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In this paper, we describe molecular dynamics simulation results of the interactions between four peptides
(mTM10, mTM16, TM17 and KTM17) with micelles of dodecylphosphocholine (DPC) and dodecyl-β-D-
maltoside (DDM). These peptides represent three transmembrane fragments (TM10, 16 and 17) from the
MSD1 and MSD2 membrane-spanning domains of an ABC membrane protein (hMRP1), which play roles in
the protein functions. The peptide–micelle complex structures, including the tryptophan accessibility and
dynamics were compared to circular dichroism and fluorescence studies obtained in water, trifluoroethanol
and with micelles. Our work provides additional results not directly accessible by experiments that give further
support to the fact that these peptides adopt an interfacial conformation within the micelles. We also show that
the peptides are more buried in DDM than in DPC, and consequently, that they have a larger surface exposure to
water inDPC than inDDM.As noted previously by simulations and experimentswe have also observed formation
of cation–π bonds between the phosphocholine DPC headgroup and Trp peptide residue. Concerning the peptide
secondary structures (SS), we find that in TFE their initial helical conformations are maintained during the
simulation, whereas in water their initial SS are lost after few nanoseconds of simulation. An intermediate
situation is observed with micelles, where the peptides remain partially folded and more structured in DDM
than in DPC. Finally, our results show no sign of β-strand structure formation as invoked by far-UV CD
experiments even when three identical peptides are simulated either in water or with micelles.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The human multidrug resistance associated protein 1 (hMRP1) is a
large (1531 AA, 190kDa) integral membrane protein (MP) that belongs
to the superfamily of ATP binding cassette (ABC) proteins. These MPs
are ubiquitous, and are found in various organisms and tissues. For
example, in human, there are 48 known ABC transporters, classified
into seven subfamilies, as a function of their sequences and struc-
tures [1]. hMRP1 was discovered in 1992 [2] and is the first member
of the third ABC subfamily, which has thirteen members (http://www.
nutrigene.4t.com/humanabc.htm). This MP subfamily includes ten
transporters in addition to the chloride ion channel ABCC7/CFTR and
the sulfonylurea receptors ABCC8–9/SUR1–2, involved in different
genetic pathologies (e.g. cystic fibrosis [3] or persistent hyper-
insulinemic hypoglycemia of infancy [1,4,5]). The hMRP1 protein is
expressed in various tissues at moderate level, and is capable of
transporting various chemical compounds such as amphiphilic anionic
conjugates (e.g. glutathione (GSH) conjugates [6]) or drugs across the
ights reserved.
membrane. The hMRP1 protein, as most of its homologues, is also
over-expressed and associated in many drug resistance [7] pathologies
or in cancer (see for instance references [1,8,9]).

The current topology of hMRP1 (http://www.uniprot.org/uniprot/
P33527) supported by epitope insertions [10,11] and glycosylation
mutation analysis [12] is shown in Fig. 1A. It includes an extracytosolic
N-domain, followed by the two membrane spanning domains (MSD0
and MSD1), the first NBD domain (NBD1), the third membrane
spanning domain (MSD2) and the last NBD domain (NBD2) associated
with the intracytosolic C-terminus. The MSD0 domain is composed of
five transmembrane (TM) fragments (TM1–5), whereas the MSD1 and
MSD2 domains have six TM fragments each, numbered TM6–11 and
TM12–17, respectively. The presence of MSD0 is a specific feature of
ABCC transporters (namely ABCC2, ABCC3, ABCC6 and ABCC8–10).
However, its proper role is still in debate (e.g. [13]).

High resolution crystal structures for ABC transporters were initially
determined for prokaryotic species [14]. Among these transporters, two
of them were exporters as hMRP1: the bacterial lipid transporter MsbA
[15] and the Sav1866 transporter from Staphylococcus aureus [16,17]
both crystallized in two states (i.e. “open” or “closed”). Recently a
three-dimensional structure of hMRP1 was proposed based on the two-
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Fig. 1. Topology of the hMRP1 membrane protein. (A) Functional unit of hMRP1 containing the three membrane-spanning domains (MSD0–2) and the two nucleotide-binding domains
(NBD1–2). (B) Isolated native sequences of the TM10, TM16 and TM17 fragments studied in this work with their corresponding tryptophan (W), cysteine (C) and N- and C-termini
residues highlighted in black, green and orange circles, respectively (see main text for details).
Figure redrawn and adapted from references [38–40].

Table 1
Sequences and formal charges of the TM peptides composed of 25 amino acid residues,
extracted from human MRP1 (hMRP1) and studied in this work. Peptide residues are
numbered according to hMRP1 wild type sequence (GenBank accession no. 2828206).
See Fig. 1 for localizations of these TM fragments in the hMRP1 protein.

Name Sequence Formal
charge
(qe−)

mTM10 Ac-S546AVGTFTW553VS555TPFLVALS563TFAVYVT570-Am 0
mTM16 Ac-A1195NRW1198LAVRLES1205VGNS1209IVLFAALFAV1219-Am +1
TM17 Ac-A1227GLVGLSVSYSLQVTTYLNW1246LVRMS1251-Am +1
KTM17 Ac-K1227GLVGLSVSYSLQVTTYLNW1246LVRMS1251-Am +2
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dimensional crystal structure obtained from cryoelectron microscopy
data [18]. Based on the Sav1866 transporter X-ray structure obtained at
the 3.0Å resolution (PDB code: 2HYD), molecular models of the hMRP1
MSD1–NBD1 and MSD2–NBD2 domains have been constructed [19–21].

In the absence of known structures determined at a high resolution
for MP and to obtain complementary information on their structural
and dynamical properties, experimental investigations are carried out
on isolated TM fragments in membrane mimic environment (see for
instance [22–26] and references cited therein). This “divide and
conquer” approach reviewed by Bordag and Keller [27] is based on the
“two stages” model proposed initially in early 90s by Popot and
Engelman [28,29] according to which the folding of proteins in a
membrane environment is achieved in two steps. First independent
α-helical TM segments are formed and inserted across the membrane.
Then, the TM segments get associated and may reorient within the
membrane. More recently additional stages [30] and a thermodynamic
framework [31] have been added to the model to complete the MP
folding process and TM peptide-bilayer interactions.

Here, we will focus on structural properties of three TM peptides
that belong to the MSD1 and MSD2 domains: TM10, TM16 and TM17
(Fig. 1B). These three fragments play important roles in the hMRP1
functions. For example, mutations of two threonine (T550A and
T556A), a tryptophan (W553A), and a proline (P557A) in TM10modify
the drug-resistance profile of the protein or decrease the transport of
various organic substrates [32–35]. Moreover, the TM16 and TM17
fragments are connected by a small extracytoplasmic loop of seven
residues (I1220–S1226), and are part of the TM transport pore [19,20].
These fragments contain polar amino acid residues that also play a
role in protein expression and/or in the transport of endogenous
metabolite [35–37]. Indeed, mutations of the ionizable residues (for
example, R1197E, R1202(G,L) and E1204L) have impact on protein
expression, substrate binding and/or transport [37], whereas the
mutation of a single tryptophan W1246A in TM17 affects the estradiol
17-β-D-glucuronide transport [36]. To obtain information on these
functional fragments, native or slightly modified peptides (i.e. mTM10,
mTM16, TM17 and KTM17, see Table 1) which all contain a single
tryptophan residue, were studied by one of us (BdF) by means of far-
UV circular dichroism and tryptophan fluorescence spectroscopy in
various environments, such as water, trifluoroethanol (TFE), and
micelles of dodecylphosphocholine (DPC) and dodecyl-β-D-maltoside
(DDM) (Fig. 2) [38–40]. It was expected that the hydrophobicity of these
peptides, quantified by their interfacial partitioning free energy from
water to bilayer (ΔGu of −7.44, −3.33, −6.23 and −5.41 kcal mol−1,
respectively [38–41]), could lead to different binding and localization
of the peptide in the micelle. Indeed, it was shown that these TM
peptides remained partially folded in α-helix and were located mainly
in the micelle polar head groups, the precise location of the peptide in
the micelle depending on the nature of the detergent [38–40].

Despite the important information gleaned from these experimental
studies, the exact mechanism that governs the hMRP1 peptide–micelle
interactions remains not well understood especially at the atomic level.

ncbi-tnm:2828206


Fig. 2. Chemical structures of trifluoroethanol (TFE) (A), n-dodecylphosphocholine (DPC) (B) and dodecyl-β-D-maltoside (DDM) (C).
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To gain insights on these aspects, we have carried out explicit molecular
dynamics (MD) simulations of these same peptides (Table 1) solvated
in pure water, TFE and in micelles of DPC and DDM. TFE is known to
stabilize [42] or promote [43,44] α-helical structures of peptides and
small proteins through intra-peptide hydrogen bonds (IHB) and
hydrophobic interactions [45]. DPC and DDMwere also chosen because
they are widely used as detergents for purification, solubilization and
stabilization for many MPs (i.e. not only for hMRP1, as previously
discussed) [38–40,46–53]. In particular, DPC is often used with NMR
spectroscopy (see for instance references [47,48,54–58]), since it
forms small (with Nagg in the range of 50–60 [57–59]), and stable
micelles as well as protein–detergent complexes with fast tumbling
times, which lead to observable signals in NMR. Moreover, with a
zwitterionic head group similar to that of phosphatidylcholine, DPC is
a good tool to model eukaryotic membrane interface and favors
amphipathic peptide structuring (e.g. see references [47,50]). Finally,
DDM with its sugar headgroup is considered as a “mild” (i.e. not
denaturing) detergent, which is widely used to maintain MP in their
native states while they are crystallized [59,60]. Thus, the main focus
of this work is to investigate the effect of the peptide–detergent
interactions on the structural features of micelle complexes and to
highlight their dynamics of self-aggregation.

2. Simulation methods

2.1. Molecular topologies

The initial helical conformations of the hMRP1 TM peptides TM10,
TM16 and TM17 were obtained from the work of DeGorter et al. [19].
To simulate the identical sequences as in the experiments [38–40], the
four native cysteine residues in TM10 and TM16 at positions 555, 563,
1205 and 1209 were replaced by serine to avoid unwanted formation
of intra-disulfide bonds in experiments [40]. Hereafter, these two
mutated peptides will be named as mTM10 and mTM16, respectively.
It is found experimentally that the replacement of C1205 and C1209
by a serine residue has no effect in the protein expression or function
[37]. As for the TM17 peptide, we carried out MD simulations on two
peptides: A first one (TM17) with the native sequence of the peptide
and a secondone (KTM17),where thefirst alanine residuewas replaced
by a lysine (i.e. A1227K). Experimental evidences [38,40] show that the
C→S and A→K variants slightly reduce the hydrophobic nature of the
peptides and the depth of their insertion in the micelle surface.
Mutations were achieved with the SCWRL4.0 program [61].

The resulting peptides were then acetylated and amidated at the N-
and C-termini, respectively, andMD simulations were performed based
on the Amber99SB-ILDN force field [62]. Table 1 provides the amino-
acid sequences of the four peptides studied in this work, numbered
according to the hMRP1 wild type sequence. Restrained ElectroStatic
Potential (RESP) atomic charges and the force field library for TFE
were obtained from the “W-16” project available in the RESP ESP charge
DDataBase (R.E.DD.B.) at http://q4md-forcefieldtools.org/REDDB/projects/
W-16/ [63]. These charges were derived using the R.E.D. tools [64] from
quantum mechanics calculations at the HF/6–31G⁎ level of theory for
four molecular orientations per conformation and for the trans and a
gauche conformations involving the CCOH dihedral angle. Indeed, it has
been previously shown by X-ray [65], neutron diffraction experiments
and simulations [65,66] that both conformations coexist in liquid TFE.
TFE RESP charges were then combined with the bonded and non-
bonded parameters of Chitra et al. (set 4 in reference [67]) based on the
Cornell et al. force field [68]. The laterwas used by Bodkin andGoodfellow
[69] to study the structural properties of a helical peptide in thewater/TFE
mixture. For theDPC surfactant,weused theRESP chargesdevelopedbyus
[70] and freely available in the “F-92” R.E.DD.B. project at http://q4md-
forcefieldtools.org/REDDB/projects/F-92/. These chargeswere also derived
by using the R.E.D. tools by means of the “building blocks” approach
[64,71] and we demonstrated that this model reproduces well the
structural and dynamical properties of pure DPC micelles in water. As in
Ref. [70], these RESP charges were combined with the bonded and non-
bonded parameters available in the Amber99SB force field [62,72] to
model DPC inter- and intra-molecular interactions. Finally, in the case of
the DDM surfactant, we used the RESP atomic charges developed and
tested previously [73] in MD simulations of pure DDM micelles in water
and available at http://q4md-forcefieldtools.org/REDDB/projects/F-72/ for
n-alkyl-glycoside surfactants. As in Ref. [73], these chargeswere combined
with the GLYCAM06 (f version) force field [74].

2.2. Molecular dynamics

MD simulations described in this work were carried out with the
GROMACS (v4.5.3) simulation package [75,76]. The initial structure
of each molecular system was constructed with a self-aggregation
strategy, where the corresponding number of peptide molecule,

http://q4md-forcefieldtools.org/REDDB/projects/W-16/
http://q4md-forcefieldtools.org/REDDB/projects/W-16/
http://q4md-forcefieldtools.org/REDDB/projects/F-92/
http://q4md-forcefieldtools.org/REDDB/projects/F-92/
http://q4md-forcefieldtools.org/REDDB/projects/F-72/
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water, TFE, chloride ions, DPC and DDM molecules (summarized in
Table 2) was randomly placed in a cubic box letting evolving the
molecular system in unconstrained simulation conditions for more
than 100 ns in all cases. In particular, two different simulations were
run for each system (named hereafter R1 and R2) with two different
input configurations. This was achieved by generating random
orientations for each molecule (i.e. peptide, surfactant, ions and
water) during the box filling stage. As, to our best knowledge, the
micellar DPC and DDM aggregation numbers, Nagg, in the presence of
hMRP1 TM peptides were not experimentally determined, we used
the Nagg values of Zhang and Lazaridis [77] and Dupuy et al. [78] for
pure (i.e. without peptide) DPC and DDM micelles in water,
respectively. Thus, in the simulations presented here Nagg of 55 and
132 was used for DPC and DDM, respectively, which are close to values
adopted in previous works [70,73,77]. We notice that, at least for DDM,
using an Nagg value obtained for micelles in water with no peptide is
supported by experiments [38] showing that the peptide–detergent
complex has a similar rotational correlation time and, by extrapolation,
a similar size to a pure DDMmicelle.

In the DDM–peptide simulations, the GLYCAM06 and the
Amber99SB-ILDN force fields were combined to model DDM–peptide
interactions and as these two force fields use different scaling factors
for the 1–4 interactions (i.e. fudgeQQ= fudgeLJ=1.0 and fudgeQQ=
0.5 and fudgeLJ = 0.83333, respectively), these interactions were
properly scaled. For that, the half-ε double pair list method described
in reference [79] was used. The TIP3P water model [80] with the
SETTLE algorithm [81] to keep the geometry of water rigid was
considered in the simulations reported in this work. MD simulations
described in this paper were carried out with periodic boundary
conditions with the electrostatic interactions treated by the Particle-
Mesh Ewald method [82]. Each system was first energy minimized
with the GROMACS steepest descent algorithm with an energy
tolerance lower than 1000.0 kJ mol−1 nm−1. The resulting molecular
Table 2
Simulation parameters. Npep, Nw, Ncl−, NTFE, NDPC and NDDM are the numbers of peptide, water, c
are the first and second simulation series. tsim is the productive simulation time in ns.

System Media Simulation name Npep Nw

mTM10 Water mTM10-W-R1 1 14,138
mTM10-W-R2

TFE mTM10-TFE-R1 1 –

mTM10-TFE-R2
DPC mTM10-DPC-R1 1 16,059

mTM10-DPC-R2
DDM mTM10-DDM-R1 1 25,000

mTM10-DDM-R2
mTM16 Water mTM16-W-R1 1 14,141

mTM16-W-R2
TFE mTM16-TFE-R1 1 –

mTM16-TFE-R2
DPC mTM16-DPC-R1 1 16,092

mTM16-DPC-R2
DDM mTM16-DDM-R1 1 25,000

mTM16-DDM-R2
TM17 Water TM17-W-R1 1 14,139

TM17-W-R2
TFE TM17-TFE-R1 1 –

TM17-TFE-R2
DPC TM17-DPC-R1 1 16,091

TM17-DPC-R2
DDM TM17-DDM-R1 1 24,999

TM17-DDM-R2
KTM17 Water KTM17-W-R1 1 14,127

KTM17-W-R2
TFE KTM17-TFE-R1 1 –

KTM17-TFE-R2
DPC KTM17-DPC-R1 1 16,066

KTM17-DPC-R2
DDM KTM17-DDM-R1 1 24,998

KTM17-DDM-R2
systems were then equilibrated in the NVT ensemble at 298K by using
the Berendsen thermostat [83] with a coupling constant of τT=0.1 ps
for 400 ps. Peptides, detergents and solvent (i.e. chloride ions, TFE and
water) molecules were coupled to separate thermostatic baths.
Subsequently, these systems were equilibrated in the NPT ensemble at
T = 298 K and P = 1.015 bar for 400 ps with the Bussi et al. [84]
thermostat (τT = 0.1 ps) and the Parrinello-Rahman [85,86] barostat
with τp and a compressibility of 1.0 ps and 4.5 × 10−5 bar−1,
respectively. During these steps, peptides were harmonically restrained
with a force constant of 1000kJmol−1nm−2 in order to equilibrate the
solvent, surfactant and ion molecules. Finally, the resulting systems
were simulated for production in the NPT ensemble at T= 298 K and
P= 1.015 bar. In these production runs, the previous thermostat was
replaced with that of Nosé-Hoover [87,88] (τT = 0.4 ps) while the
barostat and its parameters were kept unchanged. At that time,
molecular restraints were released and the runs lasted between 112
and 271 ns, depending on the system examined as described in
Table 2. A cutoff of 10 Å for both short and long-range interactions in
the direct lattice was used. To restrain bond lengths to their
equilibration values, the P-LINCS algorithm was used [89]. A 2 fs time
step was used to integrate the equations of motion with the neighbor
list updated every 10 fs. Finally, the simulation trajectories were
recorded by collecting the system coordinates every 2 ps. The
trajectories were analyzed by means of the GROMACS tools and of an
analysis code written by us.

3. Results and discussions

3.1. Peptide–DPC and DDM micelle structures

3.1.1. Micelle–peptide aggregation process
We first consider the influence of the peptide on the micelle

aggregation process for the different micellar systems simulated in
hloride ions, TFE, DPC and DDMmolecules in each simulation box, respectively. R1 and R2

Ncl− NTFE NDPC NDDM tsim

0 – – – 114
122

0 2607 – – 119
114

0 – 55 – 185
188

0 – – 132 203
203

1 – – – 112
124

1 2607 – – 114
115

1 – 55 – 185
192

1 – – 132 230
271

1 – – – 113
118

1 2607 – – 117
115

1 – 55 – 246
259

1 – – 132 214
224

2 – – – 113
124

2 2607 – – 118
115

2 – 55 – 252
255

2 – – 132 200
229



Fig. 3.Aggregation process of DPCmonomers into amicelle vs. time for theKTM17-DPC simulation (case R2). The snapshots at 0b tb10ns and at 5nsb tb130ns correspond approximately
to the fast and slow periods of the surfactant aggregation process, respectively (seemain text for details). DPC surfactants and chloride ions are drawn in the CPK representation, whereas
the peptide is displayed with ribbons. Chloride ions are shown in green, whereas water is not shown for clarity. Carbons of the head group and the alkyl tail are in light blue and in gray
colors, respectively, whereas the oxygen, phosphorus, nitrogen, and hydrogen atoms are in red, yellow, blue andwhite colors. Thesefigureswere designed using the PyMOL program [96].
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thiswork. Figs. 3 and 4 present representative snapshots of the peptide–
DPC and DDM micelle aggregation stages for KTM17-DPC-R2 and
TM17-DDM-R1 simulations, respectively. As shown in these figures,
Fig. 4. Aggregation process for the DDM monomers into a micelle as the function of the simu
10b t b 70ns correspond approximately to the fast and slow period of the surfactant aggregatio
ions are drawn in the CPK representation, whereas the peptide is displayed with ribbons. Chlo
group and the alkyl tail are in light blue and gray colors, respectively, whereas oxygen and hydr
PyMOL program [96].
early after the beginning of the simulation production time the
surfactant monomers diffuse through the simulation box and interact
with the peptide and with the other surfactant molecules to form
lation time for the TM17-DDM simulation (case R1). The snapshots at 0 b t b 10 ns and
n process, respectively (see main text for details). DDM surfactant molecules and chloride
ride ions are shown in green, whereas water is not shown for clarity. Carbons of the head
ogen atoms are represented in red andwhite colors. These figures were designed using the
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small clusters of various sizes and shapes. Next, a peptide–surfactant
complex is formed, which coexists with small surfactant clusters and
free monomers. During this stage the peptide starts to lose its initial
helical secondary structure (see below). Finally, a fusion between the
peptide–surfactant complex and the remaining surfactant aggregates
is observed and a larger peptide–surfactant complex is formed. The
length of this last stage depends on the simulation, the peptide
sequence and the surfactant type. We also find that a single peptide–
surfactant aggregate is not completely formed in some cases (see next
paragraph). These different peptide–surfactant aggregation stages are
similar to the aggregation process recently described by Tian et al. [90]
in simulations involving the α-synuclein protein, an intrinsically
disordered protein, solvated with sodium dodecyl sulfate surfactant.

To compare the DPC and DDM self-aggregation processes in the
presence of a peptide with simulation results obtained for pure DPC
[70] and DDM micelles (see Section II of the Supporting Information),
we present in Figs. 5 and S3 (hereafter, the letter “S” refers to the figures
and tables of the Supporting Information), the instantaneous number of
DPC and DDM clusters as a function of time, Ncluster(t), for each
simulation. As previously reported [70,91], two DPC or DDM surfactants
were considered to belong to the same cluster if any of their alkyl chain
carbon atoms are within 4.1Å of each other. As shown in Figs. 5 and S3
the different starting conditions and the peptide itself can significantly
affect the micelle aggregation kinetic and structure. The time required
to obtain a stable aggregate (i.e. Ncluster(t∞) = 1) is in the range of
~40–220 ns for DPC R1 and R2 simulation series. In the case of the
DDM simulations, Figs. 5 and S3 (and inset) show that for the R1
simulations, Ncluster(t∞) reaches a stable value of 1 before the end of
the simulation. This is contrast with the R2 simulation series, where
for three simulation conditions (i.e. mTM16-DDM-R2, TM17-DDM-R2
andKTM17-DDM-R2) the surfactant aggregation is not complete (i.e. N-
cluster(t∞)N1), even after a long simulation time (tN270ns). As shown in
Fig. S4F and G, for these systems DDM forms two aggregates connected
by the peptide.
Fig. 5. Aggregation process for the DPC (A) and DDM (B) monomers. The number of clusters is
green and blue colors refer to the simulations carried out with themTM10, mTM16, TM17 and K
and drawn with continuous lines in gray, orange, dark green and cyan for mTM10, mTM16, T
simulation cell were computed every 10 ps.
As noted previously in simulations [70,92], the micelle aggregation
process can be separated in two stages that occur in two different
time scales: One “fast” (tfast b 10 ns) and one “slow” (tslow = 20–
220ns). The “fast” process can be associated with the quick aggregation
of the surfactant monomers into small clusters and a fusion of these
small clusters into larger ones. During the slow process, the different
aggregates merge to form a single and stable micelle [93,94]. As in our
previous work [70], to characterize these time scales involved in the
micelle aggregation process, the ΔNcluster(t) = Ncluster(t)− 1 function
was fitted with a double exponential function: c1e−t / τ1 + c2e−t / τ2.
Here, τ1 and τ2 are the characteristic relaxation times for the fast and
slow processes, respectively [93,95], and c1 and c2 represent thewaning
number of clusters involved in the two previously defined simulation
periods. Fitting was performed only for the micellar systems for which
the Ncluster(t) function reached a constant value of one during the last
30 ns of simulation. As we used different input conditions and initial
random seeds, and that the surfactant molecules were not restrained
during the NPT equilibration periods, the number of clusters at the
beginning of the simulation production phase Ncluster(t=0) is slightly
different among the simulations and not equal to the number of DPC
and DDM monomers in the system (i.e. 55 and 132), but around 50
and 45, respectively. The c1, c2, τ1 and τ2 fitted values obtained from
the Ncluster(t) functions are reported in Table 3. As shown by these
values, the kinetics of the micellization process differs among the
simulations. Generally, the DPC micelle aggregation process occurs
slower than for DDM. In particular, we obtained for the ensemble of
the DPC simulations, τ1 and τ2 values in range of 2.2–5.3 ns and 11.7–
144.2 ns, respectively. These values are, respectively, 1.2–2.8 and 2.5–
4.9 times larger than the values previously obtained for pure DPC
micelles with 54 DPC monomers and simulated with the Amber99SB
force field [70]. In case of the eight DDM simulations, except for the
mTM16-DDM-R2, TM17-DDM-R2 and KTM17-DDM-R2 simulations,
the Ncluster(t) functions were well fitted by the double exponential
function. τ1 and τ2 values obtained are in the range of 1.8–2.9 ns and
plotted here as the function of the simulation time for R1 series (see text). The black, red,
TM17 peptides, respectively. The double exponential fitting results are shown in the inset
M17 and KTM17, respectively. The number of DPC and DDM clusters contained in each
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Table 3
Double-exponential fitting values for the DPC and DDM simulations, respectively (see
main text for details). τ1 and τ2 are in ns. aResults obtained for the DPC micelle with 54
monomers modeled with the Amber99SB force field (see reference [70] for details). bNot
computed (see main text for details). cSee Section I in the Supplementary material
information.

Simulation c1 τ1 c2 τ2

DPC
mTM10-DPC-R1 13.2 3.0 14.9 12.4
mTM10-DPC-R2 21.2 3.3 19.3 11.7
mTM16-DPC-R1 32.0 5.3 2.3 132.6
mTM16-DPC-R2 24.9 3.6 4.1 59.4
TM17-DPC-R1 24.7 3.6 5.2 96.9
TM17-DPC-R2 26.6 4.5 4.3 59.9
KTM17-DPC-R1 24.3 5.2 4.2 61.1
KTM17-DPC-R2 18.1 2.7 5.2 87.2

Pure DPC micelle
Reference [70]a 27.6 1.9 9.8 29.4

DDM
mTM10-DDM-R1 8.4 2.9 2.5 17.4
mTM10-DDM-R2 10.0 5.0 3.4 23.2
mTM16-DDM-R1 15.9 1.1 15.4 9.8
mTM16-DDM-R2b – – – –

TM17-DDM-R1 25.8 2.2 1.6 145.3
TM17-DDM-R2b – – – –

KTM17-DDM-R1 21.2 1.8 1.1 41.1
KTM17-DDM-R2b – – – –

Pure DDMmicelle
This workc 41.5 0.6 36.4 3.5
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9.8–258.7 ns, respectively. These values are also larger than τ1 and τ2
values obtained in a simulation of the pure DDM micelle (τ1 = 0.6 ns
and τ2=3.5ns (Fig. S1)).
Fig. 6. Final snapshots of the TM10,mTM16, TM17 and KTM17 peptideswith DPC (A–D) andDD
tail are in gray color. Oxygen, phosphorus, and nitrogen atoms are in red, yellow and blue, re
residues are colored in orange, magenta, yellow and blue colors, respectively. The tryptopha
PyMOL program [96].
The final snapshots of the four peptide–micelle complexes obtained
with DPC and DDM in the R1 and R2 simulation series drawn with the
Pymol program [96] are presented in Figs. 6 and S4, respectively. They
show that the peptides in the DPC and DDM simulations are partially
unfolded and located at the micelle surface (see Section 3.2 for details)
with small portions of the peptide surfaces exposed to the aqueous
environment and partially buried by the surfactant head group as
illustrated for the TM17-DDM simulations in Figs. 6H and S4.

3.1.2. Micelle size and shape
The micelle size in the presence of peptides was characterized by

computing its instantaneous radius of gyration (excluding the peptide),
Rg, which was compared with that calculated from simulations of pure
DPC and DDM micelles. As shown in Figs. 7 and S5, after large initial
variations the Rg values of DPC and DDM reach stable values around
18 and 25 Å after 40–220 ns depending on the considered peptide,
respectively. The Rg mean values obtained from the last 40 ns of each
DPC and DDM simulation (that corresponds roughly to the period
where Rg reaches a stable value) are reported in the second column of
Table 4. For the DPC micelle simulations these values are in the range
of 17.5–18.2 Å, with an average Rg for the different DPC simulations of
17.9±0.2Å. As expected, given the larger value of Nagg and the peptide
perturbation, this value is slightly larger than that previously obtained
for a pure DPC micelle with 54 DPC monomers simulated with the
Amber99SB force field (16.9 ± 0.1 Å) [70]. This result indicates that
the overall geometry of themicelle is partially impacted by the peptides.
In contrast to the DPC case, the average size and shape (see below) of
the DDM micelles is more influenced by the peptide presence and by
the input simulation conditions. This is corroborated by the larger
spread of Rg, calculated between 24.2 and 29.8 Å in the R1 and R2
simulations. When the micelle is considered not completely formed at
Mmicelles (E–H) for the R1 simulations. The carbon atoms of the head group and the alkyl
spectively. Hydrophobic, polar uncharged, negatively and positively charged amino-acid
n residue of each peptide is shown in black color. The figures were designed using the
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Fig. 7. Radius of gyration values displayed as a function of the simulation time for the DPC (A) and DDM (B) micelles. The trajectory of the R1 simulation cases for the mTM10 (black),
mTM16 (red), TM17 (green) and KTM17 (blue) peptide is presented (see text). Peptide atoms were not included in the calculation of the Rg values.
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the simulation timescale (i.e. mTM16-DDM-R2, TM17-DDM-R2 and
KTM17-DDM-R2), the micelle Rg is significantly larger (±2–3 Å) than
the average Rg value calculated from the R1 simulations (i.e. 24.8 ±
0.9 Å) or for pure DDM micelles construct by using self-assembled
(24.9± 0.2 Å) and preformed (25.2 ± 0.2 Å) simulations (see Fig. S1B
and ref. [73]).

To characterize the micelle shape, the instantaneous micelle semi-
axis lengths, aM, bM and cM were also computed from the inertia tensor
Fig. 8. Peptide–micelle center ofmass distance, dpep–mic, as a function of time of DPC (A) andDDM
KTM17 are shown in black, red, green and blue colors, respectively.
and the average ellipsoidal axis ratio between the micelle major (aM)
and minor (cM) semi-axis lengths, i.e. aM/cM, was deduced for the last
40 ns of each simulation. These values are reported in Table 4 and are
compared to values obtained from previous simulations of pure DPC
and DDM micelles (see references [70,73] and the results reported in
the Supporting Information). Except for mTM10-DPC (case R2), where
the aM value is significantly larger (29.8Å) than for the other peptide–
DPC simulations, the semi-axis lengths aM, bM and cM do not change
(B) obtained from the R1 simulation cases. The trajectory formTM10,mTM16, TM17 and
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Table 4
Average dimensions of the micelle semi-axes in the different simulation conditions
studied in this work. Values were computed by including all the micelle atoms (see
main text for details). The radii of gyration, aM, bM and cM were computed from the last
30 ns of each simulation. All results are in Å. The statistical error (maximum error) for
the Rg and aM/cM are lower than 0.2 Å and 0.05, respectively. aMicelle with 54 DPC
monomers. bValues obtained from the last 45 ns of the simulation. cValues obtained
from the simulation carried out with the GLYCAM06 force field (version f) [74].

Simulation Rg aM bM cM aM/cM

DPC
mTM10-DPC-R1 18.2 25.4± 0.8 22.6± 0.6 19.9± 0.6 1.28
mTM10-DPC-R2 17.8 29.8± 0.9 21.2± 0.7 18.2± 0.6 1.70
mTM16-DPC-R1 17.5 26.2± 1.0 23.2± 0.8 19.2± 0.8 1.34
mTM16-DPC-R2 17.7 25.3± 1.3 22.4± 0.8 19.2± 0.8 1.27
TM17-DPC-R1 17.8 26.7± 1.0 22.2± 0.8 19.9± 1.0 1.36
TM17-DPC-R2 18.0 25.8± 1.6 25.6± 0.9 19.8± 0.9 1.31
KTM17-DPC-R1 18.2 25.0± 1.0 22.2± 0.7 20.1± 0.7 1.24
KTM17-DPC-R2 17.8 26.8± 1.9 22.3± 0.7 19.9± 0.8 1.36

Pure DPC micelle
Ref. [70]a 16.9 24.2± 0.4 21.6± 0.2 19.5± 0.3 1.24

DDM
mTM10-DDM-R1 24.2 34.4± 0.8 31.2± 1.2 27.8± 0.8 1.24
mTM10-DDM-R2 26.3 42.8± 2.3 30.7± 0.9 26.3± 0.6 1.63
mTM16-DDM-R1 24.4 37.3± 0.7 29.5± 0.8 26.8± 0.4 1.39
mTM16-DDM-R2 26.2 44.6± 1.2 22.5± 2.5 25.1± 0.5 1.78
TM17-DDM-R1 24.2 34.4± 0.4 30.8± 1.2 28.0± 0.7 1.23
TM17-DDM-R2 29.8 55.9± 1.3 26.3± 0.5 24.9± 0.5 2.12
KTM17-DDM-R1 24.7 37.6± 0.9 29.7± 0.7 27.3± 0.9 1.38
KTM17-DDM-R2 24.7 37.8± 0.7 30.0± 0.8 26.7± 0.7 1.41

Pure DDMmicelle
This workb 24.9 36.5± 0.8 31.4± 0.7 28.0± 0.7 1.31
Ref. [73]c 25.2 37.2± 0.8 32.0± 0.8 27.5± 0.8 1.38
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much with the different peptides. Thus, we observed that the mean aM,
bM and cM values are 25.9±0.7, 22.9±1.2 and 19.7±0.4Å, respectively,
with an average aM/cM axial ratio of 1.30±0.05. These values are 5.9%,
6.9%, 6.1% and 6.4% higher than those calculated for the pure DPC
micelle (24.2±0.4, 21.6±0.2, 19.5±0.3Å and1.24±0.39, respectively)
[70]. For DDM, as it was found for their Rg values, the aM, bM and cM
values show much larger fluctuations, especially for the mTM10-
DDM-R2, mTM16-DDM-R2 simulations and TM17-DDM-R2. These
three micelles are found more ellipsoidal than other ones or the pure
DDM micelle with aM/cM values greater than 1.60. The mean aM, bM,
cM and aM/cM values for the DDM simulation series (excluding these
three simulations) are equal to 36.3±1.7, 30.2±0.7, 27.3±0.6 Å and
1.33 ± 0.1, respectively. These values are close to the values obtained
previously for pure DDM micelles (see the last two rows of Table 4
and reference [73]).
Fig. 9. (A) Illustrative snapshot showing possible cation–π interactions between theW553 indo
micelle in the R1 simulation. (B) Interactions of theW1246 residuewith themicelle in the case
atom and indole center. Water is not shown for visual clarity.
3.2. Peptide–micelle interactions

3.2.1. Peptide–micelle non-specific interactions
Peptide–micelle interactions were examined by computing the

center of mass (COM) distance between the peptide and the micelles,
dpep–mic, as a function of the simulation time for the R1 and R2
simulation series (Figs. 8 and S6, respectively). We wish to underline
that the micelle COM is here defined as the COM of all the detergent
molecules. As discussed in Section 3.1 and illustrated in Figs. 3 and 4,
each peptide is located in the center of the simulation box and is
surrounded by small surfactant aggregates and monomers in the input
conditions. This arrangement gives a value around 0 Å for dpep–mic. In
mTM10-DPC and mTM16-DPC simulations (both R1 and R2 cases) the
initial dpep–mic values are found between 2 and 5 Å. dpep–mic values
increase up to ~15–20 Å during the first 30 ns of production, before
reaching stable values between 13 and 15 Å after 60 ns. For the TM17
and KTM17 simulations larger fluctuations are observed and dpep–mic

values take between 140 and 200ns of simulation to reach stable values
(between 15 and 17 Å). In all cases, we notice that the final dpep–mic

values are close to the DPC micelle Rg computed in Section 3.1 (with
an average Rg ~ 18 Å), indicating that the peptides are located at the
micelle surface in the micelle headgroup region as we can deduce
from the radial density function profiles (see below). A representative
view of the peptide–micelle complex for the four peptides in the DPC
simulation conditions (case R1) is shown in Fig. 6A–D, validating this
scenario. Concerning the DDM simulations, the initial dpep–mic values
are also found between 2 and 5 Å at the beginning of the productive
simulations, and these values increase to values of 17.5–20.0 Å after
20 ns of simulation. Except for the TM17-DDM conditions (case R1)
where large fluctuations for dpep–mic are observed between 80 and
160 ns (Fig. 9), dpep–mic reach stable values between 17.5 and 24.0 Å
after ~60 ns of production (as compared to an average Rg of ~26 Å).
The large dpep–mic range obtained for DDM suggests that, in contrast to
the DPC simulations, the localization of the peptide at the micelle
surface is less defined (probably in relation to the larger DDM than
DPC headgroup region). In DDM, we also observed that peptides can
be more or less buried at the micelle surface (as suggested by the
dpep–mic values slightly lower (by 2 to 8 Å) than the DDM Rg values)
with a large part of the peptide covered by the detergent head group,
as illustrated, for example, in Fig. 6F. These results are consistent with
tryptophan fluorescence spectroscopy experiments [38–40], which
attest that these peptides do not insert in a typical TM position in the
micelles [39].

To glean more information about peptide–micelle interactions, we
have computed, for the DPC and the DDM simulations, the average
radial density functions profile ρ(r) for all the relevant system
components as a function of the distance r from the micelle COM. As
le group and the two nearest DPC choline groups in the case of themTM10 peptide in DPC
of the KTM17-DPC R1 simulation. The yellow dashed lines are the distances between the N
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previously discussed elsewhere [73], the nonspherical nature of the
micelleswill affect theρ(r) value to a certain extent, causing broadening
of these functions. Here, we focus on and discuss the density of the
following system constituents (see Fig. 2 for the labels): the DPC
phosphate (phospho) and choline (choline), the two DDM glucose
units (GlcA and GlcB), the dodecane tail group (alkyl), water, the
whole peptide, and the peptide tryptophan residue. The radial density
ρ(r) values were computed every 2 ps and averaged over the last
40 ns of each simulation. The plots for the 16 simulations (8 in DPC
and 8 in DDM) are shown in the Supplementary material in Figs. S7–
S10.

An important observation is that the structure of the detergent
components is largely affected by the degree of peptide penetration in
the micelle, and that DDM micelles are those where this effect is more
visible. The average ρ(r) values for mTM10 in DPC and in DDM for the
two sets of runs, R1 and R2 are reported in Figs. S7–S10 (panel A). We
find that for both detergents the run labeled R2 brings mTM10 deeper
in the micelle than R1. In DPC (Figs. S7 and S8), although the density
profiles of the alkyl tails and of the phospho groups are broader in R2
than in R1, mTM10 induced micelle profile changes are rather small.
In DDM instead, as shown in Figs. S9 and S10 (panel A), micelle profile
changes induced by mTM10 penetration are much larger. Indeed, in
R2 compared to R1 the two sugar profiles change significantly, so that
new peaks appear at short distances from the COM of the micelle. This
is a sign of strong interactions between GlcA and GlcB with mTM10,
which are also observed for TM17 and KTM17. In the run R2 of
mTM10 the alkyl density at 10 Å from the micelle COM drops around
0.5 g cm−3, well below the experimental dodecane density
(0.745g cm−3) [97,98].

The density profiles of water in the DDMmicelle simulations are also
affected by the peptide embedding in the micelle interior. For mTM10,
TM17 and KTM17 (Fig. S10A, C and D), this is shown by the apparition
of small peaks at distances below 20 Å in their water ρ(r)s, which
implies specific bonds between water and peptide residues inside the
micelle. In this perspective, it is interesting to investigate the
interactions of the tryptophan residue with water and with the other
components of the micelle. Indeed, the fluorescence properties of this
residue are affected by the nature of its local environment and
fluorescence spectroscopy experiments are used to probe the
hydrophilic or hydrophobic surroundings around a specific tryptophan
(see for instance ref. [99]). In the DPC simulation series (Figs. S7 and
S8), the W553, W1198 and W1246 residues of mTM10, mTM16 and
KTM17 peptides, respectively, are located between 10 and 20 Å
from the micelle COM, sometimes near the phospho group, in a
region with an alkyl density ranging from 0.25 to 0.5 g cm−3. In the
DDM micelles (Figs. S9 and S10), the tryptophan residue is always
closer to the surface except in the case of run R2 of mTM10, where
the tryptophan density has a well-defined peak at 8 Å from the
micelle COM. In contrast, for the R1 run of KTM17 in spite of a
peptide located deeply in the micelle, the tryptophan density is
found closer to the surface of the micelle, but still within an alkyl
density of 0.18 g cm−3. The micelle snapshots given in Figs. 5 and
S4 support these results, and show that these residues are mainly
localized in both micelles at the micelle–water interface and
sometimes recovered by the surfactant head group in case of the
DDM micelle (see for instance, Fig. 6G and H).

Finally, it was shown by circular dichroism spectroscopy or solid
state 2H NMR spectroscopy experiments [100] or molecular simulations
[101,102] that the tryptophan indole ring can form cation–π bondswith
the cationic choline group of the phospholipid headgroup. To examine
this aspect, we have computed the distance between the nitrogen of
choline group with respect to the center of the tryptophan ring during
the last 20 ns of each peptide–DPC simulation (not shown). We found
that for each peptide the distance fluctuate around 4.3–10Å indicating
formation of sporadic cation–π bond (4.5–6.0 Å) [101–103] as it is
illustrated in Fig. 9A in the case of the mTM10-R1 simulation. Larger
distance between the nitrogen of choline group and the Trp indole
groups indicate that the Trp indole can move sporadically away from
DPC headgroup and stand in themicelle hydrocarbon core as illustrated
in Fig. 7B in the case of the KTM17-DPC R1 simulation. Previous
fluorescence quenching experiments [38–40] suggest that the trypto-
phan residue is partly in contact with the detergent alkyl chain.

3.2.2. Peptide–water interactions
For the different reported simulations, we find that the peptides are

localized at the surface of the micelle, as shown in the pictorial view
given in Figs. 6 and S4. To examine more quantitatively the degree of
embedding of each peptide in the micelle and its exposure to water,
the peptide solvent accessible surface area (SASApep) was computed
from the simulations. SASApep values were computed every 10 ps with
the trjVoronoi program [70,104], which uses the Voro++ software
library [105] used to analyze GROMACS trajectories. This program
computes the SASA for any segment of the system as the Voronoi
surface shared between water and the considered segment, which in
turn is obtained by summing up all the atomic Voronoi polyhedral
face areas of the segment atoms shared with any water atoms. The
total Voronoi surface of the segment is defined as the sum of all atomic
Voronoi facets shared with atoms others than those of the segment. As
in references [70,73,106,107], explicit hydrogen atoms were excluded
from these calculations. We find that except for mTM16-DDM (case
R2) and TM17-DDM (case R1), where the equilibrium takes longer to
attain (N100 ns), implying a high mobility and structural disorder for
the peptides, instantaneous SASA values decrease monotonically and
reach a plateau after 20–50 ns of production. The solvent exposure
values of the whole mTM10, mTM16, TM17 and KTM17 peptides are,
on average, reduced by 47.7 (66.7), 42.5 (51.8), 37.5 (55.0) and 48.7%
(67.5) in DPC (in DDM) compared to SASA in water; see last rows of
Tables S2–S5. This observation demonstrates that the solvent exposure
of the peptide is smaller in DDM than in DPC, and is consistent with the
results derived from tryptophan fluorescence spectra and quenching by
acrylamide [38–40].

We have examined the SASA between water and each peptide
residue or SASAX. The raw data averaged over the last 30 ns of each
simulation are presented in Tables S2 through S5. In Fig. 10, these results
are summarized by plotting the relative change in SASAX, ΣX, when a
peptide is transferred from water to a micelle, i.e. ΣX = (SASAX

Water−
SASAX

Micelle) / SASAX
Water. The SASAX

Water and SASAX
Micelle values are the

average Voronoi surfaces of each peptide residue computed in the
absence and presence of surfactants, respectively. The quantity ΣX is
positive if SASA decreases going from water to the micelle, hence
signaling that the residue is in contact with the detergent molecule,
and has a larger affinity for the micelle than for water. Also, residues
buried in the micelle display larger ΣX values (up to 1), whereas
residues freely exposed to water have negative ΣX values or values
closer to zero. In the different panels, one for each peptide, a hydropathy
plot is added for the residues, which gives a measure of their
hydrophobic/hydrophilic characters. Such plot was obtained with a
method described by Kyte and Doolittle [108] and with the help of
the ExPASy server [109]. A window of three residues was used in
the profile computation, and thus only the hydrophobic characters
for the second up to the twenty fourth residues are plotted in the
figure.

By examining Fig. 10, we first notice that ΣX values are on the overall
always larger for DDM than DPC for the four peptides, indicating that
the peptides are less accessible to solvent in DDM micelles than in
DPC ones. We also find more embedded residues (ΣX close to 1) for a
given peptide in DDM than in DPC. However, the same overall trend
in water exposure of the residues is visible for the two micelles and,
usually, residues with larger (or smaller) water exposure in onemicelle
behave similarly in the other. The calculation of ΣX for the four peptides
has also revealed the exposure of the tryptophan residue to water,
significantly lower in DDM than in DPC for W553 (in mTM10) but



Fig. 10. Differences in SASAX and hydropathicity for the (A)mTM10, (B)mTM16, (C) TM17 and (D) KTM17 peptides. In each panel, the hydropathicity scale and the relative difference in
SASAX between the water and the micelle environment is presented in the upper and lower part respectively. The hydropathicity scale of each residue (black) was computed with the
Kyte–Doolittle approach [103] used by the ExPAsy server [104] with a window of three. Regions with values above and below zero are considered as hydrophobic and hydrophilic,
respectively (seemain text for details). In thepanels, results for DPC are in blue and in red for DDM. Theblack line in thefigures highlights the tryptophan residue positions of each peptide.
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with less differences in the other cases. These data are consistent
with experimental estimates obtained from fluorescence experiments
[39,40]. In water, formation of peptide oligomers (as we will see in the
next section) prevents comparison with the simulation results of
isolated peptide.
Fig. 11. RMSDCα in water (A), TFE (B), DPC (C) and DDM (D) for mTM10 (black), mTM16 (red
cases are given in the Supplementary material.
Concerning the hydropathicity plot, we were not able to discern a
clear correlation between the hydrophobicity of the residue and ΣX. In
a few cases, residues with low hydrophobic character have also a
small ΣX (e.g. T556 in mTM10 or T1242 in TM17), but in many others
the opposite is also true. This is probably because these residues are
), TM17 (green) and KTM17 (blue) for the R1 simulation cases. Results obtained in the R2

image of Fig.�10
image of Fig.�11


504 S. Abel et al. / Biochimica et Biophysica Acta 1838 (2014) 493–509
during the simulation time sporadically buried in the micelle or in
contact with water.

3.3. Secondary structure peptide changes in different environments

3.3.1. Peptide structural changes
The stability of the initial helical conformation of each peptide

during the simulation was examined by computing the peptide alpha-
carbon, Cα, root mean square deviations (RMSDCα). We used as a
reference for each RMSDCα calculations the minimized structure of
each peptide. The RMSDCα curves obtained in water, TFE, DPC and
DDM for the four peptides are plotted in Figs. 11 and S15, for the R1
and R2 simulations, respectively. As shown in these figures, for all
peptides, the evolution of the RMSDCα values as a function of the
simulation time shows various trends specific to each peptide
environment, with slight variations in the R1 and R2 starting conditions.
In water (panel A), for all peptides, RMSDCα values increase up to 6–
10Å after a few ns of simulation, and fluctuate significantly during the
simulation production time. This behavior is also reflected by the loss
of the initial helical conformation and in large variability in the peptide
secondary structures (see below). These results contrast with those
obtained in TFE (panel B), where the peptide RMSDCα values are rather
stable with values in the range of 3–4 Å. The only exception is for
mTM16 in the R1 simulation case, where an increase of the RMSDCα

up to 6 Å is observed after 50–70 ns of simulation. The relatively low
RMSDCα values obtained for the peptide Cα in TFE are consistent with
the fact that the input peptide helical secondary structure is conserved
in this solvent (see below). Finally, when the peptides are solvated
with DPC and (DDM), intermediate results are obtained, with an
increase of the RMSDCα values to 5–6 Å (4–6 Å) during the first 10–
20 ns, followed by a stabilization around 4–6 Å (3–6 Å) after ~60 ns of
simulation. The increase in RMSDCα values at the beginning of the
DDM and DPC simulations is a result of the partial unfolding of the
peptides observed during themicellization process and a larger peptide
contact with the solvent (see below).

3.3.2. Peptide secondary structure changes
The time evolution of the peptide secondary structure (SS) in water,

TFE, DPC and DDM environments was examined every 20 ps with the
help of the DSSP program [110]. This program assigns the most likely
Fig. 12. Percentage of secondary structure contents for themTM10 (A),mTM16 (B), TM17 (C) a
and R2 are for experimental, the first and second simulation series, respectively. The percentage
colors, respectively.
class of SS to segments of the peptide based on the peptide trajectory
coordinates. In Figs. 12 and S16, the evolution of SS assignment of
varying segments of the peptide is described in comparison to canonical
protein structure (i.e. “coil”, “sheets”, “bend”, “turn” and “helix”). On the
right of each figure, the last peptide snapshot extracted from each
simulation is presented. Additionally, in order to compare with the
percentage of SS elements extracted from circular dichroism exper-
iments [38–40], histograms, that give the percentage of turn, strand,
helix and unordered (i.e. “coil and bend”) structures computed for the
last 30 ns of each simulation are provided in Fig. 13. Figs. 12A and
S16A show that, in water, the initial helical structure of each peptide
is unstable and early after 2–4 ns of production, starts to unfold. The
unfolding process proceeds in slightly differentways for a given peptide
with the R1 and R2 initial conditions. However, the four peptides show
helical segments for most of the simulations. In particular, we find
helical conformation for the residue ranges V560–V567 of mTM10,
V1200–E1204 and I1210–R11215 of mTM16, G1231–Y1236 and
T1241–V1248 of TM17 and N1244–V1248 of KTM17. For the latter
one, the A1227K mutation seems to promote the destabilization of the
helical structure located above the mutation point at residue positions
of L1231–S1236. For each peptide (except TM17), the average
percentage of helical contents computed from the last 30 ns of each
simulation vary between the R1 and R2 simulations (Fig. 13), and are
on average equal to 19.0 ± 15.6% for mTM10, 46.0 ± 18.4% for
mTM16, 45.5±2.1% for TM17 and 36.0±12.7% for KTM17 for the two
simulations. Thus, the unfolded structures of these peptides in water
are in agreement with their inherent hydrophobicity, discussed above.
The circular dichroism experiments carried out on TM16 and KTM17
[38–40] also showed that the helical content of these peptides was the
lowest in buffer, as compared to the other environments (although
the helical content was found significantly lower, in the range of
4–10%, likely due to peptide aggregation).

A different behavior is observed in TFE. Here, the peptide helical
structure is mainly conserved over the course of the entire simulation
(Figs. 12B and S16B) with large average helix contents for mTM10,
TM17 and KTM17 computed from the last 40 ns of each peptide
(86.9±1.4, 88.9±0.7 and 85.4±1.4%, respectively). A smaller helical
content is found for mTM16 (68.3 ± 7.8%). This is probably the
consequence of the presence of an unfolded region located at the
V1200–S1205 segment during the last 30 ns of the simulation. The
nd KTM17 (D) peptides. Each valuewas computed from the last 30ns of trajectory. Exp., R1
s of helix, strand, turn and unordered structureswere colored in blue, red, green and violet
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experimental results extracted from far-UV circular dichroism
experiments also reported a maximal helical content for these peptides
in organic media, again slightly lower than in the simulations
(percentages of helical content of 55% and 60% for mTM10 and
mTM16 respectively in TFE [39,40] and 80% for KTM17 in methanol
[38]).

Fig. 12C and D and the last six columns of the histograms in Fig. 13
report the SS evolution as a function of time and the average percentage
of SS elements for the peptides in the DPC andDDMsimulations. In DPC,
mTM10 has, on average, 59.6 ± 11.9% of helical content and the
unfolding occurs mainly in the peptide N-terminus region up to the
V560 residue including the W553 tryptophan. In the presence of DDM,
this region is also unfolded (in particular, the segment delimited by
S546 and T557) and the peptide average helical content is 67.9 ±
18.7%. For mTM16 in DPC (with an average helix content of 59.5 ±
4.9%), the unfolding process occurs in a region delimited by L1203–
G1207, whereas in DDM (average helix content of 62.1 ± 17.5%) the
unfolding occurs in a ten-residue segment delimited by the L1199–
S1209 amino-acids. In the case of TM17 and KTM17, their N-termini
regions delimited by A1227 and T1241 are unfolded in both micelles.
For TM17 in DPC, the L1247–S1251 central segment can also be
unfolded during relative short periods of time (~20 ns, see Figs. 11C
and S16C). In DDM instead, TM17 and KTM17 remain folded, with a
helical content of 74.5 ± 16.9% and 71.9 ± 9.9%, respectively. In all
Fig. 13. Changes in the secondary structure for the mTM10, mTM16, TM17 and KTM17 peptid
simulation cases. In eachof the four frame results corresponding to the different peptides are giv
position of each peptide residues along each peptide chain.
cases, peptides are less structured (i.e. less folded) in DPC than in
DDM. The results for mTM10, mTM16 and KTM17 are reminiscent of
those obtained in CD experiments [38–40], in that the peptide helical
content in detergent (DPC or DDM) is intermediate between that in
water and that in TFE. However, the experimental helical content values
are lower than the present ones for mTM10 and mTM16 and are only
comparable for KTM17 in DPC (45 and 56% helical structure from CD
and simulation respectively). This is probably due to the fact that the
lysine electric charge in KTM17 prevents peptide aggregation. In
addition, the peptides were slightly less structured in DDM than in DPC.

Finally, we also note that in contrast to far-UV circular dichroism
experiments [38,40], our simulations do not show any formation of
β-strand structures. In order to examine this issue in more details,
a series of detergent complexes involving more than one peptide
were studied. Indeed, it is known that hydrophobic peptides in water
solution or in micelles can aggregate and form β-strand struc-
tures [111,112]. This is particularly true when the peptide number per
micelle is not close to 1, but larger. This secondary structure can be
stabilized if the peptide, as it is the case of mTM16, has both positive
(R1197 and R1202) and negative (E1204) formal charges in its
sequence leading to a head–tail arrangements (i.e. as in hairpin). To
explore this issue, three additional simulations were performed with
three mTM16 peptides in bulk water (i.e. condition named 3-mTM16-
W) and in micelles of DPC (3-mTM16-DPC) and DDM (3-mTM16-
es as a function of time in water (A), TFE (B), DPC (C) and DDM (D) conditions for the R1
en in thefirst, second, third and fourth plots, respectively. See Table 1 for the corresponding
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DDM), see Section II in the Supporting Information and Figs. S18(A-B).
Our results confirm that inwater themTM16 peptides can form a stable
aggregate after ~50 ns of simulation, but do not form any β-strand SS
even after long simulation time (t ~ 317 ns, Fig. S17A). In water the
peptides have a hairpin structure, where the positively charged residues
R1197 and R1202 in theN-termini interact with the negatively charged
residue E1204 (Fig. 14A). The percentage ofα-helix content of the three
peptides in water (47.0 ± 2.8%) is similar to the value obtained for a
single mTM16 peptide in the same solvent (46.0±18.4%) (Fig. S17D).
As in water, the three peptides do not form any β-strand SS in DPC
and DDM (Fig. S17B and C). As for the simulations carried out with a
single peptide, we also find that DDM surfactant has a more stabilizing
effect on the three peptide secondary structure compared to DPC, with
helix contents of 60.8% and 40.3%, respectively (Fig. S17B and C). These
values are 32.2% and 2.1% lower than the values previously obtained for
a single mTM16 peptide in DPC and in DDM micelles.

4. Conclusion

This paper describes the formation and the resulting structure of
peptide–detergent complexes as obtained by MD simulations in the
hundreds of ns time range. The peptides considered here, mTM10,
mTM16, TM17 and KTM17 represent three fragments from the last
two membrane-spanning domains of hMRP1 which play an important
role in the hMRP1 functions. Structural models were available for
these three fragments and the four peptides considered are those
previously studied by CD and Trp fluorescence [38–40] so that detailed
comparison could be made between simulation and experiments in
closely similar conditions. We have studied the interactions between
these peptides and two widely used detergents, DPC and DDM. The
structural and dynamical data of themicelle complexes were compared
to those obtained for peptides in pure water and TFE and for micelles
alone.

We first described the effect of peptide on micelle formation. We
find that themicelle aggregation kinetics is affected at different degrees
by the presence of the peptides. For both DPC and DDM micelles the
aggregation kinetic is slowed significantly down by the peptide
compared to that observed for pure micelle [70,93,94], by a factor of
1.4–2.8 for DPC and 2.5–4.5 for DDM. The size of the micelles is also,
Fig. 14. MD snapshots for three mTM16 peptides in water (A), DPC (B) and DDM (C) condit
molecules in Figures B and C were not shown for visual clarity. The figures were designed with
on average, slightly increased by the peptide, as indicated by Rg values,
with a larger spread of the results with DDM micelles: thus, Rg values
are within 24.2–29.8Å for DDM aggregates and within 17.5 and 18.2Å
for DPC.

We then focused on peptide position and structure within the
complexes. In agreement with fluorescence spectroscopy experiments
[38–40], the results show that the four peptides have tangential
orientations at the DPC and DDM micelle surfaces in the performed
simulations, and no evidence of transverse orientations was observed.
This is clearly visualized in the final snapshots of the peptide–detergent
complexes (e.g. Fig. 6). This is also shown by the values of dpep–mic

(Fig. 8) which should be smaller or close to zero in case of transverse
orientation. Similarly, the SASA values should be lower for a transverse
peptide with lower water accessibility. Consistent with fluorescence
spectroscopy experiments, peptides are in general more buried in
DDM than in DPC and, consequently, have larger exposure to water in
DPC than in DDM. In the case of the peptide Trp residues, they can
also form cation–π interactions with the choline group of the DPC or
stand near the hydrophobic core of the micelle (Fig. 7). This work also
revealed how the percentage SS is affected in the different simulation
conditions. In particular, in TFE the initial helical SS of the different
peptides is maintained during the entire simulation trajectories, and
the average helix content is in the range of 68.3–88.9%. In contrast, the
peptides helical SS is in part quickly lost in water after only ~2–4 ns,
whereas on average over the length of the runs helical contents are
found in the range between 19.8% and 46.0%. An intermediate situation
is found in detergent micelles, where the peptides remain partially
folded and are more structured in DDM than in DPC, with an average
helix content of 62.1–74.5% and 47.3–59.6%, respectively. Finally,
simulations performed with three mTM16 peptides in DPC and DDM
micelles, in order to simulate peptide–peptide interactions as occurred
in experiments, have shownno sign ofβ-strand SS formation as invoked
by far-UV circular dichroism experiments [39,40]. However, such
structural change may take longer than the short simulation time.

In addition to its general and theoretical interest in terms of
modeling peptide–membrane interaction with two detergents of
general use, this work complements previous experimental work on
hMRP1 fragments. In CD and fluorescence experiments, in particular,
the overall peptide SS and tryptophan accessibility were described for
ions after 317, 215 and 218 ns of simulation, respectively. The DPC and DDM surfactant
the PyMOL program [96].
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the same detergents studied in this paper. In addition, our work
provides new data on conditions not covered by those experiments:
interaction of a single peptide with detergents forming a single micelle,
structure and dynamics at the atomic level. The general trends
previously observed were strengthened, and when some quantitative
results were at variance (for instance, higher helix extent in some
simulations than in experiments), this probably results from peptide–
peptide association in the experimental conditions. This work provides
further support to the fact that these peptides adopt an interfacial and
not a transverse orientation within the micelles [39,40]. This finding
might seem counterintuitive, considering peptide TM location in the
protein structural models. However given the clear amphiphilic
character of these protein fragments, it seems likely that their structural
stability as TM helices is related not only to interactions with the
membrane, but also with the whole protein. Following on these lines,
it will be interesting in the future to compare the results obtained
here, with additional MD simulations of other TM hMRP1 fragments,
for example TM4, which is not expected to belong to the translocation
pore and, according to experimental results [39], is known to adopt
transverse orientation in micelles.
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