to a magnetic intensity larger for (1,0,0) than
(0,1,0). Using the structure factor of Tab. I, one remarks
that the anisotropy weakens and is even reversed at L=1.
This evolution of the magnetic intensities is consistent
with the experimental observations (Fig. 3). Neverthe-
less, a weaker or even null intensity for (1,0,1) is observed
(Fig. 3.c). That could simply be due to limited statistics
or more interestingly could be related by a larger distance
d/c separating the moments. Note that, in models that
include the apical oxygens [12, 29], the LCs could be de-
localized and a larger distance d/c would occur and can
further reduce intensity at (1,0,1) than at (0,1,1). Glob-
ally, the LC configuration in Fig. 4 with (T1 + T2) ‖ b

accounts for the polarized neutron data. This particular
arrangement of LC within the bilayer is a truncated ver-
sion of the chiral LC order considered by Pershoguba et al
[30] as a pattern of a cholesteric arrangement of toroidal
moments. In constrast to our results, the proposed full
chiral LC order [30] would double the magnetic unit cell
along c and shift the magnetic Bragg reflection at half-
integer L values. This is not what is happening, instead
we here demonstrate that the direction of the resulting
toroidal axis (T1 + T2) is always pinned down along b,
i.e the CuO chain direction.

On general grounds, it is interesting to relate our find-
ing to the electronic nematicity which has been abun-
dantly discussed in the context of cuprates [2–8] even oc-
curing within the unit cell[9]. Our study shows that the
resulting toroidal moment for a bilayer presents an Ising
anisotropy along the CuO chain. By itself, the presence
of an a-b anisotropy that pins the direction of a vector
magnetic order parameter does not amount to nematicity
because nematic order is characterized by a director, and
not a vector order parameter, such as the anapoles of Fig.
4. However, we show that the magnetic structure of the
IUC order reveals an unexpected a-b anisotropy due to
the bilayer structure of YBCO and its weak orthorhom-
bic distortion. Therefore, our study suggests that there
could exist an interplay between a crisscrossed LC order
and the reported nematicity in YBCO[2, 3, 6, 7], an in-
triguing scenario that has not been consider so far. One
can further notice the good agreement of the nematicity
deduced from Nernst effect with the onset of the IUC or-
der (Fig. 1.a) that explicitly occur at higher temperature
than the charge density wave (CDW) signal [31]. Using
a single band model to discuss instabilities of a weakly
correlated Fermi liquid [32], the nematicity appears as
a spontenaous distortion of the Fermi surface (d-wave
Pomeranchuck instability). Within the 3-band Emery
model, it has been shown that intra-unit-cell instabilities
such as LC order and electronic nematicity could coex-
ist [26]. It might be interesting to re-examine the role of
the bilayer in light of our results.

Finally, the charge order that develops well below T* in
YBCO also exhibits an a-b anisotropy[8] with a remark-
able L-dependent a-b anisotropy of its superstructure
reflections in hard-X ray diffraction measurements [33].
The analysis and modeling of X-ray diffraction measure-
ments [33] actually indicate as well that the reported
quasi-2D CDW breaks the mirror symmetry of the CuO2

bilayers in YBCO as does the crisscrossed LC states that
we are reporting here. This rises questions concerning a
possible interplay between CDW and the crisscrossed LC
states.
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Supplemental Materials:

We here give additional information concerning the
sample and the polarized neutron scattering setup used
during the experiment. The latter aspect has been al-
ready widely discussed in Refs. [1–10] in the context of
the intra-unit-cell magnetic order in cuprate high tem-
perature superconductors.

A. SAMPLE

The sample is made of an array of 180 individually
detwinned YBa2Cu3O6.6 single crystals, co-aligned and
glued on an aluminum plate. The sample is character-
ized by a volume of ∼ 450mm3, with a mosaic of 2.2◦. Its
superconducting critical temperature, Tc, determined by
neutron depolarization technique, is 63 K, corresponding
to a hole doping level of p ≃ 0.12. The same sample
was used to first evidence the IUC magnetic order [1],
and also to study the a-b anisotropy of the spin dynam-
ics around the antiferromagnetic wave-vector in both su-
perconducting and normal state [11]. The twin-domain
population ratio was 94:6. [11]. Between those previous
studies and the present one, the array of single crystals
was re-aligned, yielding an increase of the sample mo-
saic from 1.2◦ to 2.2◦. This leads to a weaker Bragg
peak intensities and a relative increase of the background.
However, the intrinsic physical properties of the twin-free
single crystal are preserved.

B. POLARIZED NEUTRON SCATTERING
SETUP ON 4F1

The polarized neutron scattering measurements were
performed on the cold neutron triple-axis spectrometer
4F1 at Orphée reactor (CEA-Saclay, France). The spec-
trometer is equipped with a double Pyrolitic Graphite
(PG002) monochromator, followed by a polarizing mir-
ror (bender) to polarize the incident neutron spins and
a polarizing Heusler analyzer is used to probe the spin
state of scattered neutrons. The incident and final neu-
tron wave-vectors are set to kI = kF = 2.57Å−1 and the
energy resolution is ∼ 1meV . Before the bender, a PG
filter removes higher harmonics from the incident neu-
tron beam. After the bender, a Mezei flipper is used
to flip the neutron spins. All along the neutron path,
the neutron spin polarization is controlled by magnetic
guide fields of a few Gauss. Around the sample, stan-
dard XYZ Helmholtz-like coils control the neutron spin
polarization. The sample is attached on the cold head of
a closed-circle cryostat.
Intensities were measured at wave-vectors of the form

Q = (H,0,L) and Q = (0,K,L) (with L=0 and 1). We
did not investigate the Bragg peaks for L=2 as the Q=0
magnetic signal at that position is negligible [2, 7]. The
scattering wave-vector Q=(H,K,L) is given in reduced

lattice units (2π
a
, 2π

b
, 2π

c
), with a = 3.82Å, b = 3.87Åand

c = 11.7Å. The scattering vector Q is here a wave vec-
tor of the reciprocal lattice. In the present study, we are
dealing with an IUC magnetic order, i.e a Q=0 antifer-
romagnetic magnetic order. This needs to be specified
in order to avoid any confusion with the usual antifer-
romagnetic spin correlations located in moment space at
the planar wave vector qAF=(0.5,0.5)≡ (π, π).
The sample has been aligned in two different scattering

planes in order to reach the different wave-vectors. First,
the scattering plane [1,0,0]/[0,1,0], with [0,0,1] direction
perpendicular to the scattering plane, allows to access
Q = (H,0,0) and Q = (0,K,0). Second, for the study
of Q=(H,0,1) and (0,K,1), the sample spans in the [-
1,1,0]/[1,1,2] scattering plane, with the direction [-ǫ,-ǫ,1]
perpendicular to the scattering plane (ǫ = (a

c
)2 ∼ 0.11).

C. POLARIZATION ANALYSIS

Polarized neutron scattering is a powerful technique
to study magnetic structures owing to the interaction of
the neutron spin with static or dynamic magnetic field
distribution present within a sample [12]. The scattered
magnetic intensity provides a measurement of the Fourier
transform of the magnetic correlation function. Consid-
ering a distribution of magnetic moments, only the cor-
relation function of their magnetic component perpen-
dicular to Q can be probed, owing to the dipolar nature
of the scattering potential. The scattered magnetic in-
tensity is thus proportional to |σ.M⊥(Q)|2 [12], where

M⊥(Q) = Q̂×M(Q) × Q̂ stands for the Fourier trans-
form of the magnetic moment distribution perpendicular
to the unitary vector Q̂=(H,K,L)/|Q|. The neutron spin
is described in terms of Pauli matrices σ and the polariza-
tion P specifies the direction of the quantification axis.
As a consequence, only the component of M⊥(Q) per-
pendicular to the neutron spin polarization vector P is
spin flip (SF), whereas the component which is parallel is
non spin flip (NSF). At variance with the magnetic scat-
tering, the nuclear scattering does not affect the neutron
spin and is therefore always in the NSF channel. Using a
standard XYZ polarization analysis, one sets P in three
orthogonal orientations (X,Y,Z), where P is respectively

parallel to Q̂ (X), perpendicular to Q̂ but still in the scat-

tering plane (Y) (that is the magnetic component ⊥ Q̂

reported in the Fig. 3.c-d of the manuscript), and parallel
to the vertical direction (Z). For the X polarization, the
full magnetic scattering is SF. The Y and Z polarization
probes in the SF channel two complementary scattered
magnetic intensity, whose sum is equal to the full scat-
tered magnetic intensity. This is often referred to as the
polarization sum rule, which is valid in the absence of
chirality only [7, 12].
Considering the case of an ordered state with magnetic

moments M = (Ma,Mb,Mc), the magnetic intensity
measured in the SF channel with the polarization X is
the total measured magnetic intensity [7, 12]:
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Imag,X ∝ |FM (Q)f(Q)|2

{[

1−

(

2π

a

H

|Q|

)2
]

M2
a +

[

1−

(

2π

b

K

|Q|

)2
]

M2
b +

[

1−

(

2π

c

L

|Q|

)2
]

M2
c

}

(1)

FM (Q) is the magnetic structure factor. Below in sec-
tion E, that structure factor is calculated in the loop
current model for a CuO2 bilayer. f(Q) is the magnetic
form factor vanishing at large |Q|. It corresponds to the
Fourier transform of the local magnetic moment exten-
sion in real space. The terms between brackets are the
neutron orientation factor because neutrons are scattered
by only magnetic component perpendicular to Q̂. For
the polarizations Y and Z where P ⊥ Q̂, a fraction of
the magnetic intensity is transferred from the SF to the
NSF channel. Thus, for a given polarization direction
α = (X,Y,Z),

Imag,α ∝ AαM2
a +BαM2

b + CαM2
c (2)

The coefficients Aα, Bα and Cα depend on the po-
larization direction and on the transferred momentum
through the orientation factor. They are calculated for Q
= (1,0,L) and Q = (0,1,L), and gathered in the following
table (Tab. SII). These coefficients depend on the chosen
horizontal scattering plane and the corresponding verti-
cal direction. As discussed above in section B., the di-
rection perpendicular to the scattering plane was (0,0,1)
for the studies with L=0 and [-ǫ,-ǫ,1] (with ǫ ∼ 0.11) for
the studies with L=1.

α Q A B C Q A B C

X (1,0,0) 0 1 1 (0,1,0) 1 0 1

Y (1,0,0) 0 0 1 (0,1,0) 0 0 1

Z (1,0,0) 0 1 0 (0,1,0) 1 0 0

X (1,0,1) 0.1 1 0.9 (0,1,1) 1 0.1 0.9

Y (1,0,1) 0.01 0.09 0.82 (0,1,1) 0.09 0.01 0.82

Z (1,0,1) 0.09 0.91 0.08 (0,1,1) 0.911 0.09 0.02

TABLE SII. Weight of the different magnetic correlation func-
tions as a function of the neutron spin polarization and the
transfered momentum Q.

It appears for both Q = (1,0,L) and = (0,1,L), that the
polarization direction Y essentially corresponds to the
magnetic moment component M2

c . This is the quantity
reported in Fig. 3c-d. For L=0, Y even always probe
M2

c whereas Z probes the in-plane component (M2
a for

(0,1,0) and M2
b for (1,0,0)). Whatever the transfered

momentum, the sum of the scattered magnetic intensity
for Y and Z polarization correspond to the full scattered
magnetic intensity given by the X polarization (given by
Eq. 1 above) (polarization sum rule) [7, 12].

D. DATA ANALYSIS

We here briefly give the method to extract the mag-
netic signal, Imag. That analysis follows the procedure
which has been established to sucessfully evidence the
intra-unit-cell (IUC) magnetic order over a wide range of
hole doping levels and cuprate families [1–10]. Here, it is
only assumed that there is no magnetic scattering at high
temperature (here between Tmag ∼ 240K and 330K). The
same hypothesis is actually employed for the determina-
tion of the pseudogap temperature, T*, in various phys-
ical properties like in resistivity measurements or for the
uniform magnetic susceptibilty measured by Knight shift
in Nuclear Magnetic Resonance experiments [7].
While for a perfectly polarized neutron beam, only a

magnetic scattering can show up in the SF channel, in a
real polarized neutron scattering measurement, the po-
larization of the neutron beam is not perfect but finite
p ∼ 0.96. That defines a flipping ratio FR = INSF/ISF =
(1+p)/(1−p). For our setup on 4F1, a typical flipping ra-
tio is of the order of 40-50. As a consequence, the nuclear
Bragg intensity in the NSF channel, INSF, leaks into the
SF channel for measurements at Bragg positions. It is
then convenient to report at each temperature the quan-
tity 1/FR(T) which is the ratio of measured scattered
SF and NSF intensities. For each polarization direction
α = (X,Y,Z), that reads:

1/FRα(T ) = ISF
α /INSF

α = Imag,α/I
NSF
α + 1/FR0

α (3)

1/FR0
α represents the quality of the polarization of

the neutron beam. Experimentally, it turns out that
this quantity varies slightly for the different neutron spin
polarization. It can as well exhibits a weak tempera-
ture dependence (see a detailed discussion in Ref. [9]).
Fig. S5 reports 1/FRα(T) measured for 2 Bragg peaks
Q=(1,0,0) (in red) andQ=(2,0,0) (in blue), for 2 neutron
polarizations (X for Fig. S5.a and Y for Fig. S5.b). For
Q=(1,0,0), the reported quantity is the ratio of the raw
intensity shown in Fig. 2a of the manuscript. The data
for Q=(2,0,0) have been shifted to scale at high temper-
ature with the data at Q=(1,0,0). We stress again that
this is the central assumption of the data analysis that
no magnetic scattering exists at high temperature (say
here above 250K).
The behaviour of 1/FRα(T) is clearly different for both

Bragg peaks. A weakly linear dependence is observed
for Q=(2,0,0) whereas an additional upturn sets in for
Q=(1,0,0). That signs the existence of a magnetic IUC
scattering at that position which (if any) is negligible at
large wave vector, Q=(2,0,0), due to the magnetic form
factor [7]. The behaviour at Q=(2,0,0) then defines the
evolution of the bare inverse of the flipping ratio, 1/FR0

α.
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FIG. S5. Temperature dependencies of the inverse of the
flipping ratio 1/FR (see text) measured at Q = (1,0,0) (red
circles) and at Q = (2,0,0) (blue squares). The right vertical
scale corresponding to Q = (2,0,0) data has been shifted so
that both curves coincide at high temperature (above 250 K).
1/FR is represented for 2 polarizations: (a) polarization X

(P parallel to Q̂) (b) polarization Y (P perpendicular to Q̂).
Data are averaged over a temperature range of 25K to improve
the statistics.

At high temperature, when there is no magnetic in-
tensity, 1/FR equals 1/FR0. Below Tmag ∼ 240K,
the magnetic intensity Imag,α appears. Such a value of
Tmag agrees with 220K ± 20K determined by previous
studies of the IUC magnetic order [1] on the same de-
twinned sample. The extra magnetic signal displays a
characteristic T-dependence that can be described by
I0(1 − T/Tmag)

2β [2] where I0 is fitted and β = 0.25 is
fixed.

Once the behaviour of 1/FR0
α is known fromQ=(2,0,0)

and multiplying both sides of Eq. 3 by INSF
α , one can

determine, Imag,α, the magnetic intensity for each po-
larization. We report in Fig. 2 of the manuscript the
comparison for L=0 between ISFα and INSF

α /FR0
α whose

difference directly gives Imag,α. This analysis procedure
was systematically applied to extract the magnetic scat-
tering at Q=(1,0,L) and Q=(0,1,L) for L=0 and 1. The
deduced magnetic intensities are shown in Fig. 3 of the
manuscript.

As we here discuss the anisotropy of the magnetic
signal, one needs not to confuse with the anisotropy
of the nuclear intensities. YBa2Cu3O6.6 exhibits an
orthorhombic structure whereas the parent compound
YBa2Cu3O6 has a tetragonal structure. The additional
oxygen atoms (0.6 per formula unit) are forming the CuO
chain along b. These extra oxygen atoms in the CuO
chain modify the nuclear structure factor by adding a
term ∝ 2bO cos(πK), where bO stands for the oxygen
neutron scattering length. This term gives a negative
contribution to the structure factor for odd K and a pos-
itive one for even K. This is the origin of the a-b anistropy
for nuclear Bragg reflection (1,0,L) et (0,1,L), while there
is no anisotropy for Bragg reflections (2,0,0) and (0,2,0).
As a result, the calculated nuclear intensities are always
larger along a⋆=[1,0] than b⋆=[0,1]. The measured in-
tensities in the NSF channel are given in the following
table (Tab. SIII) for the four wave-vectors Q =(1,0,0),

Q=(0,1,0), Q =(1,0,1) and Q =(0,1,1). For both values
of L, the intensities along a⋆ is larger than along b⋆. In
contrast, the magnetic intensities are not systematically
larger along a⋆.

Q (1,0,0) (0,1,0) (1,0,1) (0,1,1)

INSF 1.6× 106 1.1× 106 1.5× 106 1.5 × 105

TABLE SIII. NSF intensities measured at Q = (1,0,0)/Q
= (0,1,0) and Q = (1,0,1)/Q = (0,1,1). All numbers are
counts/20 minutes.

E. STRUCTURE FACTOR ASSOCIATED WITH
THE LOOP CURRENTS MODEL IN A BILAYER

SYSTEM

Among several possible models, we focus on the loop
currents (phase CC-Θ2 [13]) for which the out-of-plane
moment is directly related by an anapole or toroidal mo-
ment, within each CuO2 plaquette (Fig.1.c). The anapole
T points along the diagonal within the plane and defines
the loop current state in any given CuO2 layer. There
are four different loop current states, which are obtained
by π/2-rotation [14] of T. These loops produce orbital
magnetic moment at (±x0,±x0) or (±x0,∓x0) within the
CuO2 plane (Fig. 1.c). These four equivalent configura-
tions exhibit indistinguishable structure factors at Bragg
positions (1,0,L) or (0,1,L) where the IUC magnetic order
has been observed [7].
Further, the YBCO structure has a bilayer of CuO2

planes (Fig. 1.a). The two CuO2 planes within the unit
cell of the YBCO compound are ± d

2
away from the yt-

trium site (d=0.28c=3.3Å). As it exists four possible
states for each plane, it then yields to 16 possible con-
figurations of the LCs for a bilayer system. Whatever is
the LC state in a given plane, one can determine 4 dif-
ferent groups corresponding to the type of correlations
of the LC or toroidal moment from one layer T1 to the
next layer T2. The 4 different configurations: in-phase
and out-of-phase when T1 and T2 are parallel or anti-
parallel and the two cases where the toroidal moments
or anapoles are crisscrossed. In the last cases, the sum
T1 +T2 either points along a, or b. For each group,
one example is represented on Fig. 4 of the manuscript
where the pattern in the first plane, T1, is always the
same. Another choice of T1 will give rise to another 4
patterns which will belong to each of the category dis-
cussed above.
The magnetic intensity is proportional to the square

of the magnetic structure factor |FM|2 [7]. For the LC
model considered here, that corresponds to the out-of-
plane magnetic intensity, Imag ∝ |FM|2|Mc|

2, measuring
the orbital moment pointing along c*.
We now estimate Imag for the 4 configurations of Fig.

4. For the two first categories of Fig. 4, Imag is propor-

tional to |2Mcsin(2πx0)|
2|2cos(π d

c
L)|2 (for the in-phase
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or parallel moments configuration), or proportional to
|2Mcsin(2πx0)|

2|2sin(π d
c
L)|2 (for the out-of-phase or an-

tiparallel moments configuration).

Finally, one can calculate FM for both crisscrossed con-
figurations of Fig. 4. In the case of the sum T1 +T2 of
both anapoles is pointing along a, we get:

FM = 2Mc[2sin(π
d

c
L)sin(2πx0H)cos(2πx0K) + 2cos(π

d

c
L)cos(2πx0H)sin(2πx0K)] (4)

Imag[1, 0, L] ∝ |2Mcsin(2πx0)|
2|2sin(π

d

c
L)|2 (5)

Imag[0, 1, L] ∝ |2Mcsin(2πx0)|
2|2cos(π

d

c
L)|2 (6)

and in the case of the sum T1 +T2 of both anapoles is pointing along b:

FM = 2Mc[2cos(π
d

c
L)sin(2πx0H)cos(2πx0K) + 2sin(π

d

c
L)cos(2πx0H)sin(2πx0K)] (7)

Imag[1, 0, L] ∝ |2Mcsin(2πx0)|
2|2cos(π

d

c
L)|2 (8)

Imag[0, 1, L] ∝ |2Mcsin(2πx0)|
2|2sin(π

d

c
L)|2 (9)

These relations are given in table I of the manuscript
for each direction. It is clear from these expressions that
another choice of T1 in the lower layer will give rise to
the same magnetic intensity for each of the category as
it will only change the sign of x0.
One finally remarks that when the putative mirror

symmetry is broken, it should be reflected in a change

of the crystal structure with a distortion that should be
measured either by neutron scattering or X-ray measure-
ments. However, the distortion can be too weak to be ob-
served. So far, no distortion of the orthorhombic crystal
lattice of YBCO has been reported at T*. Interestingly,
the broken mirror symmetry at T* has been also recently
shown by the second harmonic optics results [15].
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