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Abstract 24 

In recent years, several sediment fingerprinting studies have used ultraviolet-visible (UV-25 

Vis), near-infrared (NIR) and middle-infrared (MIR) spectroscopy as a low cost, non-26 

destructive and fast alternative to obtain tracer properties to estimate sediment source 27 

contributions. For this purpose, partial last square regression (PLSR) has often been used to 28 

build predictive parametric models. However, spectra preprocessing and more robust and 29 

non-parametric models such as support vector machines (SVM) has gained little attention 30 

in these studies. Accordingly, the objectives of the current research were to evaluate (i) the 31 

accuracy of two multivariate methods (PLSR and SVM), (ii) the effect of eight spectra 32 

preprocessing techniques, and (iii) the effect of using the information contained in the UV-33 

Vis, NIR and MIR regions considered either separately or in combination on sediment 34 

source apportionment. The estimated source contribution was then compared with 35 

contributions obtained by the conventional fingerprinting approach based on geochemical 36 

tracers. This study was carried out in the Arvorezinha catchment (1.23 km2) located in 37 

southern Brazil. Forty soil samples were collected in three main potential source (cropland 38 

surface, unpaved roads and stream channels) and twenty-nine suspended sediment 39 

samples collected at the catchment outlet during nine rainfall-runoff events were used in 40 

this study. Both PLSR and SVM models showed a higher accuracy when calibrated and 41 

validated with the spectra submitted to spectral processing when compared to the direct 42 

use of the raw spectra. The best model results were obtained with PLSR and SVM 43 

mathematical models associated with the spectral preprocessing techniques 1st derivative 44 

Savitzky-Golay (SGD1), normalization (NOR) and combining NOR+SGD1 in the UV-45 

Vis+NIR+MIR. The lowest errors were observed when the UV-Vis+NIR+MIR bands were 46 

combined due to the gain in information and, consequently, the increase in discriminant 47 

power achieved by the models. Despite the good accuracy of the models calibrated and 48 

validated with the mixtures, significant errors remain when results of source contributions 49 

are compared to those obtained with the conventional sediment fingerprinting technique 50 

based on geochemical tracers. Nevertheless, the magnitude of the contributions calculated 51 

by the spectroscopy and geochemical approaches remains very similar for all sources, 52 

especially when using the SVM-UV-Vis+NIR+MIR model. Therefore, spectroscopy proved to 53 

be a fast, cheap and accurate technique, offering an alternative to the conventional 54 

geochemical approach for discriminating sediment source contributions in agricultural 55 

catchments located in subtropical regions. 56 

Keywords: soil erosion, alternative fingerprints, machine learning, Vis-NIR-MIR database, 57 

spectral preprocessing. 58 
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1. Introduction 59 

The sustainable production of food, fiber and biofuel remains limited by soil erosion 60 

(Comino et al., 2015; Erkossa et al., 2015; Seutloali and Beckedahl, 2015; Taguas et al., 61 

2015). The inadequate management of soils and the lack of runoff control exposes the soil 62 

to erosive agents, accelerating the processes of mobilization and transfer of sediments to 63 

the drainage network (Minella et al., 2014), along with the transportation of contaminants 64 

like pesticides (Magnusson et al., 2013; Yahia and Elsharkawy, 2014) and phosphorus 65 

(Dodd et al., 2014; Dodd and Sharpley, 2015; Poulenard et al., 2008). Erosion control and 66 

conservation of soil hydrological functionalities are essential to meet the demand in food 67 

production as well as to maintain the quality of water resources (Didoné et al., 2015; 68 

Merten et al., 2015). To better understand the occurrence of erosion processes at the 69 

catchment scale and to mitigate the problems arising from river overflow and excessive 70 

sediment production, it is first necessary to have quantitative information on the sources 71 

delivering sediment to the river systems. 72 

To this end, the use of the sediment fingerprinting approach quantifies the contribution of 73 

non-point based sediment sources through the use of a variety of tracers, including 74 

geochemical properties and radionuclides (D’Haen et al., 2012; Davis and Fox, 2009; 75 

Haddadchi et al., 2013; Koiter et al., 2013; Walling and Woodward, 1995). However, the 76 

large-scale application of the sediment fingerprinting technique requires a large number of 77 

chemical analyses, which have a significant cost and which are relatively time consuming. 78 

However, the use of other soil and sediment characteristics may complement or provide a 79 

powerful alternative information in source identification, such as reflectance spectroscopy 80 

(Cooper et al., 2014). 81 
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Reflectance spectroscopy in the visible and infrared ranges provides an efficient, low-cost, 82 

fast and non-destructive method easily applicable to soil and sediment samples to quantify 83 

various physical, chemical and biological properties (McBratney et al., 2006; Viscarra Rossel 84 

et al., 2006). Poulenard et al. (2009) were pioneers in the use of diffuse infrared 85 

spectroscopy (Diffuse Reflectance Infrared Fourier Transform Spectroscopy - DRIFTS) to 86 

trace the origin of sediments in river catchments. The method was successfully used to 87 

discriminate and predict the respective contribution of surface and subsurface sources to 88 

sediment, as well as to discriminate soils developed on different lithology (Poulenard et al., 89 

2012). Since then, several studies have been developed using the spectroscopic method to 90 

trace sediment sources (Table 1). Only 28 scientific articles had been published around the 91 

world after that of Poulenard et al., (2009) by early 2020, representing an average of about 92 

2.5 scientific publications per year (Fig. 1). They include studies in the ultraviolet-visible 93 

(UV-Vis) and near-infrared (NIR) ranges in the French Alps (Legout et al., 2013) and the 94 

Southern France (Uber et al., 2019), Luxemburg (Martínez-Carreras et al., 2010c, 2010b, 95 

2010a), Spain (Brosinsky et al., 2014a, 2014b), Ethiopia (Verheyen et al., 2014), South Africa 96 

(Pulley et al., 2018; Pulley and Rowntree, 2016), Argentina (Batistelli et al., 2018), the 97 

United Kingdom (Collins et al., 2014), Canada (Barthod et al., 2015; Boudreault et al., 2018; 98 

Liu et al., 2017), Brazil (Tiecher et al., 2016, 2015; Valente et al., 2020) and Iran (Nosrati et 99 

al., 2020). In the middle infrared region (MIR), sediment fingerprinting studies were carried 100 

out in France (Poulenard et al., 2012, 2009), Mexico (Evrard et al., 2013), the United 101 

Kingdom (Vercruysse and Grabowski, 2018), China (Liu et al., 2019), Brazil (Tiecher et al., 102 

2017) and in a transnational river catchment covering part of Switzerland, France and 103 

Germany (Chapkanski et al., 2019). Many of these studies have shown a good agreement 104 

between the results obtained with the spectroscopic method and those provided by the 105 
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conventional approach based on geochemical and / or radionuclide properties (Evrard et 106 

al., 2013; Legout et al., 2013; Martínez-Carreras et al., 2010c; Tiecher et al., 2015, 2016, 107 

2017; Verheyen et al., 2014).  108 

In addition to the more qualitative attempts that combine the use of discriminant analysis 109 

with spectroscopy (Chapkanski et al., 2019), previous studies conducted to trace sediment 110 

source contributions using spectroscopy (Table 1) can be divided into three main groups, 111 

according to the way they used the spectroscopic information. The first group uses color 112 

parameters extracted from the visible range (Barthod et al., 2015; Martínez-Carreras et al., 113 

2010c, 2010b, 2010a; Pulley et al., 2018; Pulley and Rowntree, 2016) and other spectral 114 

characteristics (spectral features and overtones) (Brosinsky et al., 2014b, 2014a; Collins et 115 

al., 2013, 2014) in an optimized mixed linear model, separately or in combination with 116 

conventional geochemical tracers (Tiecher et al., 2015). The second group of studies uses 117 

spectroscopic information to generate mathematical models using the least squares 118 

method (PLSR) to estimate the concentrations of geochemical tracers, which in turn are 119 

introduced in a mixed linear model optimized to estimate the contribution of sediment 120 

sources (Vis-NIR-SWIR - Martínez-Carreras et al., 2010b).  121 

The third group of studies directly uses the entire spectrum (Batistelli et al., 2018; Evrard et 122 

al., 2013; Poulenard et al., 2012, 2009; Tiecher et al., 2017, 2016, 2015; Verheyen et al., 123 

2014) or the spectrum combined with color parameters extracted from the visible range 124 

(Legout et al., 2013). They estimate the source contributions in sediment samples after 125 

generating a model (Partial Last Squares Regression – PLSR) calibrated using artificial 126 

mixtures combining potential sediment sources in variable proportions. To date, no study 127 

has been conducted combining the bands of UV-Vis, NIR and / or MIR, although it may be 128 
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expected that predictions of soil properties may be improved using the combined range of 129 

these regions of the electromagnetic spectrum (Knox et al., 2015; Reeves, 2010; Soriano-130 

Disla et al., 2014) due to the sum of distinct information that is added to the models 131 

(Viscarra Rossel et al., 2006).  132 

This third approach has the advantage of using all the spectral information directly in a 133 

mathematical model calibrated using artificial mixtures. To achieve this goal, all the 134 

previous studies used the Partial Least Squares Regression method (PLSR) (Table 1). 135 

However, more robust and non-parametric models, such as Support Vector Machine 136 

(SVM), could usefully be tested be tested for this type of application, as they were 137 

successfully used to derive soil properties, including clay and organic carbon content (Dotto 138 

et al., 2017; Lucà et al., 2017; Stevens et al., 2013; Viscarra Rossel and Behrens, 2010). This 139 

multivariate method seeks to identify an interpolation function using the kernel function, 140 

adjusting the calibration data until simultaneously minimizing the size of the coefficients 141 

and the prediction errors, in which data with non-linear patterns can be better represented 142 

by the calibrated model (Ivanciuc, 2007).  143 

In spectroscopic fingerprinting studies, there is also a knowledge gap regarding the use of 144 

spectrum pre-processing techniques in spectroscopic modeling (Table 1), despite the fact 145 

that several soil studies demonstrated that this step is extremely important when 146 

calibrating the models (Buddenbaum and Steffens, 2012; Dotto et al., 2017; Nawar et al., 147 

2016). Several spectrum pre-processing techniques can be used for this purpose, such as 148 

smoothing, Savitzky-Golay with 1st or 2nd derivative using a first or second order 149 

polynomial, standard normal variate, multiplicative scatter correction and normalization. 150 

However, so far, very few fingerprinting sediment tracing studies have reported whether 151 
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they used any type of spectral pre-processing. Most of them used only pre-processing 152 

(Brosinsky et al., 2014b, 2014a; Chapkanski et al., 2019; Tiecher et al., 2017, 2016, 2015), 153 

except for Ni et al. (2019), who used four pre-processing techniques, although they did not 154 

compare them to each other. 155 

In this context, the current research provides, to the best of our knowledge, the first 156 

attempt to compare the outputs of different multivariate mathematical models (both 157 

parametric and non-parametric) and preprocessing techniques of reflectance in UV-Vis, NIR 158 

and MIR spectral bands used in combination or in isolation to predict the contribution of 159 

sediment sources at the catchment scale. Accordingly, the objectives of the study were (i) 160 

to evaluate the accuracy of two multivariate methods for sediment source apportionment 161 

(PLSR and SVM), (ii) to evaluate the effect of eight spectra preprocessing techniques, and 162 

(iii) to evaluate the effect of using the information contained in the UV-Vis, NIR and MIR 163 

regions either separately or in combination. For this purpose, the estimated contribution 164 

for each source using the spectroscopic models was also compared against the values 165 

obtained by the conventional fingerprinting approach based on geochemical tracers 166 

 167 

2. Materials and methods 168 

2.1. Study site 169 

The Arvorezinha catchment is located in the northeastern part of the Rio Grande do Sul 170 

State, southern Brazil. Igneous rocks (basalts and rhyodacite) characterize the geology and 171 

the altitude varies from 580 to 730 meters. The upper third of the catchment has an 172 

undulating plateau relief with slopes up to 7%, and the middle and lower thirds of the 173 

catchment have a much steeper topography with slope gradients often exceeding 15%. The 174 
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climate is classified as Cfb (subtropical super-humid with no dry season and warm summer) 175 

according to Köppen (Alvares et al., 2013). The mean annual precipitation for the last 15 176 

years (2002-2016) is 1938 mm with a mean erosivity of 9344 MJ mm ha-1 h-1 yr-1 (Ramon, 177 

2017). The main crop is tobacco grown in small farms. Corn, soybean, eucalyptus and 178 

native forests are also found in the catchment. The landscape is characterized by short, 179 

steep slopes with a strong hydrological connectivity between hillslopes and the drainage 180 

network. The soil classes found in the catchment are Acrisols, Cambisols and Leptosols 181 

(IUSS Working Group WRB, 2015). Inadequate soil management under agricultural land 182 

associated with limited water infiltration due absence of subsurface horizon or clayey B 183 

horizon favor the formation of runoff that controls erosion dynamics in cropland. In 184 

addition to erosion processes in cropland, the inadequate location and maintenance of 185 

unpaved roads generate preferential pathways for runoff concentration accelerating 186 

erosion, and converting these roads into significant potential sources of sediment. The 187 

catchment also shows signs of channel banks erosion due to the high flow energy observed 188 

during the events (flash flood) associated with the absence of riparian forest along several 189 

river sections. Further details on the catchment can be found in Tiecher et al. (2015). 190 

Soil samples were collected from the three main potential sources of sediment, including (i) 191 

cropland surface, (ii) unpaved roads and (iii) stream channels. Cropland (n=20) and 192 

unpaved road (n=10) samples were taken using a non-metallic trowel from the uppermost 193 

layer (0–0.05 m). Stream channels (n=10) were sampled on exposed bank sites located 194 

along the main river channel network. Each sample was composed of at least 10 195 

subsamples collected in the vicinity of the sampling point (within a radius of approximately 196 

10 m). Source sampling sites were selected based on visible signs of soil erosion and 197 

hydrological connectivity as well as taking into account pedological variability. In order to 198 
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characterize the sediments transported in the drainage network, 29 suspended sediment 199 

samples were collected during nine rainfall events from October 2009 to July 2011 at the 200 

catchment outlet, where the flow and sediment concentration are also continuously 201 

monitored, which allows the calculation of liquid and solid discharges, as well as the 202 

catchment sediments yields. The sampled events cover the seasonal variability of land 203 

cover in the drainage area, as well as the variations of river flow conditions. For high 204 

magnitude events, several samples were collected to characterize the intra-event 205 

variability (rise, peak and recession of the hydrograph). Sediment concentrations during 206 

monitored events ranged from 300 to 2000 mg L-1. To obtain a sufficient mass of 207 

suspended sediment for conducting all analyses, samples were collected using a portable 208 

continuous flow centrifuge (Alfie-500 Alfa Laval). All the source material and sediment 209 

samples were oven-dried at 50 °C, gently disaggregated using a pestle and mortar, and 210 

passed through a 63-μm mesh prior to laboratory analyses to investigate similar particle 211 

size-fractions for all the samples (suspended sediments and sediment sources). 212 

 213 

2.2. Artificial mixtures of sediment sources 214 

The samples of each potential sediment source were mixed in equal proportions in the 215 

laboratory to constitute a unique reference sample for the corresponding source. Then, 216 

those reference samples were mixed in 48 different weight proportions as presented in Fig. 217 

2. These artificial mixtures containing different proportions of the three sources were then 218 

used to calibrate the multivariate mathematical models used to estimate the source 219 

contributions to the suspended sediment samples. 220 

 221 
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2.3. Spectral analyses 222 

UV-Vis diffuse reflectance spectra of samples were recorded at room temperature from 223 

200 to 800 nm with a 1-nm step using a Cary 5000 UV–Vis–NIR spectrophotometer (Varian, 224 

Palo Alto, CA, USA). Samples were ground and loaded into a Harrick Praying Mantis diffuse 225 

reflectance accessory that uses elliptical mirrors. BaSO4 was used as a 100% reflectance 226 

standard. Care was taken when adding the samples into the sample holder to avoid 227 

differences in sample packing and surface smoothness. 228 

Near infrared (NIR) spectra were recorded in the range 10000–4000 cm–1 (1000-2500 nm) 229 

using a Nicolet 26700 FTIR spectrometer (Waltham, Massachusetts, USA) in diffuse 230 

reflectance mode with an integrating sphere and a InGaAs detector with a resolution of 4 231 

cm–1 and 100 readings per spectrum. 232 

Mid infrared (MIR) spectra were obtained in the range 400–4000 cm–1 (2500-25000 nm) 233 

using a Nicolet 510-FTIR (Thermo Electron Scientific, Madison, WI, USA) spectrometer in 234 

diffuse reflectance mode with a resolution of 4 cm–1 and 100 readings per spectrum. A 235 

direct current of air was used (dry and without CO2) to eliminate CO2 and water from the 236 

spectrometer in order not to interfere with scanning and obtaining the spectra.  237 

UV-Vis, NIR and MIR spectral data were subjected to spectral pre-processing to remove 238 

physical variability due to light dispersion and to remove systematic variations of 239 

instrumental and environmental conditions in order to emphasize the characteristics of 240 

interest along the spectrum. Spectra without pre-processing constitute the "control 241 

treatment" (RAW). Eight spectral processing techniques commonly employed in 242 

chemometric studies (Rinnan et al., 2009) were tested to evaluate its effect on the 243 

calibration of spectroscopic models.  244 
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Pre-processing includes: (i) smoothing (SMO) from a convolution function using a 25 nm 245 

mobile window, after initial testing to define the best search window; (ii) Savitzky-Golay 246 

(Savitzky and Golay, 1964) with 1st derivative using a first order polynomial (SGD1), with 25 247 

nm search window, after initial testing to define the best search window; (iii) Savitzky-248 

Golay (Savitzky and Golay, 1964) with 2nd derivative using a second order polynomial 249 

(SGD2), with 25 nm search window. The 1st and 2nd derivates calculate the change of 250 

reflectance in wavelength variation rate. This technique is widely used to remove baseline 251 

shifts and highlight spectral features of interest; (iv) varied normal standard deviation 252 

(SNV) is used to remove spectral data dispersion caused by noise and different particle 253 

sizes and consists of subtracting the mean and dividing it by the standard deviation 254 

(spectrum - mean/standard deviation) of each spectrum individually; (v) multiplicative 255 

scatter correction (MSC) is effective in minimizing baseline compensations and 256 

multiplicative effects; (vi) normalization (NOR) is the ratio of spectrum bands measured by 257 

standard deviation (NOR); (vii) combination of NOR+SGD1; (viii) combination of 258 

MSC+SGD1. These eight techniques can be divided into three groups according to the 259 

objective and the mathematical approach employed. The first group includes only the 260 

smoothing of the spectra, represented by the SMO. The second group is defined by the use 261 

of derivatives to remove baseline shifts and enhance spectral features, represented by 262 

SGD1 and SGD2. The third group corresponds to techniques for spectral data normalization 263 

and dispersion corrections such as SNV, MSC and NOR. All pre-processing was performed 264 

using the prospectr and clusterSim packages (Stevens and Ramirez-Lopez, 2020; Walesiak 265 

and Dudek, 2020) R software (R Core Team, 2020). 266 

 267 
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2.4. Spectroscopic model development: calibration and validation 268 

The spectroscopic models were calibrated from the spectral signature of the 48 mixtures 269 

with different proportions of each sediment source (Figure 2). Spectral data were 270 

generated from the following regions of the electromagnetic spectrum: UV-Vis, NIR, MIR, 271 

UV-Vis+NIR, UV-Vis+MIR, NIR+MIR and UV-Vis+NIR-MIR. Two multivariate calibration 272 

methods were used to adjust the models, where the effect of the eight spectral pre-273 

processes plus the raw spectrum (RAW) was tested. This totaled 126 spectroscopic models 274 

for each source, totaling 378 models (Figure 4).  275 

Two multivariate methods with different approaches were selected to calibrate the 276 

spectroscopic models: (i) Partial Least Squares Regression (PLSR) (R pls package (Mevik et 277 

al., 2016)) parametric technique widely used in spectroscopic modeling (Angelopoulou et 278 

al., 2020; Dotto et al., 2018) and (ii) Support Vector Machines (SVM) (R e1071 package 279 

(Meyer et al., 2019)), non-parametric technique. Methods with different approaches were 280 

selected due to the occurrence of linear and non-linear correlations between the organo-281 

mineral components of soil/sediment and the spectral variables (Viscarra Rossel and 282 

Behrens, 2010). The PLSR model handles data sets containing many independent and highly 283 

correlated variables, such as UV-Vis-NIR-MIR spectral data. PLSR analysis reduces large data 284 

sets to a small number of uncorrelated orthogonal factors to minimize the sum of the 285 

squares of the predicted value errors (Varmuza and Filzmoser, 2009). The SVM model was 286 

used with the kernel function, which separates the calibration data into hyperplanes and 287 

seeks to establish correlations between the dependent and independent variables when 288 

these have non-linear behavior (Ivanciuc, 2007).  289 
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The parameterization in the calibration of the PLSR method was: method = 'pls', resampling 290 

method = ‘cross-validation 10 k-fold’, and number of components = ‘.ncomp = seq(1, 20, 291 

1)’. For SVM the parameters were: method = 'svmLinear', resampling method = ‘cross-292 

validation 10 k-fold’, and Kernel parameters = ‘Support Vector Machine with Linear Kernel’. 293 

Each model was calibrated with 70% of the samples (n= 34) and validated with 30% of the 294 

samples (n = 14). Both sets were randomly generated. To evaluate the accuracy of the 295 

models the following parameters were calculated: coefficient of determination (R2) 296 

(Equation 1), bias (Equation 2) and mean square root of the prediction error (RMSE) 297 

(Equation 3). 298 

 299 

 300 

 301 

 302 

 303 

 304 

where: ŷ = predicted value of each source; ȳ = observed mean value of each source in the 305 

mixture; y = observed values of each source in the mixture; n = number of samples with i = 306 

1, 2,..., n. 307 

 308 
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2.5 Estimation of sediment source contributions by spectroscopic models and 309 

independent validation comparing with the contribution results obtained with the 310 

conventional geochemical approach 311 

The contribution of sediment sources was estimated by spectroscopic models from an 312 

independent set of spectral reflectance data, which were obtained from 29 suspended 313 

sediment samples. The predicted values were then compared with those obtained with the 314 

geochemical tracers (Tiecher et al., 2015) and the biassp error statistics (Equation 2) and 315 

RMSEsp (Equation 3) of the proportion of sediment estimated for each source were 316 

calculated. This approach used the total concentration in various elements (Ag, As, Cr, Fe, 317 

Mo, and P) estimated by ICP-OES after microwave assisted digestion with concentrated HCl 318 

and HNO3 in the 3:1 ratio (aqua regia). Detailed information regarding sediment sampling 319 

and the statistical procedure used in the conventional geochemical approach can be found 320 

in Tiecher et al. (2015). 321 

Finally, data of quality of the models based on validation with artificial mixtures of 322 

sediment (RMSEv), and compared with the sediment contribution values obtained with 323 

geochemical tracers (RMSEsp) were entered in a conditional inference regression tree 324 

procedure to highlight the factors that most influenced the quality of the models. 325 

 326 

3. Results and discussion 327 

3.1. Model calibration performance 328 

The results of the validation of the 378 models are presented in Figure 5. In general, there 329 

is variation in the predictive behavior of the models depending on the type of spectral pre-330 

processing, spectral range, multivariate method and sediment source considered (Figure 331 
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5). One the one hand, the calibrated models with SGD1, NOR+SGD1 and NOR pre-332 

processing achieved a greater accuracy in predictions, differing significantly from that 333 

obtained with other techniques (Figure 6a). Studies on organic carbon and soil clay content 334 

predictions have also shown that it is possible to increase the accuracy of spectroscopic 335 

models calibrated with SGD1 and NOR pre-processing (Dotto et al., 2018; Knox et al., 2015; 336 

Moura-Bueno et al., 2019; Pinheiro et al., 2017; Vasques et al., 2008). On the other hand, 337 

the models calibrated with preprocessed spectra using the SGD2, MSC, MSC+SGD1, SMO 338 

and SNV techniques presented the lowest performance among all spectral ranges and their 339 

combinations in the three sediment sources (Figure 6a). These results agree with the 340 

studies of Dotto et al. (2018) and Moura-Bueno et al. (2019) that showed a lower accuracy 341 

in organic carbon predictions of subtropical soils in southern Brazil when the SVM and PLSR 342 

models are calibrated with Vis-NIR spectra submitted to the MSC and SNV techniques, 343 

respectively.  344 

The SDG2 technique stands out with a higher value of RMSEv observed in the predictions of 345 

the three sources, differing from the other pre-processes (Figure 6a). Moreover, the SDG2 346 

technique was the only pre-processing that resulted in a RMSEv value higher than 15% and 347 

was also the only method with a RMSEv higher than that obtained for the spectra without 348 

any type of pre-processing (RAW). Possibly, the SGD2 technique may be eliminating 349 

features (predictor variables) of the spectra that are important for the prediction of 350 

sediment sources. Nevertheless, several studies have used the 2nd derivative technique to 351 

treat UV-Vis, NIR and MIR spectra (Tiecher et al., 2015, 2016, 2017) and MSC (Ni et al., 352 

2019) and SNV (Chapkanski et al., 2019) techniques to treat MIR spectra, with the objective 353 

to derive the characteristics of interest along the spectrum and to improve the predictions 354 
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of the models of sediment source contributions. However, as observed in the current 355 

research, these pre-processing methods do not appear to be the most promising.  356 

There is still no consensus on how to define a priori the pre-processing techniques that will 357 

produce predictive models with a greater accuracy. Each pre-processing method will 358 

behave differently (Rinnan et al., 2009) depending on the set of soil samples considered, or 359 

as in the current research, on the intra-source spectral variation. Thus, ideally, it remains 360 

necessary to perform preliminary tests with different pre-processing methods, especially in 361 

river catchments with contrasted geologies and soil types, and when considering greater 362 

number of potential sediment sources and in larger basins, where the complexity is 363 

greater. The content in organic matter, clay and iron oxides strongly influence the spectral 364 

behavior of soils (Moura-Bueno et al., 2019; Viscarra Rossel and Behrens, 2010) and 365 

sediments (Figure 3) (Tiecher et al., 2017, 2016, 2015). Therefore, in a context of great 366 

variability between sources, as when comparing sources with different geology and 367 

mineralogy (Poulenard et al., 2009), or surface and subsurface sources with contrasting 368 

carbon contents (Evrard et al., 2013), pre-processing techniques may result in limited 369 

improvement of predictive models. However, they may have a greater potential to improve 370 

models in larger basins and in study areas characterized by sources showing homogeneous 371 

carbon contents and mineralogical compositions.  372 

The lowest variation and value in the RMSEv for the unpaved roads source in all spectral 373 

ranges and combinations (Figure 6c) compared to the other potential sediment sources are 374 

likely associated with the spectral behavior of this source. Among the three sources 375 

considered, unpaved roads are the most depleted in organic matter and the coarsest grain-376 

sized (Tiecher et al., 2019). Furthemore, it is composed of subsoil material that is richer in 377 
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2:1 clay mineral (Tiecher et al., 2016). In addition, qualitatively, organic matter from 378 

unpaved roads contains a higher proportion of alkyl-benzene, and a lower proportion of 379 

polysaccharides and amino acids, compared to cropland and stream channels, which in 380 

turn are sources that show organic matter of similar quality (Tiecher et al., 2015). The 381 

lower organic matter content of the unpaved roads strongly limits masking effects on 382 

spectral features related to iron oxides between 450-850 nm. The influence of organic 383 

matter on the shape and albedo of the spectral curve along the entire UV-Vis+NIR 384 

spectrum, with an emphasis on specific regions of Fe oxides, was reported in studies 385 

conducted in Brazil (Dalmolin et al., 2005; Galvao and Vitorello, 1998; Moura-Bueno et al., 386 

2019) and worldwide (Ben-Dor, 1997). This results in lower spectral variation (Viscarra 387 

Rossel and Behrens, 2010) compared with samples with higher organic matter content, 388 

such as cropland and stream channels. This explains the higher RMSEv variation in the UV-389 

Vis range among different pre-processing methods observed for these two sources 390 

compared to the unpaved road source (Figure 5a). Consequently, the calibrated models for 391 

unpaved roads achieve a greater accuracy in estimates. In addition, the unpaved road 392 

source is also richer in hematite oxides of Fe, with prominent features compared to crop 393 

fields and stream channels (Tiecher et al., 2015). This shows that the composition of each 394 

source affects the spectral behavior of sediment differently in each spectral range (Figure 395 

3) and, consequently, this affects in turn the predictive models calibrated for each source 396 

(Batistelli et al., 2018). These results are also in line with those observed in soil 397 

spectroscopic modeling, in which variations in the organo-mineral composition of the soil 398 

were shown to strongly influence the performance of predictive models (Araújo et al., 399 

2014; Moura-Bueno et al., 2019; Wijewardane et al., 2016) with an emphasis on parametric 400 

multivariate methods (Lucà et al., 2017; Ramirez-Lopez et al., 2013). 401 
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By comparing the spectral ranges, it is possible to note that the RMSEv has decreased in the 402 

following order: UV-Vis > NIR > MIR (Fig. 6b). Good calibration results using MIR were also 403 

observed in previous sediment tracing studies (Collins et al., 2014; Evrard et al., 2013; Ni et 404 

al., 2019; Poulenard et al., 2012). This may be related to an increased sensitivity and an 405 

improved identification of functional groups of organic matter by MIR compared to UV-Vis 406 

and NIR (Viscarra Rossel and Behrens, 2010). Studies show that spectroscopic models 407 

calibrated with MIR region spectra have the potential to discriminate different fractions of 408 

organic matter (Knox et al., 2015) and sediment sources (Evrard et al., 2013; Ni et al., 409 

2019). This also explains why, in the current research, the models calibrated with MIR 410 

spectra and their combinations presented the lowest variation in the RMSEv of predictions 411 

among all pre-processing techniques (Figures 5c, 5e, 5f and g), in particular for the models 412 

calibrated with the SVM method.  413 

Our results show that there was no significant gain in terms of RMSEv when combining the 414 

UV-Vis+NIR, UV-Vis+MIR and NIR+MIR bands, but that RMSEv decreases significantly when 415 

the three bands of the electromagnetic spectrum were combined in a single model (UV-416 

Vis+NIR+MIR) (Figure 6b). The same result has been observed in studies performed to 417 

estimate the concentration of elements in soil samples (Knox et al., 2015; Reeves, 2010; 418 

Soriano-Disla et al., 2014). The increase observed in RMSEv for models calibrated with UV-419 

Vis range (Figure 6b) is a consequence of the lower UV-Vis spectral range (200-800 nm), 420 

which does not allow distinguishing organic matter components (Viscarra Rossel and 421 

Behrens, 2010), associated with the absence of NIR range, which is more sensitive to detect 422 

clay minerals. This implies a reduction in the predictive capacity of models calibrated with 423 

UV-Vis only or with the absence of the NIR band. This behavior is observed for models 424 

calibrated with UV-Vis+MIR range, where the absence of NIR range increased the 425 
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prediction error (RMSEv) of the estimates (Figure 6b). Although the RMSEv of the models 426 

combining Vis-UV+MIR are intermediate to the RMSEv of the models calibrated using these 427 

spectral ranges separately (i.e. Vis-UV and MIR alone), it was expected that the errors 428 

would be smaller when combining them. A possible explanation for this result may be the 429 

overfitting caused by the high number of parameters and a relatively low number of 430 

artificial mixture samples used for calibrating the models (48 in total). Therefore, the low 431 

number of artificial mixture samples used to calibrate the models can be a limitation of this 432 

study, especially when combining different spectral ranges. Further efforts in future studies 433 

should evaluate the effect of the number of artificial mixture samples on the overfitting of 434 

spectroscopic models.  435 

In summary, the explanation for this difference is associated with the interaction of UV-Vis, 436 

NIR and MIR wavelength bands, which are bands basically related to color, particle size, 437 

type of minerals and organic matter, their chemical bonds and functional groups (Viscarra 438 

Rossel and Behrens, 2010), resulting in gain of explanatory information of the spectral 439 

variation of the data (Viscarra Rossel et al., 2006). Therefore, as sediment often consists of 440 

a heterogeneous mixture, there is a greater variation of these factors, resulting in a larger 441 

amount of functional groups detected on their surface and, therefore, the combination of 442 

several wavelengths, for example, UV-Vis+NIR+MIR, enhances the performance of 443 

spectroscopic models to discriminate between contrasted sediment sources.  444 

In general, most spectroscopic models had RMSEv values below 15% for the validation, and 445 

in some cases, values below 5% were found (Figure 5). The models calibrated to MIR, UV-446 

Vis+NIR, UV-Vis+MIR and NIR+MIR spectra achieved RMSEv values lower than 10% in the 447 

three sediment sources (Figure 6b), and those calibrated for the UV-Vis+NIR+MIR spectral 448 
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range, presented values lower than 7% for crop fields and stream channels and equal to 5% 449 

for unpaved roads. These values are lower than the error of 15%, which is often considered 450 

to provide the acceptable level for sediment fingerprinting studies (Collins and Walling, 451 

2002). This shows that the use of the spectroscopy technique employing the most 452 

appropriate spectral processing approaches, spectral bands and multivariate methods has 453 

a great potential for discriminating the contribution of sediment sources.  454 

The lowest RMSEv values in the predictions for both multivariate methods (PLSR and SVM) 455 

were observed for unpaved roads, which differed significantly from the other potential 456 

sources (Figure 6c). The models calibrated with the SVM method had a better performance 457 

compared to the PLSR, especially for the crop fields source (Figure 6c). This is explained by 458 

the greater ability of the SVM method to model non-linear relationships (Ivanciuc, 2007; 459 

Viscarra Rossel and Behrens, 2010) compared to the PLSR method. In this case, the crop 460 

fields source presents a heterogeneous organo-mineral composition, mainly regarding the 461 

quality of organic matter. In this scenario, non-linear relationships between the organo-462 

mineral components and the spectral variables of the crop fields source predominate. In 463 

this case, SVM method is able to establish explanatory correlations of data variance, 464 

resulting in more accurate estimates. This also explains why the lowest variations in 465 

predictions are observed for the SVM method, which is shown to provide a more stable 466 

method for the modeling of sediment sources, with an emphasis on sources with greater 467 

variations in organo-mineral composition. 468 

 469 

3.2. Comparing sediment source predictions by spectroscopy models with those obtained 470 

with the conventional geochemical approach 471 
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The estimated sediment contribution of each source obtained from the best calibrated 472 

models for the UV-Vis, NIR, MIR spectral ranges and their combinations is shown in Figure 473 

7. In general, the PLSR and SVM models calibrated with spectra of the three spectral bands 474 

and their combinations submitted to SGD1, NOR, and NOR+SGD1 pre-processing have 475 

achieved a greater accuracy in predicting sediment sources when compared to estimates 476 

derived from the geochemical method tested by Tiecher et al. (2015) (Appendix 1). The 477 

models calibrated with spectra processed by the SGD2 technique showed the lowest 478 

predictive performance among all approaches (Appendix 1). These results corroborate 479 

those observed during the calibration and validation of the models (Figs. 5 and 6).  480 

In all modeling approaches, estimates of PLSR and SVM models clearly indicate that the 481 

main contribution of sediment is supplied by the crop fields source, followed by stream 482 

channels and unpaved roads (Figure 7), corroborating the results estimated by the 483 

geochemical method (Tiecher et al., 2015). Good agreement is observed between the 484 

contribution of the sources obtained with the geochemical tracer approach and that 485 

estimated by the PLSR and SVM models when combining the UV-Vis+NIR+MIR spectral 486 

ranges, with the crop fields source contributions amounting to 57%, 62% and 55%, 487 

respectively, followed by the unpaved roads sources, with 23%, 24% and 19%, and stream 488 

channel 20%, 20% and 21%, respectively (Figure 7g).  489 

In general, the highest RMSEsp values were observed for crop fields and stream channel 490 

source estimates and the lowest for unpaved roads (Appendix 1). The predictions of crop 491 

fields and stream channel sources by the models generated with the SVM method were 492 

better than with PLSR. For the unpaved roads source, the SVM and PLSR methods 493 

presented very close RMSEsp values. For example, for the SVM method, the model with the 494 
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most accurate estimates was SVM-SGD1-UV-Vis+NIR+MIR, with RMSEsp of 17.7, 16.4 and 495 

13.9%, and biassp of 2.0, -0.7 and -2.7% for crop fields, stream channel and unpaved roads, 496 

respectively (Figure 8; Appendix 1). Accordingly, an overestimation of the crop fields 497 

contribution to sediment was found, such as an underestimation of the stream channel and 498 

thee unpaved roads source contributions. Despite the good accuracy of the models 499 

calibrated and validated with the mixtures of proportions of each source of sediment 500 

(Figure 8), there is still a considerable error compared to predictions made with 501 

fingerprinting based on geochemical tracers. This can be partly attributed to the low 502 

number of sediment samples evaluated (n = 29). Future studies should use a larger number 503 

of sediment samples in order to better understand this relationship. Nevertheless, the 504 

magnitude of the contributions calculated by spectroscopy and geochemical approach is 505 

very similar for each source (Figure 8).  506 

For the PLSR method, the PLSR-NOR-UV-Vis+NIR+MIR model was more accurate, with 507 

higher RMSEsp for the crop fields (20.0%) and stream channel (18.7%) sources and also 508 

larger under- (biassp = -4.5%) and overestimations (biassp = 3.6%), respectively, and the 509 

lower RMSEsp (14.5%) and biassp (-0.1%) were observed for unpaved roads source. The 510 

highest prediction errors observed for crop fields and stream channel sources are in 511 

accordance with the findings of Tiecher et al. (2015), who used the PLSR method and NIR 512 

spectral range to estimate sediment sources in the same study area. According to the 513 

authors, the three sources is enriched in 1:1 kaolinite type minerals. However, an increase 514 

in the abundance of 2:1 clay minerals may be observed in the following order: crop fields > 515 

stream channel >> unpaved roads, and an increase in the abundance of quartz may be 516 

found in reverse order. In addition, crop fields and stream channels also have a higher 517 

organic matter content than unpaved roads (Tiecher et al., 2016). Therefore, the closer 518 
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mineral composition and higher organic matter content of the crop fields and stream 519 

channels provide higher spectral variations, resulting in higher prediction errors (20.0 and 520 

15.8% for crop fields and stream channel, respectively) than those obtained for the 521 

unpaved roads (15.5%) for the PLSR-NOR-UV-Vis+NIR+MIR model (Appendix 1). 522 

Furthermore, this variation in the organo-mineral composition of the sources has a greater 523 

effect on the prediction errors when looking at the estimates of the calibrated PLSR models 524 

for the separate spectral ranges such as UV-Vis which showed RMSEsp of 23. 7, 26.6 and 525 

15.7% for crop fields, stream channel and unpaved roads, respectively, for the PLSR-NOR-526 

SGD1 model; and MIR with RMSEsp 25.8, 25.7 and 18.6% for crop fields, stream channel 527 

and unpaved roads, respectively, for the PLSR-SGD1 model. This is because the UV-Vis and 528 

MIR bands are less sensitive to clay mineral types (Viscarra Rossel and Behrens, 2010) than 529 

the NIR spectral band, which identifies these constituents more clearly. Therefore, for the 530 

PLSR-SGD1-NIR model, no major differences in RMSEsp values (23.8, 16.2 and 15.8% for 531 

crop fields, stream channel and unpaved roads, respectively) were observed with respect 532 

to the PLSR-UV-Vis+NIR+MIR. 533 

The difference between the multivariate methods is related to the statistical approach 534 

followed in each method (PLSR - parametric and SVM - non-parametric). In this case, the 535 

estimate of the contribution of the crop fields source obtained by the SVM-UV-536 

Vis+NIR+MIR model presented a value very similar to that observed by the geochemical 537 

method (Figure 7g), indicating that this non-parametric model is more robust for the 538 

spectroscopic modeling of this sediment source. Among the three sources considered, crop 539 

fields had greater spectral variation (Tiecher et al., 2015) and, therefore, concomitant 540 

occurrence of linear and nonlinear correlations between spectral variables and sediment. 541 

In this scenario, non-parametric methods present better adjustments in the models, 542 
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especially SVM, which uses the kernel mathematical function to establish relationships 543 

between the dependent and independent variables, in which the model seeks to identify 544 

an interpolation function between the variables and creates support vectors (Ivanciuc, 545 

2007). Studies have observed a similar behavior for the spectroscopic modeling of organic 546 

carbon content (Lucà et al., 2017; Viscarra Rossel and Behrens, 2010), and also that of 547 

exchangeable clay and calcium (Ramirez-Lopez et al., 2013) in soil samples with high 548 

spectral variations. 549 

The results show that there is a difference in the performance of the calibrated 550 

spectroscopic models with each spectral range and their combinations. For example, 551 

models calibrated only with spectrum in the UV-Vis range have the highest error for both 552 

PLSR and SVM, with RMSEsp values > 22% for crop fields; RMSEsp > 26% for stream channels 553 

and RMSEsp > 20% for unpaved roads (Appendix 1). By contrast, the lowest errors were 554 

achieved in the UV-Vis+NIR+MIR ranges, where RMSEsp values were ~18% for crop fields 555 

and ~16% for stream channels and unpaved roads. This shows that when using narrower 556 

spectrum bands there is a loss of information and consequently a loss of discriminating 557 

power of the models. However, the models that combined the three UV-Vis+NIR+MIR 558 

spectral bands (Figure 7g) achieved a greater accuracy due to the better discrimination of 559 

the inherent compositional characteristics of each source, as all major components that 560 

may influence the spectral behavior (organic matter, clays and oxides) are taken into 561 

account in the spectra (Knox et al., 2015; Reeves, 2010; Viscarra Rossel et al., 2006). 562 

Other differences in error metrics with respect to spectral ranges are observed by the 563 

higher predictive capability of UV-Vis+NIR+MIR (Appendix 1) compared to models using 564 

only UV-Vis+NIR range. This is in accordance with the findings of Reeves (2010) and Knox et 565 
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al. (2015) for soil organic carbon estimation. Furthermore, a study conducted by Bellon-566 

Maurel and McBratney (2011) and Knox et al. (2015) showed that models developed to 567 

quantify organic carbon content using MIR region data only produce slightly better results 568 

than the UV-Vis+NIR region. However, this was not observed in the current research, 569 

where models using only MIR showed a lower performance compared to that obtained 570 

with UV-Vis+NIR (Appendix 1). It should be noted that in this study we are modeling 571 

sediment source contributions, which is very different from obtaining spectroscopic 572 

estimates of elemental concentrations. Sediments consist of a mixture of particles with 573 

different contents and types of clays, Fe oxides and organic matter. In this case, UV-Vis and 574 

NIR spectral ranges have potential to discriminate between contrasted contents and types 575 

of clays and Fe oxides (Viscarra Rossel and Behrens, 2010). They are therefore important 576 

for discriminating between contrasted sediment sources, as already reported in the 577 

literature (Collins et al., 2014; Legout et al., 2013; Pulley and Rowntree, 2016; Tiecher et al., 578 

2016). 579 

Moreover, the estimates obtained by the models in the UV-Vis and MIR spectral ranges 580 

(Figure 7a, 7c, respectively) showed a greater dispersion between the PLSR and SVM 581 

models and the three sediment sources. The same behavior is observed for the 582 

combination UV-Vis+MIR (Figure 7e), particularly for crop fields. This may be attributed to 583 

the interaction of UV-Vis and MIR wavelengths, which are bands related to the content and 584 

type of Fe oxides, and functional groups of organic matter, respectively (Viscarra Rossel 585 

and Behrens, 2010). As sediment is a rather heterogeneous mixture, mainly supplied by 586 

crop fields, there is a greater compositional variation in these samples, which in this case, 587 

the UV-Vis and MIR spectra are unable to capture. This observation interferes in the 588 

correlations between sediment and spectral bands and, therefore, in the predictive power 589 
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of models. By contrast, the NIR spectral band resulted in estimates very close to those 590 

obtained by the geochemical method, with emphasis on the crop fields and unpaved roads 591 

sources (Figure 7b). The explanation for this is due to the wavelengths corresponding to 592 

the NIR region being able to jointly identify particle size, type of minerals and organic 593 

matter, and supertons of chemical bonds and functional groups (Viscarra Rossel and 594 

Behrens, 2010). Furthermore, the combinations of spectral bands with NIR (such as 595 

NIR+MIR and UV-Vis+NIR+MIR) present the same tendency as that observed for NIR, i.e., 596 

lower amplitude in estimates (Figure 7f, 7g). This shows that the NIR spectral range is the 597 

most important region of the electromagnetic spectrum for building spectroscopic models 598 

for estimating sediment source contributions. This confirms previous findings obtained in 599 

studies conducted at different locations around the world, which showed the good 600 

performance of models that use data derived from the NIR spectral range to estimate 601 

sediment source contributions (Collins et al., 2014; Tiecher et al., 2016). 602 

 603 

3.3. Assessing the quality of the models 604 

It is important to note that in all models tested here, the contribution of each source is 605 

estimated independently, i.e. each model estimates the proportion of a source 606 

independently of the other two sources. Therefore, the sum of the estimates generated for 607 

each source can provide a good indicator of model quality. In this case, it is understood 608 

that models with the sum of contributions from sediment sources closer to 100% are 609 

better (Legout et al., 2013). Figure 8 shows this comparison, where it is observed that 610 

under and overestimation (ranging from 90 to 132% - Figure 9a) of the sum of the sources 611 

for some approaches occur. Regarding the spectral pre-processing techniques, 612 
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overestimation occurs for the models calibrated for both multivariate methods (PLSR and 613 

SVM) with raw spectra (RAW) and submitted to SMO, SGD2, SNV, MSC and NOR techniques 614 

(Figure 9a). Moreover, a slight underestimation is observed for MSC+SGD1. It is noted that 615 

RAW and SMO spectra presented the highest overestimates and showed significant 616 

differences compared to the others, indicating that the absence of preprocessing of 617 

spectral data and/or only the smoothing provided less accurate estimates of source 618 

proportions. It is also possible to note that the NOR+SGD1 and SGD1 techniques presented 619 

the lowest variations in the sum of the sediment source contributions (Figure 8a). This 620 

corroborates the best performance observed for these models during the validation step 621 

(Figure 6a). The models that reached values closer to 100% were PLSR-SGD1 (100.6%) and 622 

SVM-SGD1 (100.1%) (Figure 9a). 623 

Regarding the spectral ranges, it is noted that the models calibrated with the combinations 624 

NIR+MIR and UV-Vis+NIR+MIR presented the values closest to 100%, differing significantly 625 

from the others (Figure 8b). The model calibrated with the SVM method and the 626 

combination of UV-Vis+NIR+MIR presented the values closest to 100% (100.1%) (Figure 627 

8b). Therefore, the results observed in Figure 8 corroborate those discussed in the section 628 

dealing with the accuracy of the model validation and in the estimates of the sediment 629 

source contributions. In addition, future studies should address the use of spectral variable 630 

selection algorithms. This strategy has shown the potential to improve spectroscopic 631 

estimates (Xiaobo et al., 2010; Gomes et al., 2013; Hong et al., 2020). Additionally, research 632 

employing the use of two-dimensional correlation (Hong et al., 2018) to identify regions or 633 

bands most correlated with different sediment sources can be a promising approach. 634 



28 
 

Finally, the decision tree analysis shows that the quality of calibration of spectroscopic 635 

models depends primarily on the spectral preprocessing technique, and secondarily on the 636 

spectral band, and that the sediment source has little or no influence (Figure 10b). It is 637 

evident that pre-processing with SGD2 and UV-Vis spectral band always result in higher 638 

RMSEv values. However, when comparing the quality of the models based on the estimates 639 

of sediment sources obtained with geochemical tracers (RMSEsp, Figure 10b), the spectral 640 

band and sediment source is of greater importance, and NIR range or its combination with 641 

the other spectral ranges result in contributions that are more similar to those obtained 642 

with the geochemical approach.  643 

4. Conclusions 644 

The current research demonstrated the great potential to improve the estimation of the 645 

sediment source contributions using spectroscopy when using adequate spectral pre-646 

processing technique, multivariate method, and spectral range. In general, the non-647 

parametric support vector machine (SVM) model was more robust than the partial last 648 

square regression (PLSR), especially to estimate the contribution of sediment sources with 649 

high organo-mineral variations, such as the crop fields source. For both models tested 650 

(PLSR and SVM), a better performance was obtained using Savitzky-Golay spectral pre-651 

processing techniques with 1st derivative (SGD1), normalization (NOR) and combining 652 

NOR+SGD1. Furthermore, it was verified that the combination of the three spectral ranges 653 

of the electromagnetic spectrum tested (UV-Vis, NIR and MIR) enhanced the performance 654 

of the spectroscopic models, resulting in lower errors in the predictions of the sediment 655 

source contributions. This is due to the sum of different information contained in each 656 

spectral range related to the organic and mineral composition of each sediment source. 657 
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Despite the good accuracy of the models calibrated and validated with the mixtures, 658 

significant errors remain when comparing sediment source contributions c to the results 659 

obtained with the conventional sediment fingerprinting method based on geochemical 660 

tracers. Nevertheless, the magnitude of the contributions calculated by spectroscopy and 661 

geochemical approaches remains very similar for all sources. Efforts should be done in 662 

future studies to validate these findings in larger catchments as well as in sites where more 663 

potential sediment sources may supply material to the river systems. 664 
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 1 
Figure 1. 2 
Number of published scientific articles per year and cumulative number of published articles 3 
using spectroscopy to trace sediment sources for the period 2009-2020 (a), relative distribution 4 
of spectroscopic fingerprinting studies by country (b) and spectral range (c). *Until 15th June 5 
2020. UV, ultraviolet. Vis, visible. NIR, near infrared. SWIR, short-wave infrared. MIR, mid 6 
infrared.  7 
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 8 
Figure 2.  9 
Ternary diagram with the position of the experimental mixtures prepared for the calibration 10 
and validation of the spectroscopic-models. 11 
 12 



 13 
Figure 3.  14 
Characterization of the main spectral features found in the UV-Vis, NIR and MIR ranges for the 15 

suspended sediment and potential sediment sources in the Arvorezinha catchment.  16 



 17 
Figure 4.  18 
Schematic construction of predictive models of the spectral signature of sediment sources.  19 



 20 
Figure 5.  21 
Performance in validating Partial Last Square Regression (PLSR) and Support Vector Machine 22 
(SVM) prediction models from raw spectral data and combined with the eight spectral pre-23 
processing techniques for the sediment sources including stream channels (SC), unpaved roads 24 
(UR) and surface of crop fields (CF). RAW - raw spectral; SMO - smoothing; SGD1 - Savitzky-Golay 25 
with 1st derivative; SGD2 - Savitzky-Golay with 2nd derivative; SNV - varied standard deviation 26 
correction; MSC - multiplicative scatter correction; NOR - normalization by standard deviation. 27 



 28 
Figure 6.  29 

Mean values of the RMSEv error statistic of the validation of the prediction models of the three 30 

sediment sources in relation to (a) eight spectral pre-processing techniques; (b) spectral bands 31 

and their combinations; (c) Partial Last Square Regression - PLSR and Support Vector Machine -32 

SVM. Means followed by the same letter do not differ by the Tukey's test at p<0.05.   33 



 34 
Figure 7.  35 
Boxplot of the contribution of sediment sources estimated by the different approaches for the 36 

29 sediment samples. The estimates are derived from the models that presented the highest 37 

accuracy among all processing and spectral range combinations for the PLSR and SVM methods 38 

(UV-Vis = SGD1, NIR = NOR+SGD1, MIR = SGD1, UV-Vis+NIR = NOR+SGD1, UV-Vis+MIR = SGD1, 39 

NIR+MIR = NOR+SGD1, UV-Vis+NIR+MIR = SGD1).  40 



 41 
Figure 8. 42 

Scatter plot of the validation and calibration of the best model (SVM-SGD1-UV-Vis + NIR + MIR) 43 

for mixtures the three sediment sources and the predicted contribution values by the spectra 44 

and observed by the geochemical method. 45 



 46 
Figure 9.  47 
Sum of sediment source contributions comparing Partial Last Square Regression - PLSR and 48 

Support Vector Machine -SVM multivariate methods for each pre-processing technique (a) and 49 

for each spectral range and their respective combinations (b). Means followed by the same letter 50 

do not differ according to the Tukey's test at p<0.05. The dotted line represents 100%.  51 



 52 
 53 

 54 
Figure 10. 55 

Conditional inference tree analysis evaluating the factors that most affect the quality of the 56 

models based on validation with artificial mixtures of sediment (RMSEv - a), and compared with 57 

the sediment contribution values obtained with geochemical tracers (RMSEsp -b). 58 


