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ABSTRACT

Context. With the discovery over the last two decades of a large diversity of exoplanetary systems, it is now of prime importance to
characterize star–planet interactions and how such systems evolve.
Aims. We address this question by studying systems formed by a solar-like star and a close-in planet. We focus on the stellar wind
spinning down the star along its main-sequence phase and tidal interaction causing orbital evolution of the systems. Despite recent
significant advances in these fields, all current models use parametric descriptions to study at least one of these effects. Our objective is
to introduce ab initio prescriptions of the tidal and braking torques simultaneously, so as to improve our understanding of the underlying
physics.
Methods. We develop a one-dimensional (1D) numerical model of coplanar circular star–planet systems taking into account stellar
structural changes, wind braking, and tidal interaction and implement it in a code called ESPEM. We follow the secular evolution
of the stellar rotation and of the semi-major axis of the orbit, assuming a bilayer internal structure for the former. After comparing
our predictions to recent observations and models, we perform tests to emphasize the contribution of ab initio prescriptions. Finally,
we isolate four significant characteristics of star–planet systems: stellar mass, initial stellar rotation period, planetary mass and initial
semi-major axis; and browse the parameter space to investigate the influence of each of them on the fate of the system.
Results. Our secular model of stellar wind braking accurately reproduces the recent observations of stellar rotation in open clusters.
Our results show that a planet can affect the rotation of its host star and that the resulting spin-up or spin-down depends on the orbital
semi-major axis and on the joint influence of magnetic and tidal effects. The ab initio prescription for tidal dissipation that we used
predicts fast outward migration of massive planets orbiting fast-rotating young stars. Finally, we provide the reader with a criterion
based on the characteristics of the system that allows us to assess whether or not the planet will undergo orbital decay due to tidal
interaction.
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1. Introduction

The planetary systems discovered during the last two decades
show a wide and unexpected diversity. Indeed, the detection
of 51 Pegasi b (Mayor & Queloz 1995), a Jupiter-like planet
orbiting around its star in less than five days, questioned the
theories of planetary system formation which were based on
observations of the solar system. Recently, the discovery of
Proxima b (Anglada-Escudé et al. 2016) and the planetary system
of TRAPPIST-1 (Gillon et al. 2017) paved the way for research
of habitable planets around low-mass stars. Understanding how
such systems form and evolve is one of the most challenging
questions in astrophysics.

A large proportion of systems where one planet or more is
orbiting closer to its host star than Mercury to the Sun have been
observed. Tidal interactions play a key role in the orbital con-
figuration of these very compact systems since they are likely
to circularize orbits, align spins, and synchronize periods (Zahn
1977; Mathis & Remus 2013; Ogilvie 2014). These interac-
tions consists in an exchange of angular momentum between the
orbit and the spins of the celestial bodies. This exchange is the

consequence of the dissipation of tidal flows. The kinetic energy
of these tidal flows is converted into heat through tidal dissipa-
tion. Since the planet is synchronized within a timescale of a few
thousand years, the stellar tide drives the secular orbital evolu-
tion (Guillot et al. 1996; Rasio et al. 1996; Leconte et al. 2010).
In this work, we neglect the impact of the dissipation in the
radiative zone. In stellar convection zones, there are two kinds
of tides and both are dissipated by the turbulent friction applied
by convective eddies. On the one hand, the equilibrium tide
is the large-scale velocity field associated with tidal deformation,
the so-called tidal bulge. This nonwave-like entity corresponds
to the hydrostatic adjustment of the star to the gravitational
perturbation (Zahn 1966; Remus et al. 2012). The friction
applied by convective motions delays the response of the star
to the perturbation (e.g., Zahn 1989; Ogilvie & Lesur 2012;
Mathis et al. 2016). This results in a lag angle between the axes
of the tidal bulge and the line of centers. This angle increases
with dissipation magnitude. Hansen (2012) calibrated its value
for several stellar masses by constraining the dissipation using
observations of planetary systems. Since lower-mass stars have
deeper convective envelopes, they dissipate more energy than
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higher-mass stars. On the other hand, in rotating bodies such as
stars, at low tidal frequencies, the Coriolis acceleration acting on
this equlibrium tide excites inertial modes (Ogilvie & Lin 2007).
Their ensemble, the dynamical tide, constitutes the wavelike part
of the tidal response. Its dissipation strongly depends on internal
structure since it arises from the reflection of inertial modes on
the radiative, stably stratified core (Ogilvie 2013; Mathis 2015).
The dynamical tide may also vary over several orders of mag-
nitude with rotation since inertial waves are restored by the
Coriolis force. At low frequencies, dissipation of the dynamical
tide is several orders of magnitude higher than the dissipation of
the equilibrium tide (Ogilvie & Lin 2007).

Orbital evolution occurs simultaneously with variations of
stellar structure and rotation (Gallet & Bouvier 2015; Amard
et al. 2016; Bolmont et al. 2012; Bolmont & Mathis 2016). In
the case of solar-like stars, the latter is slowed down over most of
the main sequence (MS) by magnetic braking. This phenomenon
occurs because of the wind carrying angular momentum away
from the star (Schatzman 1962; Weber & Davis 1967). Mod-
els of secular evolution of stellar rotation generally consider
that it undergoes three main phases. First, before the disk dis-
sipates, stellar rotation remains constant. The physical processes
that balance accretion and contraction have long been thought to
have a magnetic origin. Matt & Pudritz (2005) and Matt et al.
(2012) investigated the braking caused by accretion-powered
stellar winds while Zanni & Ferreira (2013) studied the effect of
magnetic ejections on stellar spin. Recently, Bouvier & Cébron
(2015) explored the possibility that tidal and magnetic interac-
tion with a close-in planet embedded in the disk could compete
with accretion and contraction. After the disk dissipates, the star
spins up due to its contraction during the pre-main sequence
(PMS; see Amard et al. 2016, and references therein). Finally,
once on the MS, the star spins down under magnetic brak-
ing. Observations show that rotational velocities of young stars
range from one to one hundred times the solar velocity whereas
evolved stars tend to converge to the solar rate on the Sku-
manich sequence (Skumanich 1972). Gallet & Bouvier (2015)
investigated the mass-dependence of rotational evolution and
showed that the braking torque and the core-envelope coupling
timescale strongly depend on stellar mass. Matt et al. (2015)
use the Rossby number to disentangle solar-like star populations
in two groups: fast, saturated rotators and slow, unsaturated rota-
tors. They showed that the spin-down timescale was decreasing
with stellar mass in the former group and increasing in the latter,
in agreement with the observations of Barnes (2010).

In star–planet systems, the interactions between the cen-
tral body and its companion result in intricate phenomena that
involve the structure of the star, rotation, and magnetism in
addition to the orbital parameters of the planet. For example,
the spin-down of a solar-like star over the MS increases its
corotation radius and this may occur until the latter becomes
larger than the orbital semi-major axis, causing a change of
sign of the tidal torque. Moreover, the planet spiralling inward
may spin up its host star, thus impacting its magnetism through
dynamo processes (e.g., Brun et al. 2004, 2015). Recent numeri-
cal and theoretical works have allowed significant advances in
our comprehension of these mechanisms. Dobbs-Dixon et al.
(2004) studied the combined effects of tidal dissipation and mag-
netic braking to explain the observed distributions of orbital
eccentricities. Barker & Ogilvie (2009) investigated the influ-
ence of these effects on spin alignment. Ferraz-Mello et al.
(2015) used the creep tide theory from Ferraz-Mello (2013) and
a semi-analytical wind model (see Bouvier 2013, and references
therein) to compute the past evolution of observed star–planet

systems. Damiani & Lanza (2015) assumed a constant tidal
efficiency and a Skumanich-type wind-braking law, in which
the torque is proportional to the stellar rotation cubed. These
authors demonstrated that a pseudo-stable equilibrium state can
exist for star–planet systems, in which corotation is not achieved
and the ratio of the orbital mean motion divided by the stellar
rotation rate is determined by the angular momentum loss rate
due to magnetic braking. Zhang & Penev (2014) implemented
a star–planet system secular evolution code based on the two-
layer rotational model of MacGregor & Brenner (1991) and the
constant quality factor framework from Goldreich (1963) and
performed a statistical analysis on their numerical simulations
to constrain the tidal theory. Bolmont & Mathis (2016) adapted
the frequency-averaged results of Mathis (2015) to the time-lag
framework (Mignard 1979) and studied its impact on secular
evolution of star–planet systems when coupled with a one-layer
rotational model. Despite the progress they have made toward the
comprehension of planetary systems, all the above cited studies
relied on a parametrized description of tidal dissipation or wind
braking.

In this first study, we consider systems constituted by a solar-
like star and a planet. We characterize the secular evolution
of stellar rotation and orbital parameters under magnetic brak-
ing and tidal dissipation. Following Zhang & Penev (2014) and
Bolmont & Mathis (2016), we aim at developing a tidal model
that takes into account the dissipation of both equilibrium and
dynamical tides in the convective envelope and their dependence
on stellar structure and rotation. We use a two-layer model of
stellar interior (MacGregor & Brenner 1991; MacGregor 1991)
to study the evolution of rotation. In Sect. 2, we present the
hypotheses of our study and detail the interactions that take
place in the considered system. In Sect. 3, we explain how we
computed the torque of Réville et al. (2015a) as a function of
structural and dynamical parameters of the star and compare our
results with the model of Matt et al. (2015). As discussed in
Sect. 4, to quantify the tidal torque, we used the empirically cal-
ibrated results of Hansen (2012) for the equilibrium tide and the
theoretical prediction of Mathis (2015) for the dynamical tide. In
Sect. 5, we use ESPEM (French acronym for Evolution of Plan-
etary Systems and Magnetism) to compare our model to those
of the literature and explore the influence of the fundamental
characteristics of systems on their fate, to determine the survival
of the exoplanet and its influence on stellar rotation. Finally, in
Sect. 6, we summarize our results and detail the perspectives
opened by this work.

2. Star–planet interaction model

We consider systems formed by a planet orbiting a solar-like
star. We used the two-layer star model of MacGregor & Brenner
(1991) to study stellar rotation. In this framework, both the radia-
tive core and the convective envelope rotate uniformly. They
exchange angular momentum and only the envelope is directly
braked by the wind. Thus, the core is also braked but this
depends on the choice of the coupling timescale, since here we
do not explicitly solve for the physical mechanisms (magnetic
field, waves, turbulence) that are likely to cause this exchange
(see for instance Rudiger & Kitchatinov 1997; Spada et al. 2010;
Brun et al. 2011; Strugarek et al. 2011; Talon & Charbonnel
2005; Spiegel & Zahn 1992, and references therein). The basic
idea of this model is that, in the absence of any perturbation, the
core and the envelope evolve towards synchronization of their
spins. The amount of angular momentum ∆L that the core and
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the envelope should exchange to achieve this final state, positive
if the core gives it to the envelope, negative in the opposite case,
is

∆L =
IcIr

Ic + Ir
(Ωr −Ωc), (1)

where Ic and Ωc (respectively Ir and Ωr) are the moment of iner-
tia and rotational velocity of the convective (respectively radia-
tive) zone. The timescale of angular momentum redistribution,
τint, is a free parameter of the model.

Another process occurring within the star causes angular
momentum exchange between the core and the envelope. During
the PMS, while the radiative zone is growing in size and mass,
shells of matter rotating at the same velocity as the envelope are
deposited on the core, which results in an angular momentum
transfer from the envelope to the core. Thus, the internal torque
Γint corresponding to the angular momentum exchange per time
unit given by the radiative zone to the convective zone is given
by

Γint =
∆L
τint
− 2

3
R2

r Ωc
dMr

dt
, (2)

where Mr and Rr are the mass and radius at the base of the enve-
lope, respectively. The first term of the equation is due to simple
parametrized angular momentum redistribution while the second
is caused by stellar evolution (MacGregor 1991).

We used the STAREVOL evolutionary tracks (Amard et al.
2016) to get the one-dimensional (1D) internal structure of the
star at each ESPEM time step. This model computes the stellar
mass and radius, the mass and radius at the base of the envelope,
and the moments of inertia of the radiative and convective zones
and their variations along the evolution. We studied stars of mass
ranging from 0.5 to 1.2 M�.

The orbit is assumed to be circular and coplanar and we focus
on variations of the semi-major axis. Moreover, we consider the
rotation of the planet to be synchronized. Indeed, Guillot et al.
(1996) showed that the synchronization of a hot Jupiter occurs
within a typical timescale of 106 yr, which is negligible com-
pared to the lifetime of a star–planet system. Thus, the planet can
be considered as synchronized from the beginning of the simu-
lation. Consequently, in our model, only tidal dissipation within
the star impacts orbital evolution. As a simplification for this first
study, we assume that this process takes place in the envelope,
which involves that the tidal torque is applied on the convective
zone only, and not on the core. In our future works, the dynam-
ical tide in the radiative zone, which is constituted of gravity
waves dissipated by thermal diffusion and breaking, will have to
be implemented in our code (Zahn 1975; Goldreich & Nicholson
1989; Terquem et al. 1998; Ogilvie & Lin 2007; Barker & Ogilvie
2010). In this first step, we focus on the convective zone, which
allows consistent comparison with Zhang & Penev (2014) and
Bolmont & Mathis (2016).

The core is interacting with the envelope through internal
coupling as detailed in Eqs. (1) and (2). The orbit is exchang-
ing angular momentum with the envelope. The latter acts as
an interface between the planet and the core and loses angu-
lar momentum through magnetic braking. Consequently, the
semi-major axis of the orbit a, the angular momentum of the
convective zone Lc, and of the radiative zone Lr are determined
by the following equations:

da
dt

= −a1/2 2
mpM∗

√
mp + M∗

G
Γtide, (3)

Planet

Star
Γwind

Γint

Γtide

yr, which is negligible com-
pared to the lifetime of a star–planet system. Thus, the planet can

Fig. 1. Schematic view of the system and its interacting entities. The
yellow disk represents the radiative zone and the orange shell, the
convective envelope. The red arrows represent the loss of angular
momentum due to stellar wind. The green arrows correspond to the
exchange of angular momentum between the core and the envelope
and the blue arrows to the tidal exchange between the envelope and the
planetary orbit.

dLc

dt
= Γint + Γtide − Γwind, (4)

dLr

dt
= −Γint, (5)

where G is the gravitational constant, mp is the planetary mass,
M∗ is the stellar mass, and Γwind and Γtide are the wind braking
and the tidal torques, respectively. The latter two correspond to
the rates of change of angular momentum associated with wind
braking and tidal dissipation. Their calculation is presented in
the following sections. We used the ODEX solver (Hairer et al.
2000) implementing the Bulirsch–Stoer algorithm to solve these
equations and compute the secular evolution of stellar rotation
and planetary orbit. In the following, we detail how the braking
and tidal torques were computed. The different entities and their
interactions are shown in a simplified view in Fig. 1.

When planets come too close to their host star, they are
destroyed either by tidal forces or after having plunged into the
stellar atmosphere. To model this phenomenon in ESPEM, we
followed Zhang & Penev (2014) who used the ratio of the density
of the planet divided by that of the star ρp/ρ∗ to determine which
scenario occurs. Their approach was based on the observational
results of Metzger et al. (2012), who showed that three scenar-
ios were likely to take place when a planet inspirals towards
its host star. In the first case, ρp/ρ∗ > 5 and the planet spirals
until it plunges in the stellar atmosphere. In the second case,
1 < ρp/ρ∗ < 5 and the planet overflows its Roche lobe before
reaching the stellar surface. This results in an unstable mass
transfer from the planet to the star and the former is torn apart
within a timescale of several hours. In the third case, ρp/ρ∗ < 1,
the planet also overflows its Roche lobe before coming into con-
tact with its star but the mass transfer is stable. Consequently,
the planet is disrupted over a much longer timescale, typically
several thousand years. Even if these three cases lead to various
timescales, planet destruction lasts only a short time compared
to stellar lifetime. This is why we consider that the entire pro-
cess occurs instantaneously. If ρp/ρ∗ > 5, the planet is removed
from the simulation if the semi-major axis becomes smaller than
the stellar radius. In the other two cases, the planet is destroyed
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if it starts orbiting the star below the Roche limit, which we
calculated with the formula of Zhang & Penev (2014):

rRoche = 2.44 rp

(
M∗
mp

)1/3

, (6)

where rp is the planetary radius, M∗ is the stellar mass, and mp
is the planetary mass. We adopted the assumption that the plan-
ets have the same mean density as Jupiter, that is, 1.33 g cm−3.
This is a reasonable choice for planets more massive than 3 ×
10−2MJup that are known to be gaseous (Baraffe et al. 2014). We
only considered planets with a mass above this value, which cor-
responds to the upper mass limit of super Earths (∼10 M⊕). We
made this simplifying choice because the planets that raise the
most significant tides within their host star are the most massive
ones.

3. Stellar rotation

In this section, we compute Γwind. Magnetic braking occurs
because of the stellar wind carrying angular momentum away
(Schatzman 1962). Parker (1958) showed that the particles of
the wind were accelerated along their way through the corona.
The Alfvén radius rA is the distance at which their speed reaches
the Alfvén speed. In a simplified 1D model, Weber & Davis
(1967) showed that the resulting angular momentum loss was
equal to the product of the stellar convective zone rotation Ωc,
the mass loss Ṁ, and the Alfvén radius squared. After integration
on a sphere, the equality becomes a proportionality relation:

Γwind ∝ ΩcṀr2
A. (7)

In this product, the only easily measurable factor is the stel-
lar rotation. This can be done either by spectroscopy (Reiners &
Schmitt 2003) or by photometry (McQuillan et al. 2013a; García
et al. 2014). Such measurements of the other factors are how-
ever more difficult. This is why we used the model of Réville
et al. (2015a) to express them as a function of the structure and
dynamics of the star. We note however that other options have
been used in the literature (e.g., Brown 2014; Gallet & Bouvier
2015; Johnstone et al. 2015a,b; van Saders et al. 2016; Sadeghi
Ardestani et al. 2017, and references therein).

Réville et al. showed that the Alfvén radius was only depen-
dent on the magnetic flux through the open field lines, Φopen, for
any given topology:

Γwind = ṀΩcR2
∗K

2
3


Φ2

open/R
2
∗

Ṁvesc

√
1 +

(
f

K4

)2



2m

, (8)

where R∗ is the stellar radius, vesc =
√

2GM∗/R∗ is the escape
velocity, f = Ωc/

√
GM∗/R3∗ is the ratio of rotational velocity

of the envelope over the brake-up rotation rate, and the con-
stants K3, K4, and m were set by the authors using numerical
simulations (Réville et al. 2015a). There are two kinds of mag-
netic field lines: the closed ones, also known as magnetic loops,
and the open ones. The latter coincide with the wind streamlines
in the interplanetary medium. Thus, the open flux measures the
magnetic flux in the wind; it depends on topology, which is the
repartition of magnetic energy in the different spherical harmon-
ics. Higher-order topology magnetic fields decrease more steeply

with distance from the star than lower-order ones: a multipolar
field of degree l decreases as 1/rl+2 where r is the distance to the
star. This results in smaller magnetic fluxes at equal distances.
Therefore, the open flux decreases with the order of the magnetic
multipole considered.

Equation (8) has been obtained with 2D numerical simula-
tions. Réville et al. (2016) verified this result and revised the
list of dimensionless constants (K3, K4, m) with 3D simulations
constrained by realistic magnetic mappings obtained by spec-
tropolarimetric measurements and concluded that K3 = 0.55,
K4 = 0.06, and m = 0.3.

Formulating the torque of the wind as a function of the open
magnetic flux allows us to write a topology-independent law.
This idea was also used in the observational study of See et al.
(2017), who estimated the open flux of 66 solar-like stars from
Zeeman–Doppler magnetograms. After Réville et al. (2015a,b)
and Garraffo et al. (2015), Finley & Matt (2017, 2018) used the
open flux to study the wind of stars with complex magnetic
topologies involving interactions between the dipolar, quadrupo-
lar, and octupolar components. In the following subsections, we
describe the steps of our method to estimate the wind-braking
torque from the stellar structure and rotation.

3.1. Mass-loss rate and open magnetic flux

Computing the torque of the wind requires to first calculate the
mass-loss rate and the open magnetic flux. Since these quanti-
ties are determined by the properties of the open magnetic field
lines, a consistent model of the corona is needed to infer their
global properties. To that end, we used the starAML routine
developed by Réville et al. (2015b), who presented a method to
determine the maximal size of the main coronal streamer for a
given star with known mass, radius, effective temperature, sur-
face magnetic field, base coronal density, and temperature (see
Appendix A for more details). The result of this calculation cor-
responds to the radius of the surface beyond which all field lines
are opened by the wind, the so-called source surface (Schatten
et al. 1969; Altschuler & Newkirk 1969; Schrijver & DeRosa
2003). Figure 2 illustrates the coronal structure of a solar-type
star with its magnetic structures.

The method consists in extrapolating the surface magnetic
field to compute the source surface radius from the equilibrium
between the ram and thermal pressures of the gas and the mag-
netic pressure. The mass-loss rate and open magnetic flux are
then inferred from this calculation. First, the radial profiles of
the temperature and density of the wind are computed assuming
a polytropic equation of state of index γ = 1.05. These profiles
allow us to compute the velocity field in the corona. The mass-
loss rate is deduced from these computations as Ṁ = 4 πr2v2ρ2,
where r, v, and ρ correspond to the distance to the star, velocity,
and mass density at the outer boundary of our calculation grid,
respectively.

Subsequently, the magnetic field is extrapolated from the
surface to the rest of the corona. From these quantities, the ther-
mal and ram pressures of the wind can be computed in the
whole corona as well as the magnetic pressure. Close to the stel-
lar surface, the magnetic pressure dominates the other two and
is sufficient to hold the magnetic field lines closed. Far from the
star, the pressure difference changes sign and the ram and ther-
mal pressures of the wind open the magnetic field lines. The
surface at which this inversion occurs is defined as the source
surface. If we approximate this surface by a sphere, it is possi-
ble to define its radius, rss. We computed this radius from the
radial profiles of the thermal, ram, and magnetic pressures and
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Source surface

Fig. 2. Schematic view of the corona of a solar-type star. The solid black
circle delimits the photosphere. Magnetic field lines are represented as
curved black lines. The source surface is shown as a dotted blue circle.
All the coronal loops are contained below this surface.

deduced the open magnetic flux, which is equal to the flux of
the magnetic field through this surface (see Fig. 2). This method
requires assumptions on the density nc and temperature Tc at
the base of the corona. These boundary conditions are detailed
below.

3.2. Assumptions at the base of the corona

For the solar values, we followed Réville et al. (2016) and used
n� = 108 cm−3 and T� = 1.5 × 106 K, which accurately repro-
duce the speed of the solar wind measured on Earth. For other
stars, we followed Holzwarth & Jardine (2007) and Réville et al.
(2016), who extended these hypotheses assuming that the tem-
perature Tc and density nc at the base of the corona depended
mostly on the surface rotation rate:

nc = n�

(
Ωc

Ω�

)0.6

, (9)

Tc = T�

(
Ωc

Ω�

)0.1

. (10)

A more recent model on mass-loss rates of cool MS stars
(Cranmer & Saar 2011) predicts a slightly steeper dependence
of nc on Ω. However, the scatter in their results still allows for a
dependence like our Eq. (9). Please note that alternative laws for
the variations of coronal temperature with respect to global stel-
lar parameters have recently been proposed (e.g., Johnstone &
Güdel 2015; Wood et al. 2018). These formulations are discussed
in Sect. 6.

At fast rotations, we introduced saturation by considering
that nc and Tc remain constant.

3.3. Saturation

To determine the saturation rate, we followed the approach
of Matt et al. (2015), who used the stellar Rossby number to

define it:

Ro = (Ωcτconv)−1, (11)

where τconv is the convective turnover timescale, which we com-
puted with the formula of Cranmer & Saar (2011) that is mostly
valid on the MS, using the value of the effective temperature at
the ZAMS:

τconv = 314.24 exp

−  T ZAMS
eff

1952.5 K

 −  T ZAMS
eff

6250 K

18 + 0.002. (12)

We kept the effective temperature at the ZAMS in this expression
because it allowed us to simplify the calculations with starAML.
This is a reasonable assumption since the variations of Teff are
negligible during the MS phase (<5%). This point is further
discussed at the end of Sect. 6.

The saturation value of the Rossby number was set to Ro,sat =
0.1 Ro,�. The convective turnover timescale is indirectly linked
to stellar mass. Indeed, among solar-type stars, lower-mass stars
have thicker envelopes and slower flows. Therefore, their convec-
tive cells travel on longer timescales, which is why the turnover
time is a decreasing function of stellar mass. Consequently, the
Rossby number contains information about rotation and mass at
the same time. It is also a good indicator of magnetic activity,
as shown by Noyes et al. (1984) who emphasized the correla-
tion between chromospheric activity and Rossby number, and
Pizzolato et al. (2003) and Wright et al. (2011) who found
evidence of saturation of X-ray emissions at Ro = 0.1 Ro,�.

3.4. Global surface magnetic field

Solar-type magnetic fields are believed to be generated by a
dynamo in the envelope (Brun et al. 2004, 2015). Therefore,
their strength depends on the depth of the convective zone, which
decreases with stellar mass, and the rotation of the star (Noyes
et al. 1984). This leads us to consider the following law for the
magnetic energy at the surface:

B ∝ M−3.5
∗ Ω0.5

c (saturated), (13)

B ∝ M−3.5
∗ Ω2

c (unsaturated). (14)

The solar value was set to B� = 3 G, which is in good agreement
with observations (Vidotto et al. 2014).

We assumed a dipolar magnetic topology to compute the
braking torque. The Alfvén radius from our calculations was
5.25 R∗ for a solar-mass star rotating at the solar rate. How-
ever, this value was not sufficient to brake the 1 M� star effi-
ciently and reproduce the convergence of rotational velocities at
solar age. This could be related to the “Open Flux Problem”,
which reveals that magnetohydrodynamics wind models consis-
tent with surface observations systematically underestimate the
interplanetary magnetic flux (see Linker et al. 2017). To fix this
lack of braking, we artificially multiplied the Alfvén radius by a
factor 3.6. This correction allows us to reconcile our theory with
observations of open clusters.

3.5. Braking torque

Figure 3 shows mass-loss rate and braking torque as functions of
rotational velocity for several stellar masses. As can be seen in
the upper panel, the mass-loss rate increases with rotation until
saturation. This is similar to the behavior of density and temper-
ature at the base of the corona. At high rotation, a dependence
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Fig. 3. Mass-loss rate and braking torque as functions of rotational
velocity for stars of mass 0.5 M� (black), 0.8 M� (dark blue), and 1 M�
(light blue). Top panel: comparison between the mass-loss rate obtained
with our model (solid curves) and the prescription of Cranmer & Saar
(2011; dotted curves). Bottom panel: braking torque.

on stellar mass appears because stars have different saturation
velocities. Despite the fact that our model predicts a mass-loss
rate similar to that of Cranmer & Saar (2011) for a solar-mass star
at solar rotation rate, our results suggest a weaker dependence
on stellar mass and rotation rate. This discrepancy stems from
the additional constraint we put on the spin-down timescale.
Barnes (2010) and Matt et al. (2015) suggested that this quantity
decreases with stellar mass for saturated rotators and increases
for unsaturated ones (see Sect. 3.6). Since we aimed at repro-
ducing this behavior, we had to impose a different mass-loss rate
from that of Cranmer & Saar (2011).

The lower panel shows the braking torque resulting from our
calculations. As for mass-loss rate, the unsaturated and saturated
regimes are clearly visible. The dependence on rotation can be
approximated by two power laws:

Γwind ∝ Ωc (saturated), (15)

Γwind ∝ Ω
p+1
c (unsaturated), (16)

where p = 2.11. These exponents are close to those found by
Kawaler (1988). We point out that the dependence on mass is
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Fig. 4. Spin-down timescale as a function of stellar mass in the satu-
rated (lower lines) and unsaturated regimes (upper lines). Comparison
between values from Matt et al. (2015; dashed green lines) and the
starAML routine from Réville et al. (2015b; solid black lines).

negligible in the unsaturated regime and becomes important in
the saturated regime. At 10 times the solar rotation rate, the
torque is one order of magnitude higher for a 1 M� star than for
its 0.5 M� counterparts.

3.6. Spin-down time

From these properties of the stellar coronae, we can now discuss
the characteristic timescale of magnetic braking. Barnes (2010)
showed that the dependence of magnetic breaking on mass was
not the same for fast and slow rotators. Among the former, more
massive stars tend to spin down more quickly, whereas this trend
reverses for slow rotators. Matt et al. (2015) defined two differ-
ent spin-down times for the saturated and unsaturated regimes
and reproduced this result. To investigate the mass dependence
predicted by ESPEM, we calculated the equivalent expression of
these timescales as functions of the angular momentum of the
star and the braking torque:

τsat =
I∗Ωc

Γwind
(saturated), (17)

τunsat =
I∗Ωc

pΓwind

(
Ωc

Ω�

)p

(unsaturated), (18)

where I∗ is the stellar moment of inertia. Equations (15) and (16)
indicate that, with these definitions, τsat and τunsat do not depend
on rotational velocity. Indeed, in both saturated and unsaturated
regimes, the braking torque increasing with rotation rate com-
pensates the explicit dependence on Ωc. Thus, they allow a
comparison of spin-down timescale for different stellar masses,
different ages, and the same state of evolution.

Figure 4 shows the spin-down timescale as a function of stel-
lar mass for both saturated and unsaturated regimes. The slopes
of both curves are determined by the competition between two
quantities increasing with stellar mass: the moment of inertia on
the one hand, and the braking torque on the other hand. Since
the latter does not vary significantly with mass for slow rota-
tors, the corresponding timescale increases proportionally to the
moment of inertia. On the contrary, for fast rotators, this com-
petition results in a spin-down timescale decreasing with mass
(τsat ∝ M−3.86

∗ ). The figure also shows a very good agreement of
our results with the model of Matt et al. (2015).
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Table 1. Values of the internal coupling constant τint used to compute
the secular evolution in Fig. 5.

Stellar mass 0.5 M� 0.8 M� 1 M�
Slow rotator 500 Myr 80 Myr 30 Myr
Median rotator 300 Myr 80 Myr 28 Myr
Fast rotator 150 Myr 15 Myr 10 Myr

Notes. These values were found by Gallet & Bouvier (2015) who fitted
a semi-analytical model on observations of stellar rotation.

3.7. Secular evolution

We applied this braking torque to stellar evolutionary tracks for
masses 0.5, 0.8, and 1 M� computed with the STAREVOL code
(Amard et al. 2016) to assess the variations of the rotational
velocity of solar-type stars on secular timescales. For each star,
we considered three different initial conditions: a slow, a median,
and a fast rotator, corresponding respectively to the 25th per-
centile, median, and 90th percentile of the observed distribution
of rotational velocities of young stars. We used the parameters
given by Gallet & Bouvier (2015) to set the free parameters of
our model: initial rotation period, coupling constant, and disk
lifetime (see Table 1).

The rotation of the envelope was kept constant from the
beginning of the simulation until a time corresponding to the dis-
sipation of the disk. During this phase, the radiative zone is free
to spin up under contraction. However, it is linked to the external
layer of the star through internal coupling. After the disk dissipa-
tion, rotational velocities of both envelope and core evolve under
the action of stellar evolution, coupling, and magnetic braking,
as described in Sect. 2.

Figure 5 shows the evolution of rotation of stars of masses
0.5, 0.8, and 1 M� from the PMS to the end of the MS. For each
mass, the initial spread in rotational velocities is reduced over
the MS and all stars converge on a unique sequence. Our model
predicts that rotation of evolved stars is proportional to t−0.473

in accordance with the Skumanich law (Skumanich 1972). As is
visible in the top panel, at the age of the Sun, solar-mass stars
rotate at the solar rate. Less-massive stars are slower at this age,
which had been found by Gallet & Bouvier (2015). This result
is also in agreement with those of Matt et al. (2015), who noted
that the braking timescale in the unsaturated regime is shorter
for lower-mass stars.

4. Tidal dissipation

In this section, we detail how the tidal torque Γtide is computed.
We work within the tidal quality factor formalism (Goldreich
1963; Kaula 1964; MacDonald 1964). In this framework, the
response of the star to tidal perturbation is measured by the
modified tidal quality factor, Q′, which is the ratio of the total
energy stored in the tidal velocity field divided by the energy
dissipated over one revolution of the planet. This convenient
formalism has been used to account for stellar structure and rota-
tion variations over the secular evolution of the system (Mathis
2015; Bolmont & Mathis 2016; Gallet et al. 2017b). Mathis &
Le Poncin-Lafitte (2009) showed that when the planet is far
enough (a > 5 R∗) and weakly deformed, it could be considered
as a point-mass disturber for calculating tidal dissipation within
the star. In this case, the deformation of the star due to gravi-
tational perturbation is quadrupolar and only the corresponding
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Fig. 5. Secular evolution of the rotation for stars of mass 1, 0.8, and
0.5 M� and different initial conditions. Solid and dashed curves rep-
resent the rotation velocity of the envelope and the core, respectively.
The solar velocity at solar age is pictured by the white circle in the
bottom-right corner of each frame. The blue circles with error bars cor-
respond to the 25th, 50th, and 90th percentiles of rotational distributions
of observed stellar clusters. These values were published by Gallet &
Bouvier (2015). Values for the internal coupling constant τint are given
in Table 1.

frequency, ωtide = 2 (Ωc − n), is excited in the circular coplanar
case. As the planet gets closer to its star, which corresponds to a
semi-major axis inferior to 0.018 AU in the case of a solar-radius
star, this hypothesis is no longer valid. However, since the planets
orbiting their star below this limit are destroyed after a few thou-
sand years in our calculations, we do not take this complication
into account in this work. Nevertheless, differences arising from
the fact that the planet is an extended body should be studied
in a future work. Tidal frequency depends on the rotation rate
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of the envelope because we only consider the dissipation in the
convective envelope of the star. The torque depends on the dissi-
pation rate and the structural parameters of the star and the planet
(Murray & Dermott 1999):

Γtide = −sign(ωtide)
9

4Q′
Gm2

p

a6 R5
∗, (19)

where mp is the mass of the planet, assumed to be constant over
the evolution of the system. We interpolated the STAREVOL
evolutionary tracks (Amard et al. 2016) to obtain the values of
stellar structure at each ESPEM time step. Since tidal dissipation
originates from two different physical mechanisms, the equi-
librium tide and the dynamical tide, each of them have to be
studied separately. The total tidal dissipation is proportional to
the inverse of the equivalent quality factor. It is the sum of the
two contributions:

1
Q′

=
1

Q′eq
+

1
Q′dyn

, (20)

where Q′eq and Q′dyn are the modified quality factor related to the
equilibrium and the dynamical tide, respectively.

4.1. Equilibrium tide

To compute the equivalent quality factor related to the equilib-
rium tide, we used the observational results of Hansen (2012),
who calibrated the value of the dissipation for stellar masses
ranging from 0.3 to 1.5 M�. He worked in the constant time
lag framework (Mignard 1979; Hut 1981; Eggleton et al. 1998),
which is different from ours. Therefore, we had to reconcile both
formalisms. The equilibrium tide corresponds to the hydrostatic
adjustment of the star to the perturbation of the planet. In this
work, we identify it to its quadrupolar moment. In the adiabatic
case, the axis of the tidal bulge would be aligned with the one
joining the centers of the star and of the planet. However, dissi-
pation induces an angle of 2δ between these axes. In the quality
factor framework, dissipation is proportional to this angle and Q′
is related to the lag angle through the relation 2δ = 3/(2Q′). The
time lag ∆τ = 2δ/|ωtide| corresponds to the time delay between
the positions of the bulge and the axis joining the centers.
In the constant time lag framework, dissipation is quantified by
the constant σ∗, which measures the ratio of energy loss due
to tidal friction divided by the magnitude of the quadrupolar
moment of the deformation. Hansen (2012) found an empiri-
cal law between the normalized dissipation σ̄∗ = σ∗/σ0, where

σ0 =

√
G/(M�R7

�), and the stellar parameters:

σ̄∗ = ∆τ
G

σ0R5∗
. (21)

Following Bolmont & Mathis (2016), we inverted the relation
to obtain the corresponding modified tidal quality factor:

Q′eq =
3
2

1
σ0 σ̄∗

G
R5∗ |ωtide|

. (22)

We point out that the quality factor associated with the equi-
librium tide is inversely proportional to tidal frequency. Thus,
we expect different predictions from those of models assuming
a constant quality factor (Zhang & Penev 2014). This depen-
dence might cause computational problems close to corotation.

In practice, we replaced |ωtide| in Eq. (22) by |ωtide| + εtide
where εtide = 10−10 rad s−1. This technique was introduced by
Bolmont & Mathis (2016), who showed that this does not affect
the predictions for the final states of the system. Moreover,
since Γtide ∝ sign(ωtide)/Q′eq, that is, Γtide ∝ sign(ωtide)ωtide with
Eq. (19), there is no actual singularity of the torque here.

4.2. Dynamical tide

At low frequency, the time-varying gravitational potential excites
inertial waves in the convective envelope of the rotating star.
This phenomenon occurs for ωtide ∈ [−2 Ωc, 2 Ωc] and consti-
tutes the wavelike part of the tidal response. Its dissipation may
be several orders of magnitude larger than that of the equilib-
rium tide. Ogilvie & Lin (2007) first calculated the dissipation of
the dynamical tide within the interiors of solar-type stars. Their
result is highly dependent on tidal frequency because of reso-
nances induced by the wavelike nature of the dynamical tide.
Moreover, the properties of the resonances strongly depend on
the assumed values of the eddy coefficient applied to tidal waves
to account for the turbulent friction applied by convection. These
latter values are still poorly known, as pointed by Ogilvie &
Lesur (2012), Ogilvie & Lin (2007), Guenel et al. (2016), and
Mathis et al. (2016), for example. This would imply heavy calcu-
lations to study secular orbital evolution with complex hydrody-
namical simulation for each step of the structural and rotational
evolution of the star (Witte & Savonije 2002; Auclair-Desrotour
et al. 2014). To address this situation, Ogilvie (2013) computed
the frequency-averaged value of the tidal waves dissipation using
an impulsional method. Over the range [−2 Ωc, 2 Ωc], this leads
to a result that depends only on the structure and rotation of the
star. Mathis (2015) then applied this method to the envelopes of
solar-like stars to compute the equivalent modified quality factor
associated with the dynamical tide:

3
2Q′dyn

=
100π

63
ε2

(
α5

1 − α5

)
(1 − γ)2(1 − α)4

×
(1 + 2α + 3α2 + 3

2α
3)

[
1 +

(
1−γ
γ

)
α3

]
[
1 + 3

2γ + 5
2γ (1 + 1

2γ − 3
2γ

2)α3 − 9
4 (1 − γ)α5

]2 . (23)

In this formula, α = Rr/R∗ and β = Mr/M∗ are the mass and
aspect ratios of the core, respectively, γ = α3(1−β)/(β(1−α3)) is
the ratio of the density of the envelope to that of the core, and ε =

Ω/
√

GM�/R3
�. We computed these ratios from the stellar evolu-

tion tracks of the STAREVOL code (Amard et al. 2016), which is
well adapted to our bilayer stellar rotation model. Mathis (2015)
showed that, for a given rotation rate, the dissipation could vary
over several orders of magnitude with aspect and mass ratios.
Moreover, a solar-like star rotation rate may vary during its life
on the MS in the range [Ω�, 100 Ω�] (Gallet & Bouvier 2015).
Since the dissipation is proportional to the rotation rate squared,
a given star may dissipate significantly more at its arrival on the
MS than at solar age, as discussed by Gallet et al. (2017a). In this
paper, we focused on stars with solar metallicity. The impact of
this parameter should be carefully studied in a further work, as
done by Bolmont et al. (2017), who showed that tidal dissipation
in the convective zone of solar-like stars was higher for metal
poor stars on the PMS and that this trend was inversed on the
MS.

Figure 6 shows the tidal quality factor Q′ from Eq. (20) for
a star of mass 1 M� at solar age as a function of rotation rate
and orbital mean motion. It is visible that tidal dissipation is the
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Fig. 6. Equivalent tidal quality factor as a function of stellar rotation
and orbital mean motion for a solar-mass star. The white line with dark
blue contour represents the limit (n = 2 Ωc) below which tidal inertial
waves propagate in the envelope. The white line with light blue contour
(n = Ωc) corresponds to corotation. Above this line, planets are migrat-
ing inward; below it, they are pushed away from the star.

sum of two contributions. The white line with dark blue contour
delimits the domain of application of inertial waves. Below, the
tidal frequency is in the range [−2 Ωc, 2 Ωc] because n < 2 Ωc. In
this domain, the dissipation of the dynamical tide dominates that
of the equilibrium tide. It is visible on the figure that the dynami-
cal tide contributes to significantly enhance the tidal dissipation.
Indeed, the quality factor in the region where they are raised is
orders of magnitude lower than in the upper part of the figure.
The dependence of the dynamical tide on rotation also clearly
appears. Indeed, in the lower region, the contour lines are verti-
cal since the dependence on tidal frequency of the dissipation of
the dynamical tide was averaged in this work. On the contrary,
the contour lines in the upper region are actually determined by
ωtide (see Eq. (22)).

This figure also reveals three possible regimes of tidal inter-
action. Below the light blue line, the orbital motion is slower
than the stellar rotation rate. This region corresponds to planets
beyond the corotation radius. The planets are pushed away as a
consequence of the dissipation of the equilibrium and dynami-
cal tides. Between the blue lines, the dynamical tide is excited in
the stellar envelope but the planets are situated below the corota-
tion radius. Consequently, they spiral inward under the effect of
both the equilibrium and dynamical tides. Above the dark blue
line, inertial waves are no longer raised. In this region, plan-
ets spiral inward under the sole influence of the dissipation of
the equilibrium tide. The secular evolution of a star–planet sys-
tem generally involves the succession of different phases during
which the system is in one of these three states.

5. Results

In this section, we analyze the coupled influence of magnetic
braking and tidal dissipation on the secular evolution of star–
planet systems. We begin by showing that the rotation of a
star can be significantly impacted by the presence of a planet,
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Fig. 7. Top panel: secular evolution of a star of mass 1 M� orbited by
a planet of mass 1 MJup with initial semi-major axis aini = 0.025 AU.
From light to dark blue: P∗,ini = 1.4, 5, 8 days. For each color, the solid
line represents the rotation of the envelope, and the dashed line that
of the core. Bottom panel: difference in rotation period between these
simulations and the reference case of Fig. 5. The color scheme is the
same as for the top panel.

especially when the latter falls into the former. The fate of a
star–planet system can follow very different scenarios, depend-
ing on parameters such as the mass of the star and initial rotation
rate, the planetary mass, and the initial semi-major axis of the
orbit. To investigate these dependences, we browse the parame-
ter space to study which combinations lead to the planet falling
into the star. We then define a criterion allowing to say, for a
given system, whether the planet will survive or be destroyed.

5.1. Impact of a planet on the rotation rate of its host star

We first investigated the consequences of tidal dissipation in the
convective envelope on stellar rotation. To that end, we computed
the secular evolution of a star–planet system composed of a solar-
mass star and a Jupiter-mass planet with an initial semi-major
axis equal to 0.025 AU. In order to compare the results with those
of Fig. 5, we calculated this evolution for three different initial
rotation periods: 1.4, 5, and 8 days.

As visible in Fig. 7, the stellar rotation can be strongly
impacted by the presence of a planet. The most noticeable dif-
ferences with Fig. 5 are the two peaks in the curves of the slow
rotator (dark blue) and the median rotator (medium blue). They
are both caused by the destruction of the planet. Indeed, as is fur-
ther analyzed later in this section, when the planet orbits the star
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below its corotation radius, the orbit gives angular momentum
to the stellar spin, causing the central body to spin up and the
planet to migrate closer to the star. This process is maintained
until either the semi-major axis crosses the corotation radius, in
which case the sense of the tidal exchange of angular momentum
is reversed, or the planet is disrupted after having approached
too close to the star. In the latter case, the angular momentum
transfer from the orbit to the stellar spin during the inward spiral
motion of the planet is important enough to increase the rotation
rate of the envelope by one order of magnitude. After the planet
has been destroyed, the wind brakes the envelope rapidly so that
a peak is formed in the rotation rate evolution curve.

The bottom panel shows the difference δP between the stellar
rotation period in the case where the star hosts a planet and the
case where it does not:

δP = P∗, with planet − P∗, without planet. (24)

This difference quantifies the influence of the planet on stellar
rotation. For the medium- and dark-blue curves, it is negative
because the star has been spun up. We note that the rotation
remains fast after the destruction of the planet. For the dark-blue
curve, δP is on the order of 12 days for the last 5 Gyr of the sim-
ulation, which means that the star spins twice faster than what
gyrochronology predicts. In the case of the light-blue curve, the
star has been spun down because its planet was initially located
beyond its corotation radius. This is why δP is positive. Since the
effect in this case is significantly smaller than in the other two
simulations, the scale of the plot does not allow for a detailed
analysis of this curve. We refer the reader to Appendix B.2 for a
detailed analysis of positive-δP curves.

The fast rotator (light blue curve) seems unaffected by the
presence of the planet. Indeed, contrary to the two other simu-
lations, the planet in this case starts orbiting the star beyond its
corotation radius. This leads to a fast outward migration which
has weak effects on the stellar spin. This phenomenon, further
discussed in Sect. 5.2.3, illustrates that the evolution of a star–
planet system strongly depends on the parameters characterizing
it. In the following, we study how the secular evolutions of
the stellar rotation and the orbit differ when varying the initial
conditions and parameters.

5.2. Planet survival time for a solar-mass star

We now investigate the influence of the characteristics of the sys-
tem on its evolution. We identified four main parameters for this
study: the mass of the star, its initial rotation, the mass of the
planet, and the initial semi-major axis of the orbit. In this sub-
section, we only consider 1 M� stars and focus on how the fate of
the system differs when the three other parameters vary. We first
analyze the influence of each characteristic individually by com-
paring simulations done with different values of this parameter.
Then, we study how their crossed variations impact the fate of
the system by computing, for a large set of parameters, the time
at which the planet is destroyed.

5.2.1. Initial semi-major axis

We started by looking at the impact of the initial semi-major
axis on the fate of a system. To that end, we computed the sec-
ular evolution of a star–planet couple constituted by a 1 M� star
with an initial rotation period P∗,ini = 5 days and a 1 MJup mass
planet for three different values of the semi-major axis: 0.025,
0.035, and 0.045 AU. In the following, we compare the results
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Fig. 8. Secular evolution of a star–planet system with M∗ = 1 M�, P∗,ini =
5 days, and mp = 1 MJup. The initial semi-major axis was set to 0.025 AU
(dark green curves), 0.035 AU (medium green curves), and 0.045 AU
(light green curves). Top panel: rotation rate of the envelope (solid lines)
and of the radiative zone (dashed lines) of the star. Middle panel: semi-
major axis (solid lines), corotation radius of the star (dashed lines) and
limit of excitation of the dynamical tide (dotted lines). Bottom panel:
modified tidal quality factor.

obtained in each case and discuss the differences observed from
one scenario to another.

It appears in Fig. 8 that the farthest planet (light green
curves) is too far from the star and not heavy enough to undergo
a significant migration. The closest planet (dark green curves)
starts orbiting its star at a distance where only the equilibrium
tide is raised. The orbital evolution in this case arises from the
variations of the limit of excitation of inertial waves, which is
represented by the dotted dark green line in the middle panel
of the figure (confounded with the other two dotted curves
during the first billion years). As the star spins up during its
contraction, this limit decreases until it equals the semi-major
axis. Then, the system achieves a resonance state in which
n = 2 Ωc. This resonance, characterized on the figure by the
solid dark green curve sticking to the dotted dark green curve, is
well visible in the bottom panel. Indeed, during this phase, the
curve representing the quality factor is noisy, which is the con-
sequence of the dynamical tide being alternatively excited and
switched off in the convective envelope. This state is maintained
until the end of the contraction and as a consequence the planet
is moved significantly closer to the central body within a short
timescale (a few million years) compared to usual tidal evolution
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timescales. On the MS, the planet undergoes orbital evolution
due to dissipation of the equilibrium tide and eventually spirals
inward to its destruction. The planet in the middle (medium
green curves) experiences a similar scenario. However, unlike
the previous system, it does not undergo a resonance at the limit
of application of inertial waves. This is because the dynamical
tide is not as strong as in the former case. As in the case with
aini = 0.025 AU, the planet with aini = 0.035 AU moves progres-
sively closer to its star during the MS until its demise. Figure 8
shows that the initial semi-major axis directly influences the
speed of tidal evolution: when it decreases, the system evolves
faster.

5.2.2. Planetary mass

We now show how the mass of the planet influences the system.
To achieve this, we performed a similar calculation to that of the
previous paragraph. We computed the evolution of a star–planet
couple with a solar-mass star initially rotating with a period
P∗,ini = 5 days, orbited by a planet at an initial distance aini =
0.035 AU for three different planetary masses: 0.1, 1, and 5 MJup.
The system with the Jupiter-mass planet is actually the same
as the one in the previous paragraph for which aini = 0.035 AU.
Therefore, Sects. 5.2.1 and 5.2.2 correspond to variations around
the same point in different directions of the parameter space.

Figure 9 shows the evolution of three star–planet systems for
a fixed semi-major axis and varying planetary mass. Similar to
the farthest planet in Fig. 8, the lightest planet (black lines) is
not influenced enough by tidal dissipation to undergo significant
orbital evolution. The heaviest planet (orange lines) is disrupted
during the early phases of the life of the system. As the semi-
major axis of its orbit crosses the limit of excitation of inertial
waves, the tidal torque is strong enough to raise a resonance
between the orbit and the stellar spin. Unlike the closest planet
of Fig. 8, the planet here is massive enough to significantly spin
up its host star, which results in a decrease of the dynamical tide
limit, represented by the orange dotted line in the middle panel.
The resonance then imposes the planet to follow this evolution
and migrate closer to the star. Thus, the semi-major axis of the
orbit collapses in a few million years and the planet is destroyed.
The medium-mass planet here corresponds to the same system as
the middle planet of Fig. 8 (the one with aini = 0.025 AU). Its evo-
lution is an intermediate case of the two previous cases. Figure 9
shows that tidal evolution is faster for systems with more mas-
sive planets. Systems with massive planets behave like systems
with close planets since they evolve faster than others. However,
a massive planet may spin up its star, which is not possible for a
lighter and closer planet.

5.2.3. Initial stellar rotation rate

We finally reproduced the calculations of Sects. 5.2.1 and 5.2.2
to study the influence of the initial stellar rotation rate. We set
the planetary mass to 1 MJup and the initial semi-major axis to
aini = 0.035 AU and computed the evolution of a system formed
by this planet and a solar-mass star with an initial rotation period
P∗,ini = 1.4, 5, and 8 days, which correspond to the fast, median,
and slow rotators defined by Gallet & Bouvier (2015). The results
of these simulations are shown on Fig. 10.

In the system with the fastest rotating star, the planet starts
its orbit beyond the corotation radius and is rapidly pushed
away from the star as a consequence of the dissipation of
the dynamical tide. When the star spins down during the MS
phase, the corotation radius increases and eventually exceeds
the semi-major axis of the orbit. Consequently, the tidal torque

100

101

*/

mp = 0.1 MJup
mp = 1 MJup
mp = 5 MJup

0.00

0.05

0.10

0.15

0.20

Or
bi

ta
l d

ist
an

ce
s (

AU
)

106 107 108 109 1010

Age (yr)

105

106

107

108
Q
′

Fig. 9. Secular evolution of a star–planet system formed by a 1 M�
star with P∗,ini = 5 days, orbited by a planet at initial distance aini =
0.035 AU, for three planets of differing mass: mp = 0.1 MJup (black
lines), 1 MJup (red), and 5 MJup (orange). Top panel: rotation rate of
the envelope (solid lines) and of the radiative zone (dashed lines) of
the star. Middle panel: semi-major axis (solid lines), corotation radius
of the star (dashed lines) and limit of excitation of the dynamical tide
(dotted lines). Bottom panel: modified quality factor.

changes signs but, at this distance, tidal dissipation is not strong
enough to cause significant orbital evolution and the planet even-
tually survives. The system with the median rotator, shown in
regular blue, corresponds to the same system as the middle
planet from Fig. 8 and the medium-mass planet from Fig. 9. Its
evolution is discussed in the previous paragraphs. It is expected
that higher initial stellar rotation rates lead to longer planet life-
times if we consider the planet lifetime as the duration before
it spirals towards its host star. However, the planet orbiting the
slow rotator, shown in dark blue, lives longer than the one orbit-
ing the median rotator. This can be explained by considering the
contraction phase of the star. For the slow rotator, the limit of
excitation of inertial waves is farther away from the star than for
the median rotator. Consequently, inertial waves, which result in
an enhanced tidal dissipation, are raised over a longer duration
in the latter case. Moreover, inertial waves in the median rotator
are excited at a higher rotation rate than in the slow rotator. This
leads to lower quality factors in the former case. To summarize,
the dynamical tide is raised over a longer duration and induces
higher tidal torques in the median rotator, which is why its planet
is destroyed before the one orbiting the slow rotator. The results
of Fig. 10 emphasize the impact of the contraction phase on the
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. For the latter, the bin
was linearly spaced between 0.02 AU and 0.05 AU. We used the
parameters of Table 2 from Gallet & Bouvier (2015) for the disk

Fig. 10. Secular evolution of a star–planet system with M∗ = 1 M�, aini =
0.035 AU, and mp = 1 MJup. The initial stellar rotation period was set to
8 days (dark blue lines), 5 days (blue lines), and 1.4 days (light blue
lines). Top panel: rotation rate of the envelope (solid lines) and of the
radiative zone (dashed lines) of the star. Middle panel: semi-major axis
(solid lines), corotation radius of the star (dashed lines) and limit of
excitation of the dynamical tide (dotted lines). Bottom panel: modified
quality factor.

rest of the orbital evolution. Unlike the two precedent parame-
ters, mp and aini, the initial stellar rotation rate does not have a
monotonic influence on the planet lifetime.

5.2.4. Browsing the parameter space

Determining how the characteristics of the system influence the
planet lifetime is crucial to achieving a better understanding of
orbital evolution. This is why we repeated the previous calcu-
lations on a wider and more detailed sample. We set the stellar
mass to 1 M� and considered three initial rotation periods: 1.4, 5,
and 8 days. For each period, we computed the secular evolution
of systems with varying planetary mass and initial semi-major
axis. For the former, the bin was equally spaced in logarithm
with ten points between 10 M⊕ and 10 MJup. For the latter, the bin
was linearly spaced between 0.02 AU and 0.05 AU. We used the
parameters of Table 2 from Gallet & Bouvier (2015) for the disk
lifetime and internal coupling constant. For each simulation, we
computed the planet lifetime as either the duration before the star
terminates its MS phase in the case where the planet survives, or
the duration before the planet is disrupted in the alternative case.

Figure 11 shows the planet lifetime as a function of planetary
mass and initial semi-major axis for three different initial stellar
rotation rates. Its value spans from a few million years (planet
decayed during the PMS) to 10 billion years (terminal age on
the MS). As can be seen in the figure, in this two-bodied simpli-
fied approach, for this mass range, planets which formed above
0.045 AU are very likely to survive with their host star. These
results confirm the monotonic dependence of the planet life-
time on planetary mass and initial semi-major axis: apart from
an outlier for massive close-in planets in the left panel, colors
always become darker in the bottom-right corner, that is, closer
and heavier planets are destroyed earlier. The blue dots repre-
sent the situation on these maps of the cases treated in detail in
Figs. 8–10.

The thick black line represents the demarcation between the
region where planets survive and the one where they eventually
spiral inward to their demise; it behaves differently for the fast
rotator compared to the two other cases. Indeed, in the right
panel, the line is horizontal, which means that the survival of
the planet does not depend on its mass, whereas in the others, it
is oblique, which indicates that the survival of the planet results
from a trade-off between its mass and distance from the host star.

This different behavior can be explained by considering
the corotation radius associated with the initial stellar rotation
period, as was analyzed in Sect. 5.2.3. For the slow and the
median rotators, its value is higher than 0.05 AU, meaning that
all planets shown on the left and middle panels of Fig. 11 start
their orbit below the corotation radius of their host star. On the
contrary, the initial corotation radius of the fast rotator is about
0.025 AU. As shown in the right panel of Fig. 11, all planets
that start orbiting the fast rotator below this limit are rapidly
destroyed, leading to a disentangling of the population into two
groups: planets which formed above the corotation radius and
rapidly pushed away from their stars, which allowed them to
eventually survive, and those which formed below and were
disrupted within the first million years.

This implies a depopulation of the region close to fast rotat-
ing stars, as observed by McQuillan et al. (2013b). Teitler &
Königl (2014), who used a secular evolution code to explain this
dearth, concluded that it was due to tidal engulfment. Our results
suggest that this depopulation is actually due to two mechanisms:
tidal disruption for the closest planets and fast outward migration
in the early stages of the evolution for the others, as shown for
instance in Fig. 10. This second alternative solution was pointed
out by Lanza & Shkolnik (2014). They found that neither the tidal
quality factor framework nor the constant viscous time model
(Eggleton et al. 1998) could reproduce the distribution of plan-
etary orbital periods and favored a scenario in which close-in
planets form at a distance of about 1 AU from their star and
migrate closer to their star because of chaotic dynamic evolution
caused by the other planets of the system.

In the cases of the slow and median rotators, the thick line
involves more complex, intricate dependences on the charac-
teristics of the system. The slope of the line in the (mp, aini)
plane results from the competition between the planetary mass
and semi-major axis in the expression of the tidal torque. This
competition is analyzed below.

5.3. Survival-rate criterion

Here we determine a criterion allowing us to predict whether
the planet will survive knowing the characteristics of the system
(M∗, P∗,ini, mp, and aini); we call this the survival-rate criterion.
To this end, we repeated the simulations of Fig. 11 for stars
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Fig. 11. Planet lifetime as a function of planetary mass (X-axis) and initial semi-major axis (Y-axis) for three different initial stellar rotation rates.
The color represents the logarithm of the planet lifetime in years (from 6 to 10). On each panel, the thick black line indicates the limit above which
planets survive with their host star. Left panel: slow rotator, P∗,ini = 8 days. The blue dot corresponds to the slow rotator of Fig. 10. Middle panel:
median rotator, P∗,ini = 5 days. The blue dots correspond to the cases treated above in the secular evolution, Figs. 8–10. Right panel: fast rotator,
P∗,ini = 1.4 days. The blue dot corresponds to the fast rotator of Fig. 10.

of mass 0.5, 0.6, . . ., 1.1 M�. For each star, we defined a slow,
median, and fast rotator, as Gallet & Bouvier (2015). We then
calculated the planet lifetime as a function of mp and aini for
each rotator. Finally, we defined two regions, the survival region,
where planets survive with their host star, and the disruption
region, where planets are eventually disrupted.

Figure 12 shows these regions for various stellar masses
and initial stellar rotations. On each panel, the orange region
indicates the planetary masses and initial semi-major axes for
which the planet does not survive to tidal interaction; it is always
located in the bottom right corner, which illustrates that the more
a planet is massive and close to its host star, the more it is likely to
eventually decay. The figure also emphasizes the radically differ-
ent behavior of fast rotators. Indeed, in the right column, the line
delimiting the blue and orange regions is horizontal, suggesting
as in Fig. 11 that the survival of the planet does not depend on its
mass. For the median and slow rotators, behaviors are similar and
the border between the two regions is a straight line, the slope of
which is the same for all stellar masses and initial rotation rates.
The decayed-planets region is wider for higher-mass stars, which
is in agreement with the result of Bolmont & Mathis (2016) who
found that tidal evolution has a stronger impact on systems with
higher-mass stars despite the fact that the bulk dissipation is less
important.

In each panel of Fig. 12, the thick black line separates the
image into two half spaces. Obtaining the equation of this border
as a function of the characteristics (M∗, P∗,ini, mp, and aini) is suf-
ficient to define the survival-rate criterion. For initially fast rotat-
ing stars, the survival of the planet is determined by its initial
semi-major axis. If the latter is greater than the corotation radius,
the planet survives; in the opposite case, it is rapidly decayed. For
other initial stellar rotations, the other parameters play a more
significant role in the fate of the system. Figure 10 illustrates
that the initial stellar rotation does have a clear influence on the
survival of the planet. Therefore, we sought a relation involving
only M∗, mp, and aini to determine the equation of the border. For
each stellar mass, we collected the coordinates of the points on
the border in the slow and median rotator cases. Since increasing
(resp. decreasing) the stellar or planetary mass (resp. the semi-
major axis) reduces the chances of planet survival, we expected
that all these points arrange according to the following equation:

M∗m
β
p

aαini
= K, (25)

where α, β, and K are constants that we fitted with our simulated
data.

Figure 13 shows the result of our fit of the border between the
survival and disruption regions. The stellar mass is expressed
in solar masses, the planetary mass in jovian masses and the
semi-major axis in astronomical units. The points are scattered
because the relation between the parameters on the border is
not an ideal power law. Despite this dispersion, a trend clearly
appears in the figure. We used a multidimensional least-squares
method based on the Levenberg–Marquardt algorithm to fit the
results of our simulations and found that the points follow the
law M∗ = K aαini / mβ

p with K = 43.5, α = 1.12, and β = 0.142.
This equation allows us to define the survival-rate criterion:

If
M∗m

β
p

aαini
< K, then the planet survives; (26)

if
M∗m

β
p

aαini
> K, then it is destroyed. (27)

6. Conclusion

We presented ESPEM, a code implementing a model of secu-
lar evolution of star–planet systems under magnetic braking and
tidal interaction. Our wind model based on the work of Réville
et al. (2015a) allows a fine analysis of magnetic phenomena
occurring in the stellar corona. Its results are in agreement with
recent observations (Barnes 2010; Gallet & Bouvier 2015) and it
has the advantage of explaining the mass dependence of the brak-
ing torque (see Matt et al. 2015). We emphasized the difference
between the ab initio tidal prescription of Mathis (2015) and the
constant quality factor model used by Zhang & Penev (2014).
The former may predict that a planet will survive whereas the
latter predicts its decay. Therefore, understanding the physical
processes at stake in tidal interactions is of prime importance to
correctly interpret the various architectures of planetary systems
discovered during the last decade. We showed some examples of
complex orbital evolution scenarios that could occur as a conse-
quence of tidal dissipation within the star. We showed that the
spin-down caused by a planet orbiting a fast rotator could be
detected only for planets more massive than Jupiter. We showed
that, for hot Jupiters orbiting solar-like stars at a distance supe-
rior to 0.05 AU (∼10.7 R�), tidal interaction had no significant
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Fig. 12. Survival and disruption regions
for stars of mass 0.7, 0.8, 0.9, and
1.1 M�. Each row corresponds to a given
stellar mass, each column to a given ini-
tial stellar rotation. Slow, median, and
fast rotators correspond respectively to
the 25th, 50th, and 90th percentiles of
stellar rotation distributions observed in
open clusters as defined by Gallet &
Bouvier (2015). For each panel, the
orange area represents the region of the
(mp, aini) plane where planets are even-
tually destroyed, and the blue area the
region where planets survive.

impact on the system. Finally, we defined a survival-rate crite-
rion, allowing the prediction of the fate of a star–planet system
(survival or decay of the planet) knowing its main parameters.

It is now of prime importance to consider the impact of tides
within the stellar radiative zone, which are constituted by grav-
ity waves and dissipated by turbulent friction or breaking (see
e.g., Guillot et al. 2014). Indeed, this phenomenon is likely to
enhance the tidal torque or compete with the dissipation in the
envelope and modify the rotation rate of the stellar radiative core.
It is therefore necessary to build a consistent model of tidal evo-
lution. The present work can be considered as a step towards
this aim. Implementing a physical description of internal angular
momentum transport in the star is also among the perspectives of
this paper (e.g., Zahn 1992; Mathis 2013, and references therein).
Even if the simplified two-layer model implemented in ESPEM
is already able to provide good insight into stellar rotation evolu-
tion, a more detailed view of the interior as developed by Amard
et al. (2016) and Gallet et al. (2017b) would deeply improve our
comprehension.

After the physical phenomena in the star are better treated
in the code, considering tidal dissipation within the planet will
be the next step. Indeed, whereas the spin angular momentum
of the planet is by several orders of magnitude smaller than

that of the star, tides raised in the former may lead to compa-
rable tidal torques (see Mathis & Remus 2013; Ogilvie 2014,
and references therein). Such theoretical studies could be com-
pared to the recent results of O’Connor & Hansen (2018), who
studied hot-Jupiter populations to constrain the dissipation in
such planets. Taking this dissipation into account is required
to study planet spin synchronization and alignment and orbital
circularization and migration in the early stages of the life of
a system (see also Heller 2018). The frequency dependence
of the dynamical tide (Auclair-Desrotour et al. 2014), as well
as the impact of eccentricity, inclination, and dynamical insta-
bilities arising in multi-planet systems, have to be taken into
account to compare theoretical predictions with the observed
distributions (e.g., Bolmont et al. 2015; Damiani & Mathis
2018).

We will also consider the consequences of Roche-lobe over-
flow in a future work. Indeed, this process may cause mass
transfer from the planet to the star which would result in an out-
ward migration to conserve angular momentum (Trilling et al.
1998). In their theoretical study, Gu et al. (2003) showed that
this scenario occurs in eccentric systems. More recently, Jackson
et al. (2017) developed a consistent model of Roche-lobe over-
flow and showed that some observed systems were experiencing
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Fig. 13. Coordinates of the points of the border between the survival and
demise regions (respectively the blue and orange regions of Fig. 12) for
varying stellar mass (in units of M�), planetary mass (in units of MJup),
and initial semi-major axis (in AU). The blue circles correspond to the
median rotator case and the red diamonds to the slow rotator. The dotted
gray line represents the result of our fit (Eq. (25)).

significant mass transfer. Such developments will be useful to
improve our model of star–planet interaction.

In this work, we only considered stars with dipolar magnetic
fields. However, the strength and topology of the global surface
magnetic field of a star evolve with its age and structure (Gregory
et al. 2012; Vidotto et al. 2014; Emeriau-Viard & Brun 2017).
This may have an impact on the wind and stellar spin-down
during the MS (Brun & Browning 2017; Metcalfe et al. 2016).
Convection is able to influence magnetism via dynamo processes
(Brun et al. 2004, 2015; Brown et al. 2011; Strugarek et al.
2017a; Augustson et al. 2015; Käpylä et al. 2014) and differen-
tial rotation (Brun et al. 2017). Determining the impact of these
mechanisms is necessary to ensure realistic rotational evolutions
of stars.

This work also opens a discussion on the temperature and
density at the base of the corona of solar-like stars (see Eqs. (9)
and (10)). An empirical relation between the coronal temper-
ature, the mass, and the stellar rotation rate was proposed by
Johnstone & Güdel (2015), who studied the correlation between
the coronal temperature and the X-ray flux of low-mass MS stars.
From scaling laws and the relation between the X-ray luminos-
ity and the stellar rotation period found by Reiners et al. (2014),
they derived the expression Tc ∝ M−0.42 Ω0.52

∗ which differs
from what we used (Holzwarth & Jardine 2007). Concerning the
density at the base of the corona, the hypothesis of Holzwarth &
Jardine (2007) was justified by coronal electron density measure-
ments from Ivanova & Taam (2003). Both the reliability of these
observations and the possibility of inferring the base density of
the wind from such quantities were criticized (on the former
point, see Güdel 2004). However, more recent stellar wind mod-
els do not contradict this law (Cranmer & Saar 2011; Suzuki
et al. 2013). In a future work, we will consider changing the
assumptions we made on coronal parameters for relations taking
into account the stellar structure and evolution. However, such
developments are beyond the scope of the present paper.

Another important point of improvement is the Rossby
number. In this paper, we used the expression developed by
Cranmer & Saar (2011) for their models of MS solar-like stars
to express the Rossby number and used the value of Teff at the
ZAMS in the formulation. However, convective turnover times
are significantly longer for young stars than for their MS coun-
terparts. Thus, even slowly rotating PMS stars may be in a
saturated regime, which has been observed by recent X-ray sur-
veys on young clusters (Getman et al. 2005; Güdel et al. 2007).
This suggests that only stars older than a certain age can reach
the unsaturated regime. The limit age has to be of the order
of 13 Myr, the age of the h Per cluster which was studied by
Argiroffi et al. (2016). They found that it was the youngest known
cluster that behaves as clusters of MS stars.

Recent works have started accounting for the variations of
the Rossby number with stellar structure using stellar evolution
tracks (Folsom et al. 2016; Sadeghi Ardestani et al. 2017). Both
computed the convective turnover time at each time step as the
ratio of the local pressure scale height Hp divided by the local
convective velocity at one Hp over the base of the convective
zone. These approaches are close to that of Spada et al. (2013),
who published evolutionary tracks of solar-like stars for vari-
ous compositions and mixing length parameters, allowing one to
study the variations of the convective turnover timescale along
stellar evolution. The peculiarity of these formulations is that
they allow consistent treatment of the Rossby number over the
PMS phase, which to our knowledge is not taken into account in
other secular evolution models of rotation of solar-like stars. The
question of the Rossby number was also extensively studied by
Brun et al. (2017). In particular, they highlighted that the fluid
Rossby number Rof , defined as the ratio of the advection term
divided by the Coriolis force, was a good indicator to assess
the large-scale rotational behavior of solar-like stars. Based on
numerical simulations performed with the ASH code, they gave
an expression of this number as a function of stellar mass and
surface rotation rate.

In a future work, we will take into account the studies
mentioned above to improve this part of our model. A better
understanding of the magnetic and coronal properties of solar-
like stars will also be useful in order to implement star–planet
magnetic interactions in the code (Strugarek et al. 2014, 2015).
Recently, Strugarek et al. (2017b) proved that this effect could
compete with tidal dissipation in shaping star–planet systems.

Finally, in this work we only considered isolated star–planet
systems. Future developments of our code will include imple-
menting dynamical interactions in multiplanet systems (e.g.,
Laskar et al. 2012; Bolmont et al. 2015). Developing such phys-
ical models is important to extract the maximum amount of
information from the data from upcoming space missions such
as PLATO (Rauer et al. 2014).
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Appendix A: Description of the code
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Fig. A.1. Scheme of the dependences in the code. We first initialize the values of a, Lc, and Lr. At each time step, the torques are computed from
the current state of the system, the stellar evolution variables, and the results of starAML. Subsequently, the time derivatives ȧ, L̇c, and L̇r are
computed from the torques. This iterative integration goes on until the age of the system is greater than the limit age we set for the computation.

This appendix summarizes the key equations in the paper that
are solved by the code. The purpose of ESPEM is to compute
three quantities of interest over the life of the considered star–
planet system: the semi-major axis a, the angular momentum
of the shellular convective envelope Lc, and that of the inner
radiative zone Lr. At each time step, the torques Γint, Γwind, and
Γtide are computed from the state of the system. The time deriva-
tives of the quantities of interest are then computed from these
torques.

The computation of Γwind is different from that of the other
two torques. To compute the stellar wind, we used the starAML
code which implements the method of Réville et al. (2015b). We
refer the reader to Sect. 3 for more details about this method.
Since their technique implies to compute the radial profile of the
wind and magnetic field in the whole stellar corona, we decided
to precompute the torque of the wind rather than calling the
starAML routine at each ESPEM time step because the latter
option would have significantly slowed down our simulations.

The other two torques, Γint and Γtide, are directly computed
from the state of the system and the stellar evolution vari-
ables. The latter are read from a precomputed STAREVOL
evolutionary track (Amard et al. 2016).

Appendix B: Comparison to other models

This work is similar to other studies of star–planet systems.
In this section, we discuss the differences brought by the tidal
prescription and the two-layer internal rotation model we imple-
mented in ESPEM. To that end, we compare the results of these
frameworks with those of state-of-the-art models.

B.1. Comparison with the constant quality factor model

In this paragraph, we emphasize the consequences of changing
the tidal prescription. We compare the predictions made by the
model described in Sect. 4 with those of the constant quality fac-
tor model, used for instance by Zhang & Penev (2014). For this

purpose, we computed for each tidal prescription, the evolution
of a system composed by a solar-mass star and a Jupiter-mass
planet with an initial semi-major axis equal to 0.03 AU. The
initial rotation period of the star was set to 1.4 days, which corre-
sponds to the fast rotator described by Gallet & Bouvier (2015).
We tested three values of Q′ for the constant quality factor pre-
scription, 106, 107, and 108. Here, we detail the case where
Q′ = 106. The two other scenarios are discussed at the end of
this subsection.

Figure B.1 shows the comparison between the constant Q′
and variable Q′ models. As can be seen in the middle panel,
the former case leads to the destruction of the planet whereas
in the latter the planet survives. What allows the survival in the
variable Q′ model is the fast outward migration during the first
million years of the simulation. This phenomenon is due to the
low value of the tidal quality factor in this period.

The color backgrounds correspond to the different evolution
phases of the system in the variable Q′ case. The orange back-
ground stands for the disk-locking phase. The green background
represents the outward-migration phase. During this stage, both
the equilibrium and the dynamical tides are active. The pink
background corresponds to the inward-migration phase during
which both tides are raised. During this stage, the orbital period
Porb is such that P∗/2 < Porb < P∗, where P∗ is the surface rota-
tion of the star. Finally, the light pink background depicts the
inward-migration phase during which only the equilibrium tide
is active. During the latter two phases, the planet is too far from
the star to undergo significant orbital migration.

This figure illustrates the difference between our tidal model
and the constant Q′. Bolmont & Mathis (2016) performed sim-
ulations on a extensive parameter range to show the consistency
of this difference.

B.2. Comparison with the one-layer rotation model

One of the main differences between our code and that
of Bolmont & Mathis (2016) is the internal rotation
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Fig. B.1. Evolution of a system constituted by a star of mass 1 M�
and a planet of mass 1 MJup in the constant quality factor model with
Q′ = 106. We chose an initial semi-major axis aini = 0.03 AU and an ini-
tial stellar rotation period P∗,ini = 1.4 days. Color background mark the
evolution phases in the variable quality factor case. Orange background:
disk-locking phase. Green background: outward planet migration driven
by tidal inertial waves. Pink background: inward planet migration under
the combined equilibrium and dynamical tides. Light pink background:
inward planet migration under the equilibrium tide.

model implemented. We used the two-layer model of
MacGregor & Brenner (1991), in which the tidal and wind brak-
ing torques are applied on the convective envelope, which relays
them to the core through a parametrized internal coupling torque
with a constant timescale, whereas they assume that the star is in
solid body rotation. Consequently, stellar rotation in our model
is expected to be more sensible to tidal dissipation due to the
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Fig. B.2. Comparison between the one-layer (blue) and the two-layer
(orange) models. Secular evolution of a system formed by a 0.6 M�
star with initial rotation period P∗,ini = 1.2 days and a 5 MJup planet
initially orbiting at a distance aini = 0.024 AU. Top panel: semi-major
axis (solid lines) and corotation radius of the star (dashed lines). Bottom
panel: difference to the rotation period in the case without the planet,
as defined in Eq. (24).

low inertia of the convective envelope. To investigate this, we
measured the spin-down of a star caused by a close-in mas-
sive planet in orbit beyond the corotation radius. For both the
one-layer and the two-layer models, we computed the secular
evolution of the rotation period of a 0.6 M� star such as P∗,ini =
1.2 days, in a first time without planet, then with a 5 MJup planet
initially orbiting at a distance aini = 0.024 AU. We then calculated
the difference δP between the two cases as defined in Eq. (24).

Figure B.2 shows that both models predict similar evolutions.
As can be seen in the top panel, the planet migrates outward
during the first hundreds of millions of years. Consequently,
the star is spun down, which is why δP is positive. In both
cases, δP increases during the outward-migration phase, reaches
a maximum of the order of one day around the age of 1 Gyr,
and decreases over the MS phase. The curve of δP in the two-
layer model is slightly delayed compared to that of the one-layer
model. Studying this delay requires to perform simulations on
an extensive parameter space, which is beyond the scope of this
work.

Appendix C: Discontinuities of the tidal torque

The formulation of the tidal torque in Eq. (19) implies discon-
tinuities. This occurs at two events: when the planet orbits the
star at a distance close to the corotation radius and when the
orbital period is close to half the rotation period. In the former
case, the tidal frequency is close to zero and the sign of the tidal
torque may change with the absolute value remaining constant.

A124, page 18 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833314&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833314&pdf_id=0


M. Benbakoura et al.: Evolution of star–planet systems

0.00

0.02

0.04

0.06

0.08

0.10

Se
m

i-m
aj

or
 a

xi
s (

AU
)

106 107 108 109 1010

Age (yr)

0.5

0.0

0.5

1.0

1.5

Ti
da

l t
or

qu
e 

(N
m

)

1e26

Fig. C.1. Secular evolution of a star–planet system formed by a star of
mass 1 M� and a planet of mass 1 MJup. Initial semi-major axis 0.04 AU
and initial stellar rotation period 5 days. Top panel: semi-major axis (red
line), corotation radius (solid blue line) and limit of application of the
dynamical tide (dotted blue line). The vertical gray lines correspond to
events at which occur discontinuities of the tidal torque. Bottom panel:
tidal torque.

In the latter case, the tidal frequency approaches −2 Ω∗, the limit
of application of the dynamical tide, where the torque may dis-
continuously vary by several orders of magnitude, to reach the
values of the equilibrium tide.

Figure C.1 illustrates the different phases of the secular evo-
lution of a star–planet system formed by a star of mass 1 M� and
a planet of mass 1 MJup initially orbiting its host at 0.04 AU. The
events at which the discontinuities of the tidal torque occur are
marked by vertical dashed gray lines. As is visible on the bot-
tom panel, changes of tidal regime induce strong variations of
the tidal torque.

These discontinuities generate numerical problems during
the integration of differential equations. The Bulirsch–Stoer
algorithm from Hairer et al. (2000) implements an adaptive step
size to ensure the stability of the solution. Discontinuities in
the derivatives make the step size shrink and prevent the reso-
lution over the evolution. This is why we slightly modified the
dependence of the tidal torque on ωtide in the code.

To fix the null-tidal-frequency situation, we replaced the
sign function by a hyperbolic tangent in Eq. (19). We intro-
duced the characteristic pulsation ω0 = 10−8 rad s−1 such that
the expression used in ESPEM is

Γtide = −tanh
(
ωtide

ω0

)
9

4Q′
Gm2

p

a6 R5
∗. (C.1)

0.02 0.01 0.00 0.01 0.02
tide / *

1.0

0.5

0.0

0.5

1.0

1.5

Ti
da

l t
or

qu
e 

(N
m

)

1e22

Fig. C.2. Tidal torque around ωtide = 0 for a system formed by a star of
mass 1 M� rotating at 5 Ω� and a planet of mass MJup. The gray curve
represents the theoretical tidal torque and the red curve corresponds to
our regularized expression.

This modification makes the torque change sign continuously
without altering its value for |ωtide| > |ω0|. For example, Fig. C.2
shows the tidal torque as a function of the tidal frequency around
0 for a system formed by a star of mass 1 M� and a planet of
mass 1 MJup.

We performed a similar correction in the second case. For
ωtide < −2 Ω∗, the dynamical tide does not apply so only the
equilibrium tide contributes to the orbital evolution. For ωtide >
−2 Ω∗, inertial waves are raised in the stellar envelope and both
tides contribute to the interaction. Consequently, the theoretical
dissipation can be written as1

1
Q′th

=
1

Q′eq
if ωtide < −2 Ω∗ (C.2)

1
Q′th

=
1

Q′eq
+

1
Q′dyn

if ωtide > −2 Ω∗. (C.3)

The discontinuity arises from the addition of the dissipation of
the dynamical tide 1/Q′dyn as soon as the tidal frequency passes
the limit 2 Ω∗. To fix this problem, we replace this dependence
with a more regular function based on a hyperbolic tangent:

1
Q′reg

=
1

Q′eq
+

1
Q′dyn

1
2

(
1 + tanh

(
ωtide + 2 Ω∗

ω1

))
, (C.4)

where Q′reg is the regularized tidal quality factor and ω1 =

10−10 rad s−1. The factor multiplying 1/Q′dyn is null when the
inertial waves are not raised and it equals 1 when they apply.
Consequently, this regularized dissipation is continuous and fits
the theoretical dissipation when the tidal frequency is farther
than ω1 from −2 Ω∗.

The choice of ω1 is worth commenting upon. To this end,
we computed the secular evolution of given star–planet systems
for different values of ω1 ranging from 10−10 to 10−6 rad s−1. We
did not try larger values for ω1 because this parameter has to be
small compared to Ω∗, which is of the order of Ω� on the MS for
a solar-like star. Here, we illustrate the results of this experiment
with the cases ω1 = 10−10 rad s−1 and ω1 = 10−6 rad s−1 for a
1 M� star and a 1 MJup planet with P∗,ini = 5 days and aini =
0.025 AU.
1 Here, we do not have a condition around ωtide = 2 Ω∗ because this
corresponds to a null mean motion, which is never realized under our
hypotheses.
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Fig. C.3. Tidal torque around ωtide = −2 Ω∗ for a system formed by a
star of mass 1 M� rotating at 5 Ω� and a planet of mass MJup. The red
curve represents the tidal torque regularized withω1 = 10−10 rad s−1 and
the blue curve to ω1 = 10−6 rad s−1.

Figure C.3 shows the tidal torque in each case as a function
of tidal frequency. Despite the fact that the torque is significantly
smoothed for the larger value of ω1, the evolution of the system
is only weakly influenced by this parameter. This can be seen
in Fig. C.4. Indeed, in both cases, the evolution phases of the
system are the same. The lifetime of the planet is slightly shorter
in the smoothed case but it is not significantly different from the
other. We conclude from this study that the parameter ω1 has a
weak influence on the evolution. Therefore, we set its value to
ω1 = 10−10 rad s−1, so as to stay close to the theoretical tidal
calculations. However, the excitation and disappearance of the
dynamical tide should be discussed in a further work.
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Fig. C.4. Secular evolution of a star–planet system composed by a 1 M�
star and a 1 MJup planet with an initial stellar rotation period P∗,ini =
5 days and an initial semi-major axis aini = 0.025 AU. Red curves were
computed for ω1 = 10−10 rad/s and blue curves, for ω1 = 10−6 rad/s.
Top panel: semi-major axis (solid lines), stellar corotation radius
(dashed lines), limit of excitation of tidal inertial waves (dotted lines),
stellar radius (solid black line) and Roche limit (dashed gray line).
Bottom panel: modified tidal quality factor.
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