
HAL Id: cea-03000992
https://cea.hal.science/cea-03000992

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A combined fast/cycle accurate simulation tool for
reconfigurable accelerator evaluation: application to

distributed data management
Erwan Lenormand, Thierry Goubier, Loïc Cudennec, Henri-Pierre Charles

To cite this version:
Erwan Lenormand, Thierry Goubier, Loïc Cudennec, Henri-Pierre Charles. A combined fast/cycle
accurate simulation tool for reconfigurable accelerator evaluation: application to distributed data
management. 2020 IEEE International Workshop on Rapid System Prototyping (RSP), Sep 2020,
Hamburg, Germany. pp.1-7, �10.1109/RSP51120.2020.9244859�. �cea-03000992�

https://cea.hal.science/cea-03000992
https://hal.archives-ouvertes.fr


A combined fast/cycle accurate simulation tool for
reconfigurable accelerator evaluation: application to

distributed data management
Erwan Lenormand, Thierry Goubier

Institut LIST
Université Paris-Saclay, CEA

F-91191, PC 172, Gif-sur-Yvette, France
firstname.lastname@cea.fr

Loı̈c Cudennec
Department of Artificial Intelligence

DGA MI
BP 7, 35998 Rennes Armées, France

loic.cudennec@intradef.gouv.fr

Henri-Pierre Charles
Institut LIST

Université Grenoble-Alpes, CEA
F-38000 Grenoble, France
henri-pierre.charles@cea.fr

Abstract—Parallel computing systems based on reconfigurable
accelerators are becoming (1) increasingly heterogeneous, (2)
difficult to design and (3) complex to model. Such modeling of
a parallel computing system helps to evaluate its performance
and to improve its architecture before prototyping. This paper
presents a simulation tool aiming to study the integration of
reconfigurable accelerators in scalable distributed systems and
runtimes, such as S-DSM systems, where S-DSM (software-
distributed shared memory) is a paradigm to ease data manage-
ment among distributed nodes. This tool allows us to simulate the
execution of irregular compute kernels accessing distributed data.
To deal with the complexity of modeling (3) the complete system
we used a hybrid methodology. We integrated the simulation
engine into the S-DSM. The distributed data management part is
executed on the physical architecture allowing to generate precise
and faithful latencies, and the accelerator simulation is cycle
accurate. We used general sparse matrix-matrix multiplication
(SpGEMM) as a case study.

We show that the use of this tool makes it possible to
analyze the behavior of an heterogeneous system (1) with rapid
prototyping and simulation. The analysis of the results allowed
to determine the correct sizing of the architecture (2) to obtain
the best performance. The tool allowed to identify the bottleneck
of our architecture and confirmed the possibility of hiding data
access latencies.

Our simulation platform allows to emulate a heterogeneous
distributed system by introducing a slowdown between 1.2 and
3.7 times compared to the compute kernel simulation alone.

Index Terms—Hybrid simulation; Distributed systems; Recon-
figurable Computing

I. INTRODUCTION

Parallel computer systems are becoming increasingly het-
erogeneous. This trend can be observed at all scales from
System-on-Chip (SoC) to supercomputers. Heterogeneity is
a response to the power wall problem [1] by scheduling a
task on the appropriate processing unit depending on its power
and performance characteristics. However, as illustrated by the
efficiency on the high performance conjugate gradient (HPCG)
benchmark [2], current systems are inefficient for applications
with irregular data access and low arithmetic intensity. A
good data management is critical to improve the performance
of these systems. A runtime system can transparently pro-
vide developers with intelligence in data management. The

increase in heterogeneity requires further research to improve
the integration of new types of computing resources. In this
context we want to study the integration of reconfigurable
accelerators (Field-programmable gate array (FPGA)) in a
software system unifying the distributed memories. Our goal
is to allow accelerators to request access to distributed data.
Designing this system is a complex task requiring to prototype
a hardware IP and then to integrate this IP into a software
system that is also complex. Finally we want to study the
acceleration of irregular compute kernels with unpredictable
(or hard to predict) memory accesses. To understand how
to develop this system and to predict its performance, we
need to model it. Thus, we need to model a compute kernel
whose evolution depends on its memory accesses and induced
latencies. The specificity of the system to model and the
need to limit the prototyping time led us to develop our own
simulation tool presented in this paper.

This tool should answer the following questions:
• What performance could the system achieve?
• Which configuration provides the best performance?
• What are the bottlenecks?

Finally, this tool should enable rapid modeling and rapid
simulation to facilitate the exploration work.

The paper is organized as follows: Section II describes the
system to model, Section III gives some references on related
work, Section IV presents our simulation tool, Section V
describes the experiments conducted with the tool, finally,
Section VI concludes this article.

II. INTEGRATION OF RECONFIGURABLE ACCELERATOR IN
SOFTWARE-DISTRIBUTED SHARED MEMORY

A parallel programming model with shared memory is
convenient to develop multi-threaded applications, which con-
currently access data in a global memory space. In a sin-
gle memory system, data sharing can be based on reliable
hardware mechanisms. For distributed memory systems, the
implementation of a shared memory is more complex and
requires to minimize the processing and communication costs.
The study of distributed shared memory (DSM) have started



in the late eighties with systems such as Ivy [3] and later
adapted to clusters [4], grids [5], many-core processors [6] and
recent heterogeneous architectures [7], [8]. In this work we use
a Software-DSM (S-DSM) [9] [10] allowing to federate the
physical memories of heterogeneous architectures. We study
the integration of reconfigurable accelerators in this S-DSM
to accelerate compute kernels.

A. Software Distributed Shared Memory

Node0 Node1

Noden
SERVER SERVER

SERVERCLIENT CLIENT

CLIENT

CLIENT

A C
Physical memory

B F
Physical memory

A B
Physical memory

A B C F
Logical memory space

Fig. 1: S-DSM semi-structured super-peer topology

The S-DSM allows tasks to allocate and access memory in
a shared logical space. The S-DSM is organized as a semi-
structured super-peer network, as represented in Figure 1.
A set of clients are connected to a peer-to-peer network of
servers. Clients execute the user code and servers manage the
shared data and metadata. Allocated data is split into chunks
whose maximum size is defined by the user. Each chunk
is under the control of a data coherence protocol. A chunk
has a unique identifier (ID) and metadata indicating its size,
state and location. The coherence protocol is in charge of the
localization and the transfer of the chunk.

Using accelerators within S-DSM-based applications fol-
lows the classical hybrid programming paradigm, widely
adopted in HPC with MPI/CUDA or MPI/OpenMP applica-
tions for instance. In these software architectures, the user code
is split into two parts: 1) a distributed overlay that manages
communications between remote processes, schedules jobs
and orchestrates data transfer between nodes and 2) a local
proxy code on each node that locally exploits the computing
resources using the provided application programming inter-
face (API). This model results in a two-step procedure to
retrieve data from the distributed overlay,. Firstly, manually
converts this data into the accelerator format (potentially
involving multiple copies in memory), then transfers data to
the accelerator memory and offload the processing. The same
applies for fetching the results from the accelerator back to
the distributed overlay. Such hybrid-programming applications
require from the user to manage data twice, both at the
distributed overlay level and the accelerator level. One must
note that one of the evolutions of systems with accelerators
is shared memory at the node level, via solutions based

on NVLink, OpenCAPI [11], CCIX [12] and others, clearly
pointing out that this manual data management is a problem.

In this work, we propose a simulation tool that helps in
modeling and exploring different configurations of a system
in which data is transparently managed between computing
kernels, either it is an FPGA IP or a software process.

B. Reconfigurable Accelerator Integration

All actors of the S-DSM (clients and servers) are basically
software processes. To integrate a compute kernel imple-
mented on an FPGA in the S-DSM, we need to create an
interface between a software process and the programmable
logic (PL) of the accelerator. As shown in Figure 2, this
interface is based on the cooperation of a software process
(FPGA-client) executed on a processing system (PS) and a
hardware component (FPGA-server) implemented in the PL.
The PS and the PL communicate through an on-chip (AXI)
or off-chip (PCI Express) interconnect.

Processing System

Host
Memory

Host
CPU

S-DSM
server

FPGA
client

MPI

MPI

FPGA

FPGA Memory

Programmable logic

FPGA-server

Compute
Kernel0

Compute
Kernel1

Compute
Kerneln

In
te

rc
on

ne
ct

Fig. 2: Overview of the reconfigurable accelerator integration
architecture

The FPGA memory is segmented into chunk-sized locations.
The FPGA-server operates as a cache directory. Each entry
associates a location with a chunk and its metadata (ID, size,
state). When a compute kernel requests access to a chunk,
if it is present in memory, the transfer is directly initiated.
Otherwise, the FPGA-server forwards the access request to
the FPGA-client and the transfer will be initiated after the
allocation of the chunk. Thus, the time required to access
the data can be very variable and depends on the state of
the memory. The FPGA-client is a S-DSM client process. It
interprets the requests coming from the FPGA and translates
them for the S-DSM server. In this way, the FPGA appears as
a regular client for all S-DSM processes.

C. Compute Kernel

The compute kernel is based on the dataflow model. It
receives data within streams, performs the processing function
and generates the results within streams. This is the typical
model of compute kernels generated by high level synthesis
tools [13]. In our system, data streams are associated with
requests generated by the kernels. Thus, read requests result
in an incoming data stream and write requests in a outgoing
data stream. As shown in Figure 3, each stream is implemented
by a FIFO and several signals. For read requests, the kernel
communicates the chunk ID to the FPGA-server. Then, when



the data is available, the FPGA-server transmits the chunk
size and fills the FIFO with the data. The chunk size is
required when coping with irregular compute kernels. For
write requests, the kernel communicates the size and the chunk
ID. Then the FPGA-server extracts data from the FIFO to write
it back in memory.

Input data

Input size

FSM
Input Chunk ID Output Chunk ID

Processing
Element

Output size

Output data

Fig. 3: Compute kernel interface

III. RELATED WORK

Powerful simulation tools, such as [14] [15] [16] [17], allow
the simulation of a full heterogeneous CPU-FPGA platform to
provide highly accurate performance estimates. These tools are
based on the integration of a simulator, such as gem5 [18],
Multi2Sim [19] or Verilator [20]. Each have various con-
straints and limitations. For example, HeteroSim [16] can
not support the simulation of a runtime that controls the
interactions between a CPU and an FPGA. PARADE [15]
only simulates programming models where all data must be
copied to local scratchpad memory (SPM) before launching a
compute kernel. gem5-Aladdin [14] represents the accelerator
as a set of dynamic data-dependent graphs generated from the
high-level language descriptions of algorithms. This approach,
which is efficient for simulation, limits the reconfiguration
of the accelerators. PAAS [17] and PARADE are focused on
simulating heterogeneous SoC.

Full system simulation can be time consuming. One method
to speed up simulation consists in associating a temporal
dimension with an event. An automatic delay-annotated mech-
anism to replace the use of Instruction-Set-Simulation (ISS) in
SystemC simulations is presented in [21]. The contributions
presented in [22], are based on packet latency estimations
to replace detailed Network-on-Chip models in full-system
performance simulators. Latencies are estimated from an ana-
lytical model. With this method, the accuracy of the simulation
depends on the reliability of the analytical model. Making a
reliable model is not always simple.

FPGA Computer Aided Design (CAD) flow tools, such
as Verilog-To-Routing (VTR) [23], integrate simulation tools.
These tools allow to ensure the correctness of the design and
estimate the circuit-activity [24]. However, these tools cannot
simulate an entire distributed system.

Finally some methods are hybrid, such as [25]. To speed
up the simulation of an HW/SW system, this work combines
a virtual platform simulation for the software part with an
FPGA-based physical prototype for the hardware part.

IV. HYBRID SIMULATION TOOL

The purpose that has led to the development of this simu-
lation tool is the evaluation of the performance of compute
kernels integrated into the system described in Section II.
The kernels we want to study have two forms of irregular-
ities: they perform unpredictable (or hard to predict) memory
accesses and their arithmetic intensities are data dependent.
The distributed nature of the system we are studying implies
high and variable data access latencies. Thus, performance
evaluation is based on the analysis of the compute kernel
activity and the generation of data access latencies relating
to this activity. A high-level view of kernel activity, based
on a dataflow model, comes down to consume and produce
data at different speeds. At a lower scale, the activity of the
compute kernel is constrained by the resources allocated to
it, access to shared resources and the data flow provided to
it over time. Thus, our tool is based on (IV-B) the activity
simulation of a compute kernel and (IV-A) the generation of
latencies. It was developed in C++ as a library of modular
components. This approach makes it possible to generate
various compute kernels quickly. The simulation is executed
by three processes (one S-DSM server and two S-DSM client),
which communicate and synchronize through S-DSM requests.
The first client reads the input matrices and writes the output
matrix. The second client runs the simulation engine.

A. S-DSM Interface Simulation

The role of the S-DSM interface is to generate data access
latencies. It reproduces the implementation of the directory
by associating to each entry with a chunk. The number of
locations is configurable. Thus, the size of the FPGA memory
can be defined when launching the simulation. When a request
is issued by the kernel four scenarios are possible, depending
on whether the chunk is allocated or not in the FPGA and if
there is a directory entry for this chunk in the FPGA or not:

1) the chunk is allocated, then the transfer is possible
immediately;

2) the chunk is not allocated and a directory entry is
available, then a latency is generated indicating the cycle
number when the chunk will be allocated;

3) the chunk is not allocated, but a request is pending,
then the chunk will be available at the cycle defined
in scenario 2;

4) the chunk is not allocated and any directory entry is
available.

In scenario 1, 2 and 3 the request sent by the kernel is
acknowledged. In scenario 4, the request remains blocked until
an entry becomes available.

To generate the latencies we use a S-DSM client, which
performs the requests in the real environment and we measure
the elapsed time. This elapsed time is converted into a number
of FPGA cycles and is added to the current cycle counter.
Finally cycles are added corresponding to the transfer time
between the FPGA-server and the FPGA-client.



B. Compute Kernel Simulation

A compute kernel is developed as a pipeline, where each
stage is separated by FIFOs. Each stage performs actions
that can be 1) to interact with an external component or 2)
to perform processing on data. A global clock is used to
synchronize each stage. A stage can perform an action only
if its input FIFOs are not empty and its output FIFOs are not
full.

Figure 4 is an example of a compute kernel architecture
for a sparse matrix scalar multiplication. Data access patterns
are generated by a finite state machine (FSM). These patterns
are supplied to stages (Chunk read prefetch and chunk write
prefetch), which perform chunk prefetch. It consists in send-
ing a request to the S-DSM interface. When the request is
accepted, the chunk ID is written to a virtual FIFO. We call it
virtual FIFO, because, it does not correspond to a component
implemented in a hardware design. However, in our study this
FIFO allows to limit the number of prefetched elements by
stream. Thus, this limit corresponds to the depth of the FIFO
(prefetch depth). The memory access stages correspond to the
transfer of data between the memory controller and each FIFO
associated with a stream. To reproduce the real behavior of
a memory controller, only one request can be accepted per
cycle when the controller is idle. Each memory access is
associated with a latency in order to reproduce behavior of
DDR memories. The size of a memory transfer is limited
according to a maximum burst length. At each cycle the
number of data that can be read or written depends on the
width of the bus. Finally, a read access can only be initiated
if the FIFO Data has enough space to memorize all the data
of a chunk. The size of a FIFO is configurable.

Chunk
Read

Prefetch

C
hu

nk
ID

Prefetch
depth

Memory
Access

D
at

a FIFO
Size

Data
Size

Multiplier

D
at

a FIFO
Size

Memory
Access

C
hu

nk
ID

Prefetch
depth

Chunk
Write

Prefetch
FSM

Fig. 4: Sparse matrix scalar multiplication kernel architecture
overview

V. EXPERIMENTS

The case study of our experiments is the general sparse
matrix-matrix multiplication (SpGEMM) with matrices, which
cannot be fully stored in the memory of the accelerator or the
host node. This case requires the transfer of data between the

distributed shared memory and the accelerator during execu-
tion. The study aims to determine the best configuration of the
architecture to optimize the performance of the application.

A. Case Study: Sparse General Matrix-Matrix Multiplication

SpGEMM is widely used to study acceleration methods
for sparse linear algebra. This application has a well known
behavior and generates irregular memory access patterns that
makes it complex to optimize, with usually a low efficiency
in terms of floating point operations per unit of time.

0 0 A0,2 0

0 A1,1 0 A1,3

0 0 0 0

A3,0 0 0 0

(a) Dense format

Val A0,2 A1,1 A1,3 A3,0

Col 2 1 3 0

RP 0 1 3 3 4

(b) Compressed sparse row format

(2,A0,2)

(1,A1,1) (3,A1,3)

(0,A3,0)

ID count
0

1

3

1

2

1

(c) Compressed sparse row format with chunk

Fig. 5: Matrix representation

Sparse matrices are compressed to reduce their memory
footprint and to accelerate access to their nonzero elements
(NNZ). The compressed sparse row format (CSR), shown in
Figure 5b, is one of the most used sparse matrix representa-
tions. Non-zero elements of the matrix are stored in the array
Val in row-major order. The column indices of each element
are stored in the array Col in the same order. Finally, RP [i]
indicates the position of the first element of row i in the arrays
Val and Col and the operation RP [i+ 1]−RP [i] is equal to
the number of elements in the row. As shown in Figure 5c,
We have adapted the CSR format to the use of chunks. We
colocalize the value and the column index of an element to
form a pair. The set of pairs representing a row is stored in
a chunk, which makes it possible to use the chunks ID to
browse the matrix row by row. Then we use chunks metadata
to indicate the number of elements contained in the row. This
structure reduces the number of memory accesses required to
read or write a matrix row. It can be easily adapted to another
compressed format (e.g. compressed sparse column format).
To develop the compute kernel, we used the row-wise sparse
matrix-matrix multiplication algorithm formulated by Gus-
tavson [26]. It limits random data access and is quite straight-
forward to parallelize. The kernel reads and distributes the
non-zero elements of the first input matrix to several process-
ing elements (PEs). Each PE multiplies the elements received
by a row of the second input matrix. Finally the partial
products are reduced and written. So, for a kernel with NPE,
there are N +2 streams of data between the memory and the



kernel (one to read first input matrix, one to write the output
matrix and one by PE to read the second input matrix). The
kernel processes single precision floating point numbers.

B. Simulation Environment

TABLE I: Simulation platform setup

Local node Remote node (Hikey 970)
Intel Core i7-6800k Xilinx VC707 ARM Cortex-A73 / Cortex-A53

3.6GHz 200MHz 2.36GHz/ 1.8GHz
6 cores / 12 threads 2.8 k DSP 2 × 4 cores

LLC: 15 MB SPM: 5 MB LLC: 8 MB / 2 MB
RAM: 64 GB RAM: 1 GB RAM: 6 GB

PCIe Gen2x8
Gigabit Ethernet

Table I describes some characteristics of the platform used
for the simulation. This platform is made up of two nodes. For
both configurations the S-DSM server is executed on the Intel
Core i7 local node. The Core i7 local node integrates an FPGA
interconnected by a PCI Express bus. The Hikey 970 remote
node integrates two Arm processors and is interconnected to
the local node by a gigabit Ethernet network (Ethernet is
implemented over USB 3.0 on the Hikey 970 development
board). We use the remote node to model Xilinx FPGAs of
the Zynq family, exploiting the fact that their host systems,
made of big.LITTLE Cortex processors are similar.

We used a set of matrices (Table II) from the SuiteSparse
Matrix Collection [27]. All matrices are derived from real
applications. We chose matrices of variable sizes and densities
because the performance of SpGEMM are data-dependent.

TABLE II: Square matrices used for simulations

Name Row NNZ Density (%)
consph 83334 6010480 0.087

cop20k A 121192 2624331 0.018
F2 71505 5294285 0.10

m t1 97578 9753570 0.10
s3dkt3m2 90449 3753461 0.046

C. Results

We designed this simulation tool to explore different archi-
tecture configurations. We based our experiments on the ability
of the tool to show the impact of different parameters on the
performance of the architecture. For each experiment we limit
the number of memory locations so that a matrix cannot be
fully stored on the FPGA. In the first part of this subsection we
present and analyze the results obtained. In the second part,
we discuss the execution speed and the ins and outs of using
this simulation tool. For the first test, we use a configuration
with 8 processing elements. We vary the number of prefetched
elements per stream of data. Intuitively, the higher the num-
ber, the less latency has effect. Figure 6 shows the results
obtained. They partially confirm our intuition. We can observe
that increasing the number of prefetched elements improves
performance up to 1024 elements, after which we observe a
decrease in performance. This phenomenon is explained by
the fact that too early prefetching increases conflicts in the

Fig. 6: Computation speed in GFLOP/s according to the
number of prefetched elements by stream (higher is better)

FPGA memory. This first experiment allows us to determine
that the best parameter is 1024 prefetched elements.

Fig. 7: Computation speed in GFLOP/s according to the
number of processing elements (PEs) (higher is better)

For the second experiment, we vary the level of parallelism
and we prefetch 1024 elements per stream. The objective is to
observe the limits of the acceleration capacity of the compute
kernel. Figure 7 illustrates the results. We can observe that
the increase of processing elements allows a speedup, up to
16 PEs. Beyond, the increase in parallelism no longer speed up
the execution. These results show that the processing elements
are under-exploited due to an insufficient supply of data
(data starvation). This phenomenon can be explained either
by excessive data access latencies, or by a local bottleneck in
the design. The integration of counters in the simulation tool
allows us to monitor the activity of each element of the design.
In Figure 8, we can see the memory controller occupancy
rate. We can see that the bus is saturated for the 16 PEs
configuration. This information highlights that the memory
bandwidth is the bottleneck of our design. Also, it allows us



to estimate the computation speed limit around 3 GFLOPS

Fig. 8: Memory controller activity (occupancy percentage)
according to the number of processing elements. Close to
100% means saturation

For the last experiment, we studied three topologies,
which generate different memory access latencies. The first
corresponds to the ideal case where all the data is contained
in memory at startup (i.e no latency for data access). For
the second configuration, we consider an FPGA linked by
a PCI Express bus to the node where the S-DSM server
is located. Finally, the third configuration models a system
where the server and the FPGA are not running on the
same node and where the two nodes are interconnected
by an Ethernet network. In this configuration the S-DSM
client process is executed on the processor of the remote
node. For this experiment we use a configuration with
16 processing elements and 1024 prefetched elements per
stream. Figure 9 represents the results obtained. It shows

Fig. 9: Computation speed in GFLOP/s according the system
topology (higher is better)

that it is possible to hide the latency of data access with our
approach. For the consph and F2 matrices, the difference
in performance is small between the configuration without

latency and the configuration with the biggest latency.
However for the matrices cop20k A, m t1 and s3dkt3m2 we
can observe a degradation of performances. We can conclude
that performances depend on the data set and that, to optimize
the performances it is necessary to reorder the matrices to
favor the temporal locality of data access.

The results previously presented show the ability of the tool
to explore different architecture configurations. Our hybrid
method makes this exploration work easier by using a real
software-distributed shared memory system to run simula-
tion on several nodes. We think that this tool has several
advantages compared to a homogeneous method, where the
whole architecture (processors, interconnects, accelerators) are
simulated. The first is the use of physical architecture ensures
the generation of accurate and faithful data. The second is to
speed up modeling by concentrating all of the efforts on the
compute kernel development. Finally, this method makes it
possible to quickly simulate a complex system.

Fig. 10: Simulation speed in thousands of cycles per second
(higher is better)

Figure 10 represents the execution times for the experiment
shown in Figure 9. For red bars, as we do not simulate latency
we do not use the S-DSM environment (i.e. only the simulation
engine process is run). In this way, they represent the speed
to simulate the compute kernel and the hardware S-DSM
server only. The blue and purple bars represent respectively
a local execution and a remote execution of the simulation
engine. Thus, Figure allows to visualize the cost of modeling
the environment of the S-DSM (which includes, a multi-
core processor and its memory system, a gigabit Ethernet
network and at least 2 MPI processes). Obviously, we observe
a decrease in the speed of simulation (between 1.2 and 2.3
times slower for local execution and 1.7 and 3.7 times slower
for remote execution). However, considering the complexity
of the simulated model we can say that our hybrid method
still allows rapid simulation.



VI. CONCLUSION AND FUTURE WORK

In this article, we have presented a simulation tool, which
aims to study the integration of reconfigurable accelerators in a
software-distributed shared memory (S-DSM). Our objective
was to simulate the execution of irregular compute kernels,
which access to distributed data with variable latencies. To deal
with the complexity of modeling this complete system we used
a hybrid methodology. This approach consists in simulating
only the compute kernel and integrating the simulation engine
in the S-DSM. This method generates real latencies from
physical architecture. We used sparse general matrix-matrix
multiplication as a case study. We have shown, through the
results of several experiments, that our simulation tool allows
a correct sizing of the architecture to improve the performance
of a compute kernel. The tool also allowed to determine that
the memory bandwidth is the architecture bottleneck. Finally,
the tool allowed to conclude that our approach could make it
possible to hide the data access latencies, which is usually a
limitation when coping with distributed systems.

To continue the exploration work, we plan to model new
accelerator architectures with higher memory bandwidth. In
particular we want to model cards that embed High Bandwidth
Memory (HBM) technologies. Also, we want to develop other
compute kernels with higher arithmetic intensities. Finally, we
would like to estimate the energy consumption of the kernels.
To do this we plan to integrate the generation of traces to
replay the execution with consumption estimation tools.

ACKNOWLEDGEMENTS

This work was supported by the LEXIS project, funded by
the EU’s Horizon 2020 research and innovation programme
(2014-2020) under grant agreement no. 825532.

REFERENCES

[1] L. Eeckhout, “Heterogeneity in response to the power wall,” IEEE Micro,
vol. 35, no. 4, pp. 2–3, 2015.

[2] “High-performance conjugate gradient (hpcg) benchmark results,” june
2020. [Online]. Available: https://www.top500.org/lists/hpcg/06/

[3] K. Li, “IVY: a shared virtual memory system for parallel computing,”
in Proc. 1988 Intl. Conf. on Parallel Processing, 1988, pp. 94–101.

[4] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, Honghui Lu, R. Raja-
mony, Weimin Yu, and W. Zwaenepoel, “Treadmarks: shared memory
computing on networks of workstations,” Computer, vol. 29, no. 2, pp.
18–28, 1996.

[5] G. Antoniu, L. Bougé, and M. Jan, “JuxMem: An Adaptive Supportive
Platform for Data Sharing on the Grid,” Scalable Computing : Practice
and Experience, vol. 6, no. 33, pp. 45–55, Nov. 2005, also available as
an INRIA Research Report 4917: http://www.inria.fr/rrrt/rr-4917.html.

[6] J. A. Ross and D. A. Richie, “Implementing openshmem for the adapteva
epiphany risc array processor,” Procedia Computer Science, vol. 80, pp.
2353 – 2356, 2016, international Conference on Computational Science
2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA.

[7] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, “Latency-tolerant software distributed shared memory,” in
2015 USENIX Annual Technical Conference (USENIX ATC 15). Santa
Clara, CA: USENIX Association, 2015, pp. 291–305.

[8] S. Kaxiras, D. Klaftenegger, M. Norgren, A. Ros, and K. Sagonas,
“Turning centralized coherence and distributed critical-section execu-
tion on their head: A new approach for scalable distributed shared
memory,” in Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, 2015, pp. 3–14.

[9] L. Cudennec, “Software-Distributed Shared Memory over heterogeneous
micro-server architecture,” in Euro-Par 2017: Parallel Processing Work-
shops, 2017.

[10] ——, “Merging the Publish-Subscribe Pattern with the Shared Memory
Paradigm,” in Euro-Par 2018: Parallel Processing Workshops, 2018.

[11] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner,
C. Wollbrink, and B. Allison, “IBM POWER9 opens up a new era
of acceleration enablement: OpenCAPI,” IBM Journal of Research and
Development, vol. 62, no. 4/5, pp. 8:1–8:8, 2018.

[12] CCIX Consortium, “An introduction to CCIX: white paper,” November
2019. [Online]. Available: https://www.ccixconsortium.com/wp-
content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf

[13] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, 2011.

[14] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Wei, and D. Brooks, “Co-
designing accelerators and soc interfaces using gem5-aladdin,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–12.

[15] J. Cong, Z. Fang, M. Gill, and G. Reinman, “Parade: A cycle-accurate
full-system simulation platform for accelerator-rich architectural design
and exploration,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 380–387.

[16] L. Feng, H. Liang, S. Sinha, and W. Zhang, “Heterosim: A heteroge-
neous cpu-fpga simulator,” IEEE Computer Architecture Letters, vol. 16,
no. 1, pp. 38–41, 2017.

[17] T. Liang, L. Feng, S. Sinha, and W. Zhang, “Paas: A system level
simulator for heterogeneous computing architectures,” in 2017 27th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), 2017, pp. 1–8.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, Aug. 2011.

[19] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A
simulation framework for cpu-gpu computing,” in 2012 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2012, pp. 335–344.

[20] W. Snyder, “Verilator: the fast free verilog simulator,” 2012. [Online].
Available: http://www.veripool.org

[21] C. M. Kirchsteiger, H. Schweitzer, C. Trummer, C. Steger, R. Weiss,
and M. Pistauer, “A software performance simulation methodology for
rapid system architecture exploration,” in 2008 15th IEEE International
Conference on Electronics, Circuits and Systems, 2008, pp. 494–497.

[22] M. K. Papamichael, J. C. Hoe, and O. Mutlu, “Fist: A fast, lightweight,
fpga-friendly packet latency estimator for noc modeling in full-system
simulations,” in Proceedings of the Fifth ACM/IEEE International Sym-
posium on Networks-on-Chip, 2011, pp. 137–144.

[23] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Pa-
tros, J. Luu, K. B. Kent, and V. Betz, “Vtr 8: High-performance cad and
customizable fpga architecture modelling,” ACM Trans. Reconfigurable
Technol. Syst., vol. 13, no. 2, May 2020.

[24] S. Seeley, V. Sankaranaryanan, Z. Deveau, P. Patros, and K. B. Kent,
“Simulation-based circuit-activity estimation for fpgas containing hard
blocks,” in 2017 International Symposium on Rapid System Prototyping
(RSP), 2017, pp. 36–42.

[25] A. Wicaksana, A. Charif, C. Andriamisaina, and N. Ventroux, “Hybrid
prototyping methodology for rapid system validation in hw/sw co-
design,” in 2019 Conference on Design and Architectures for Signal
and Image Processing (DASIP), 2019, pp. 35–40.

[26] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” ACM Trans. Math. Softw., vol. 4, no. 3, p.
250–269, Sep. 1978.

[27] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.


