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Abstract. HPC applications rely on a distributed-memory parallel pro-
gramming model to improve the overall execution time. This leads to
spawning multiple processes that need to communicate with each other
to make the code progress. But these communications involve overheads
caused by network latencies or synchronizations between processes. One
possible approach to reduce those overheads is to overlap communica-
tions with computations. MPI allows this solution through its nonblock-
ing communication mode: a nonblocking communication is composed of
an initialization and a completion call. It is then possible to overlap the
communication by inserting computations between these two calls. The
use of nonblocking collective calls is however still marginal and adds a
new layer of complexity. In this paper we propose an automatic static
optimization that (i) transforms blocking MPI communications into their
nonblocking counterparts and (ii) performs extensive code motion to in-
crease the size of overlapping intervals between initialization and comple-
tion calls. Our method is implemented in LLVM as a compilation pass,
and shows promising results on two mini applications.

Keywords: Static Optimization · Message Passing Interface · Nonblock-
ing communications.

1 Introduction

HPC applications (e.g., simulations) run on clusters which sport a mix of shared-
and distributed-memory architecture. In this context, the computations are
spread over multiple NUMA (non-uniform memory access) nodes that are in-
terconnected using a high speed network. Thus the application needs to perform
communications between those nodes to carry out the simulation. However the
communications can introduce overheads due to idle times, either because a
process is waiting for data another process must send, or because processes not
progressing at the same speed must synchronize. The time waiting on commu-
nications is not being spent on progressing the computation. A possible opti-
mization would be to leverage these waiting times by performing computations
independent of the communications.
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The Message Passing Interface (MPI) defines multiple functions to perform
communications over such distributed architectures. Among these operations,
the nonblocking ones allow communications to asynchronously progress, thus
enabling the overlap of communications by computations. Nonblocking commu-
nications are split into 2 distinct calls, one that initializes the exchange, and one
that waits for its completion. To achieve overlapping, we have to insert com-
putations, that are independent of the communications, between those calls so
they can be performed while the communications are ongoing.

The use of nonblocking collective communications is however marginal. Many
legacy codes still prefer blocking communications because it introduces a new
complexity: it is up to the developer to make sure that the code does not have
any race condition. As statements can be inserted and executed while the com-
munication is ongoing, they can have an influence on the communication buffers.
Many prior works proposed techniques to increase overlapping time by looking
for specific patterns of code architecture such as producer-consumer loops or by
performing basic code motion. In this paper we propose an automatic optimiza-
tion that transforms blocking MPI calls into their nonblocking counterparts and
that optimizes their overlapping potential through extensive code motion. Our
contributions are the following :

– Automatic transformation of blocking MPI calls into their nonblocking mode.
– Increase of overlapping possibilities by performing extensive code motion to

move apart data dependencies.
– Implementation using a state-of-the-art and widespread compilation frame-

work (LLVM).

Section 2 presents related work on the use of nonblocking communications in
optimizing HPC applications. Section 3 introduces a simple motivating example.
Section 4 describes the optimization pass and finally, its implementation and the
results are the subject of section 5.

2 Related Work

2.1 Asynchronous Communications in Scientific Applications

Many applications rely on nonblocking communications to improve performance
on large-scale clusters. But code developpers usually perform manual transfor-
mations and major redesign of widely-used algorithms to demonstrate the ad-
vantages of such nonblocking calls by reducing communications overheads.

Clement et al. proposed a sorting algorithm suited for distributed architec-
tures [2]. The algorithm is an adaptation of a partition-based sorting algorithm
that leverages nonblocking calls in order to overlap communication with compu-
tation. Although their solution shows potential, it requires balance between the
read and write, network, and computing times.

Hoefler et al. introduced an optimization of a conjugate gradient solver [9]
using LibNBC [10], a custom library which implements MPI nonblocking collec-
tive communications. The progression of nonblocking communications is manu-
ally forced by inserting testing points in the overlapping window. More recently,
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Song et al. developed an algorithm for the 3D Fast Fourier Transform using
nonblocking MPI collectives [14]. Different parameters, such as the tiling size
and the frequency of MPI Test calls to force the progression, are automatically
determined in order to achieve performance.

Similarly Kandalla et al. implemented the Breadth First Search algorithm
with nonblocking neighborhood MPI collective communications [11]. Even if
they show a communication overhead improvement up to 70%, the execution
time does not improve and sometimes degrades. This might be caused by the
additional operations that are needed to partition the problem.

2.2 Automatic Transformation of MPI codes

On the topic of automatic transformations for MPI, Danalis et al. described
communication/computation overlapping possibilities including transformation
of blocking calls into their nonblocking counterparts, decomposing collective calls
into point-to-point ones, performing code motion, variable cloning, and loop
tiling and fission to increase the overlapping window [4]. ASPhALT implements
a subset of those optimizations using the open64 source-to-source compiler [3].
It aims at optimizing producer-consumer loops by performing prepush transfor-
mations, meaning that it will try to send the data as soon as it is generated so
that consumer computation can be performed while the next chunk of data is
being produced. The producer-consumer loop is partitioned with an arbitrary
size to control the amount of data that is generated, shared and computed.

Guo et al. show how to improve this approach by adding a performance
analytical model of the application [7]. With the help of user-added annotations,
it predicts performance and decides when a transformation of blocking call into
nonblocking one becomes worthy. The transformation itself and the code motion
are still manually done.

Das et al. proposed an approach based on a Wait Graph to sink the com-
pletion call of nonblocking communications [5], that is to move at a later point
in the execution the completion calls. This graph contains information about
the control and data flow, enabling them to sink the wait call to the nearest
statement that uses a communication buffer.

Petal [13] is a compiler pass using the ROSE compiler that also sinks comple-
tion calls to the nearest dependency point. Ahmed et al. used an alias analysis to
detect whether a statement uses a communication buffer. Their method trans-
forms nonblocking communications into persistent communications when they
are nested inside a loop [1].

Prior work on the transformation of MPI codes to expose communication-
computation overlap possibilities has been mostly focusing on a specific scenario
such as producer-consumer loops. The attempts at widening the overlap frame
have been limited by the nearest sensitive statement. In this paper we propose
a solution that performs extensive code transformation and motion so that the
size of the overlapping window can be significantly increased.
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3 Motivating Example

This section illustrates how our work transforms MPI codes to increase the
possibilities of overlapping communications with computations.

1 MPI_Alltoall(d1 , sendcount , MPI_BYTE , d2,

2 recvcount , MPI_BYTE , MPI_COMM_WORLD);

3 matrix_multiply(a, b, res , matrix_size);

4 touch(d1);

5 matrix_multiply(a2, b2, res , matrix_size);

Listing 1.1: Basic example

The alltoall communication line 1 in Listing 1.1 is blocking. Every MPI pro-
cess that is involved in the communication has to wait at that statement until
the communication buffers (d1 and d2) become available again. In this situa-
tion each MPI process has to wait until their output buffer becomes available
again and until they have received the data from every other MPI process. A
possible improvement in this context would be to translate that blocking alltoall
call into nonblocking calls through initialization (MPI Ialltoall) and comple-
tion (MPI Wait). We can now move the completion call beyond the first matrix
computation, as it is not involved in the communication, and before the function
call that accesses one of the communication buffer.

1 MPI_Request req;

2 MPI_Ialltoall(d1 , sendcount , MPI_BYTE , d2 ,

3 recvcount , MPI_BYTE , MPI_COMM_WORLD , &req);

4 matrix_multiply(a, b, matrix_size);

5 MPI_Wait (&req , MPI_STATUS_IGNORE)

6 touch(d1);

7 matrix_multiply(a2, b2, matrix_size);

8

Listing 1.2: Optimized version of listing 1.1

In prior work, the calls would be hoisted or sunk to the first statement that
reads or writes to a communication buffer, depending on the call, as presented
in Listing 1.2. However there are statements beyond the first dependency that
are independent of the MPI call. Moving those statements with the function call
increases the overlapping window. Applied to the previous example, it results in
the code in Listing 1.3. In this paper we propose a method to perform such code
motion to increase the possibilities of overlapping communications with compu-
tations by identifying such boundaries and by displacing them further. In the
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previous code snippet, the completion and the touch calls are moved beyond the
second matrix computation as well, further expanding the overlapping window.

1 MPI_Request req;

2 MPI_Ialltoall(d1 , sendcount , MPI_BYTE , d2 ,

3 recvcount , MPI_BYTE , MPI_COMM_WORLD , &req);

4 matrix_multiply(a, b, matrix_size);

5 matrix_multiply(a2, b2, matrix_size);

6 MPI_Wait (&req , MPI_STATUS_IGNORE)

7 touch(d1);

8

Listing 1.3: Optimized version of listing 1.1 with extensive code motion

4 Maximizing Communication-computation Overlap

As defined in the standard, a nonblocking MPI communication is composed of
two calls: an initialization and a completion call. This form enables the overlap
of communications with computations by inserting statements between these
two calls. In order to avoid race conditions, those statements should not modify
the communication buffers. As suggested by prior work, it is possible to per-
form multiple code transformations such as loop fission or sinking the wait to
the nearest dependent statement to enlarge the overlapping frame. To go one
step further, we propose to move not only the initialization call but also the
statements that contribute to the values used in this call, and the same for the
completion call and the statements that depend on it. Defining these backward
and forward slices [15] of computation associated to the MPI calls and their
insertion point is the heart of our contribution in order to increase the size of
the overlapping window.

4.1 Finding slices and insertion point

The principle of the method is to automatically determine for any data-exchange
based point-to-point and collective MPI call all statements that it depends on
(the backward slice for that call) and all statements that depend on it (the
forward slice). These slices correspond to a sequence of statements connected by
dependences. In this work, the scope of these slices is limited to statements that
are in the same control-flow structure: same function, same loop and same if-
then-else construct. To find the slices and the insertion points, we specifically rely
on the Control-Flow Graph (CFG) of the function. This is a directed graph where
the vertices are basic blocks (BB). A basic block is a sequence of instructions
(or statements) that have to be executed in a specific order. When the first
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instruction of a given BB has been executed, then the following instructions in
that BB must be executed in that order. One can only enter a BB through its
first instruction, and leave it through its last. The edges are the execution paths
between the basic blocks.

For every point-to-point and collective communications, we consider their
communication buffers and iteratively build their backward slice of statements:
walking the CFG backwardly, starting from the MPI call, each statement along
the use-def chains to the MPI call buffer is collected. The iterative method stops
when leaving the if-then-else, for loop, or function, surrounding the MPI call, or
when the next statement to put in the list is in another control structure. The
sequence of statements collected correspond to the backward slice, and the place
in the CFG where the iterative method stops to the insertion point for this slice
and for the initialization call. The same applies for the forward slice, moving
forward in the CFG from the MPI call and the use-def chains.

Algorithm 1 describes this code transformation for MPI communications, for
the specific case of the initialization call insertion.

Algorithm 1 Finding an insertion point for the initialization call

procedure insert mpi init call(function)
Require: List of MPI communications called in function
Ensure: MPI nonblocking init calls are inserted along with their dependencies at valid

locations.
for all mpi call ∈ function do

list stmt init ← ∅
V ← get dependencies(mpi call) . Build the list of statements upon which

the MPI call depends using use-def chains.
stmt ← mpi call.get stmt()
while stmt immovable init(stmt, mpi call.get stmt(), V ) = false do

stmt ← immediate dominator(stmt)
if stmt ∈ V then

list stmt init ← list stmt init ∪ {stmt}
insert init ← stmt
Move statements from list stmt init to the point of the code where stmt is

the immediate dominator, and insert the init call

procedure stmt immovable init(stmt, call stmt, V)
Ensure: True if stmt is a valid insertion point

if stmt is the first statement of the function then return true
for all tstmt between stmt and its immediate dominator do

if tstmt ∈ V then return true

if call stmt is between stmt and its immediate post-dominator then return true

if stmt is a MPI procedure and stmt 6= call stmt then return true
return false
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First, we build the backward slice of the call. To walk through the CFG from
statement to statement, we extend the notion of dominance and post-dominance
from BB to statements. A statement s1 dominates a statement s2 if s1 belongs
to a BB dominating the BB of s2, or if s1 precedes s2 in the sequence of a BB.

We stop iterating over the statements once a suitable insertion point has
been found for the initialization call. If needed, we allocate a new MPI Request

and create a new call site that will initialize the communication. That new
nonblocking call site will use the same argument list as the blocking version, at
which we append the request. Those newly created instructions are added at the
insertion point. The correctness of an insertion point for the initialization call is
defined by the function stmt immovable init, and described in Section 4.2.

We operate the same way for the completion call by visiting the subsequent
statements, starting at the MPI call site. Once we find a suitable insertion point
for the completion call, we insert the MPI Wait() call, using the corresponding
created MPI Request, or the MPI Request from the pre-existing nonblocking
communication, as its argument.

Finally, the original blocking call is removed from the function. If the com-
munication was already nonblocking, then the original call is simply moved to
the first insertion point.

4.2 Defining a suitable insertion point

For each MPI communication, the insertion point for the initialization or the
completion call is the statement after which we will move the initialization,
or before which we will move the completion call. The specific case for the
initialization is displayed on the stmt immovable init function of Algorithm 1.

A statement is an insertion point if :

– The statement is the first statement of the current function.
– There is a control flow dependency.
– The statement is an MPI call. This constraint prevents from undoing previ-

ous transformations and from having different collective orders, while allow-
ing multiple pending nonblocking calls. Besides according to the standard,
it is not allowed to execute MPI functions beyond the boundaries defined by
calls such as MPI Init and MPI Finalize.

In the literature another condition would also be a suitable insertion point:

– There is a data dependency between the call and the current statement.

This condition is limiting the size of the overlapping interval. While it is
necessary to not overlap such data dependencies to keep the correctness of the
program, other statements beyond this first dependency might be completely
independent from the MPI call. In such case it can be useful to not stop at this
first data dependency, and to add it to the list of statements that will be moved
around, along with the insertion of the initialization or completion call when a
stronger condition is reached.

This is why this condition is not present in our insert point list. In the
following section, we will describe how we deal with such data dependencies.
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4.3 Displacing the dependencies to achieve overlap

In our search, we visit every statement until a valid insertion point, defined in
Section 4.2, is found either by going from predecessor to predecessor as shown
in Algorithm 1 for the initialization, or by going from successor to successor for
the completion call. While traversing the CFG to find a suitable insertion point,
every visited statement that belongs to the slice, thus every visited statement
that use or define an argument of the MPI call, will be enqueued. We use a queue
to store those statements to ensure that we can reproduce the order in which they
were visited. Those statements will need to be moved to the insertion location
to keep the dependencies and prevent race conditions that could be caused by
the introduction of nonblocking communications.

When a suitable insertion point has been found for the initialization or com-
pletion call, we dequeue the instructions at that location while ensuring that
the execution order of those statements is kept. In the case of the initialization
call, the newly created MPI Request (if necessary), and the nonblocking call are
inserted after dequeuing all the dependent statements. In the case of the com-
pletion call, the call is inserted before dequeuing the other statements. This way,
the order between the dependencies is kept.

5 Implementation and Experimental results

5.1 Implementation using LLVM

Algorithm 1 is implemented as a compilation pass in the LLVM compiler [12]:
the code is represented as an intermediate representation (IR) which allows us
to be completely independent of the source language. The only language-related
information we need to consider is the representation of the MPI calls in the
parsed language, to be able to correctly capture them. LLVM defines many
analysis passes whose results can be reused in other optimizations and user-
defined passes. These passes provide us the list of loops, the dominator and
post-dominator trees for a given function, and the use-def chains of each value.

5.2 Experimental Results

All measurements are performed on a supercomputer based on Intel Sandybridge
processors. This partition is composed of 3,360 cores, each one having 4,000
Mo of memory, distributed over 210 nodes. The nodes are interconnected using
infiniBand. We used the OpenMPI installed by default on this environment,
which is based on version 2.0.4.

Our method is evaluated by measuring the duration of each overlapping
window created for the motivating example presented in Listing 1.1 and for two
mini applications from the Mantevo project [8]: miniMD and miniFE. All results
are collected per process and averaged. We measure the effectiveness of our
method by comparing non-iterative transformations (related work, denoted as
basic) with extensive code motion (our method, denoted as extended). A wide
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overlapping window means a computation-communication overlap possibility.
Each version of all the codes was run to ensure numerical results remained valid
with each transformation.

The example in Listing 1.1 is a slightly modified version of a benchmark
designed to measure the performance of nonblocking MPI calls, specifically their
ability to asynchronously progress communications [6]. This example helps verify
the correctness and performance of the transformations. The matrix size in the
matrix multiply call is set so that the function takes a user-defined duration
to complete, 2,500 microseconds in our runs.

Our optimization pass successfully translated the blocking alltoall call into
its nonblocking counterparts and the completion call was sunk below the second
matrix computation. Table 1 shows the duration of the overlapping window mea-
sured for Listings 1.2 and 1.3. The result confirms what we statically observed
on the IR with an overlapping window of 4,803 microseconds, which roughly
corresponds to the overlapping of both matrix computations when performing
extensive code motion. Similarly when using a basic code motion technique the
observed duration of the overlapping interval is at 2,406 microseconds, corre-
sponding to the execution of one matrix operation.

MPI Call File Line
Interval duration

basic (µs)
Interval duration

extended (µs)

MPI Alltoall bench.c 28 2,406.57 4,803.15

Table 1: Overlapping window duration for the motivating example

MiniMD simulates molecular dynamics using the Lennard-Jones potential or
the Embedded Atom Model (EAM). It is a simpler version of LAMMPS and
is written in about 5000 lines of C++ code. We used version 1.2, the EAM
force and a problem of size 1283. The benchmark is deployed over 8 nodes,
using 15 cores on each node. Applied to each file of the benchmark, our pass
transformed 57 MPI calls. Out of those 57 calls, 30 were executed during the
run. The most significant transformations are shown in Table 2, the 24 remaining
transformations have an overlapping window that is too narrow to expose any
potential gain for asynchronous progression. MPI Allreduce called in thermo.cpp
shows the bigger overlapping interval when applying extensive code motion.

MiniFE aims at approximating an unstructured implicit finite element ap-
plication using fewer than 8000 lines of code in C++. We used version 2.0 and
as with miniMD, measurements use the reference benchmark and a problem of
size 10243. It is also run on 8 sandy nodes using 15 cores on each. Our pass
found and transformed 37 MPI calls. Out of those 37 calls, 22 were detected at
runtime and only 3 of them had a significant overlapping window in either the
basic or the extensive case. The duration of their overlapping interval is shown
in table 3. The basic approach is unable to expose any overlapping potential.
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MPI Call File Line
Interval duration

basic (µs)
Interval duration

extended (µs)

MPI Allreduce thermo.cpp 133 0.05 65.84

MPI Bcast force eam.cpp 524 41.59 54.34

MPI Bcast force eam.cpp 525 32.53 42.51

MPI Bcast force eam.cpp 526 25.66 35.37

MPI Bcast force eam.cpp 527 16.71 18.31

MPI Bcast force eam.cpp 528 9.40 10.09

Max. MPI Call Overlap 125.94 226.46

Table 2: Most significant overlapping window duration for miniMD

Using extensive code motion, we successfully created an overlapping window of
4 milliseconds.

MPI call File Line
Interval duration

basic (µs)
Interval duration

extended (µs)

MPI Allreduce SparseMatrix functions.hpp 313 0.11 4193

MPI Bcast utils.cpp 92 0.51 166

MPI Allreduce make local matrix.cpp 216 0.22 1.41

Max. MPI Call Overlap 0.84 4360.41

Table 3: Most significant overlapping window duration for miniFE

5.3 Discussion

In this section, we chose to display overlap windows timings instead of actual
MPI nonblocking communications overlap measurements. Success in hiding MPI
nonblocking communication time with computation for MPI nonblocking com-
munications heavily depends on the MPI runtime implementation, and how
efficient it is to realize actual asynchronous progression. Also, MPI nonblock-
ing communications are very often more time consuming than their blocking
counterparts, mainly due to the progression mechanism. For these reasons, the
performance gain one can achieve depends more on the quality of the MPI im-
plementation than on the quality of the transformation method.

As our work focuses on increasing the size of the overlap windows, it is clearer
to display the time of these overlap windows. The overlap windows timings don’t
depend on the quality of the MPI implementation, and allow to clearly show the
benefit of our method when compared to state-of-the-art.
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6 Conclusion

In this paper we propose a method to automatically perform extensive code
motion in order to increase overlapping opportunities for nonblocking MPI com-
munications. Our algorithm builds on and improves state-of-the-art methods to
transform all blocking communications of a program into nonblocking opera-
tions. While previous work only moves apart the nonblocking calls to the first
instruction they depend on, we use code motion to further extend computation-
communication overlaps. Our method was implemented as a pass in the LLVM
compiler and successfully tested on two miniapplications.

In future work, we will aim at improving the support for already existing
nonblocking communications. In the current implementation, only initialization
calls are moved, because we did not yet succeed in matching existing comple-
tion calls (MPI Test*() and MPI Wait*()) to their corresponding initialization
calls. Thus, the code motion misses information to capture all necessary data
dependencies to ensure the validity of the insertion point. Being able to link the
completion calls to their respective initialization calls will allow moving both
calls to increase overlap possibilities. Another limitation of our approach is the
analysis being intraprocedual. Pushing the boundaries of the analysis beyond
the current function would further improve overlap possibilities.
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