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ABSTRACT

Context. As of today, asteroseismology mainly allows us to probe the internal rotation of stars when modes are only weakly affected
by rotation using perturbative methods. Such methods cannot be applied to rapidly rotating stars, which exhibit complex oscillation
spectra. In this context, the so-called traditional approximation, which neglects the terms associated with the latitudinal component
of the rotation vector, describes modes that are strongly affected by rotation. This approximation is sometimes used for interpreting
asteroseismic data, however, its domain of validity is not established yet.
Aims. We aim at deriving analytical prescriptions for period spacings of low-frequency gravity modes strongly affected by rotation
through the full Coriolis acceleration (i.e. without neglecting any component of the rotation vector), which can be used to probe stellar
internal structure and rotation.
Methods. We approximated the asymptotic theory of gravito-inertial waves in uniformly rotating stars using ray theory described in a
previous paper in the low-frequency regime, where waves are trapped near the equatorial plane. We put the equations of ray dynamics
into a separable form and used the Einstein-Brillouin-Keller (EBK) quantisation method to compute modes frequencies from rays.
Results. Two spectral patterns that depend on stratification and rotation are predicted within this new approximation: one for axisym-
metric modes and one for non-axisymmetric modes.
Conclusions. The detection of the predicted patterns in observed oscillation spectra would give constraints on internal rotation and
chemical stratification of rapidly rotating stars exhibiting gravity modes, such as γ Doradus, SPB, or Be stars. The obtained results
have a mathematical form that is similar to that of the traditional approximation, but the new approximation takes the full Coriolis,
which allows for propagation near the centre, and centrifugal accelerations into account.
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1. Introduction

Rotation is a key process of the evolution of stars. Indeed, in ra-
diative zones rotation simultaneously generates large-scale mo-
tions, such as meridional circulation, and small-scale turbulent
motions, which are induced by hydrodynamical instabilities such
as the shear instability. Along with the magnetic field, rotation
strongly affects the transport of chemical elements and angular
momentum, and thus the structure and evolution of stars (Zahn
1992; Spruit 1999; Maeder 2009; Mathis et al. 2013).

Surface rotation can be estimated with various methods,
including spectrometry (e.g. Ramírez-Agudelo 2013), spectro-
polarimetry (e.g. Paletou et al. 2015), spectro-interferometry
(e.g. Hadjara et al. 2014), and photometry (e.g. García et al.
2014). In contrast, internal rotation is much harder to con-
strain. In this context, the development of helio- and asteroseis-
mology (Aerts et al. 2010), and the high-quality data provided
by the space missions CoRoT (Baglin et al. 2006) and Kepler
(Borucki et al. 2010) give access to the physics of stellar interi-
ors, including internal rotation.

For slow rotators, such as solar-type stars and red giants,
rotation is usually considered a perturbation of a non-rotating

system that generates splittings between modes of different az-
imuthal orders (Saio 1981). The differential rotation in the Sun
has been constrained using rotational splittings of p modes
(Thompson et al. 1996; Couvidat et al. 2003) down to 0.2 R� and
of g-mode candidates (García et al. 2007). The contrast in rota-
tion between the core and surface has also been measured for
subgiant and red giant stars using rotational splittings of mixed
modes (Beck et al. 2012; Mosser et al. 2012; Deheuvels et al.
2012, 2014, 2015). Recently, similar techniques have been ap-
plied to solar-type stars (Benomar et al. 2015) and a few F-, A-,
and B-type stars (Aerts et al. 2003; Kurtz et al. 2014; Saio et al.
2015; Triana et al. 2015).

The picture is different for rapidly rotating intermediate-
mass and massive pulsators, such as γ Doradus, δ Scuti, SPB,
β Cephei, or Be stars. Our understanding of the effects of ro-
tation on oscillation modes is still limited. Indeed, perturbative
methods are not valid for high rotation rates (Reese et al. 2006;
Ballot et al. 2010, 2013). Another approximation, namely the
traditional approximation (Eckart 1960), can be used to sim-
plify the effect of the Coriolis acceleration on low-frequency
g modes (Lee & Saio 1997; Townsend 2003; Bouabid et al.
2013; Ouazzani et al. 2017). This approximation consists in
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neglecting the latitudinal component of the rotation vector in
the Coriolis acceleration. If one further neglects the centrifu-
gal deformation, the problem of finding eigenmodes then be-
comes separable in the spherical coordinates. Computations
within this approximation are used by Moravveji et al. (2016)
and Van Reeth et al. (2016) to constrain internal rotation and
mixing processes in rapidly rotating stars. However, the rel-
evance of this approximation for stellar oscillations is uncer-
tain (see for example Friedlander 1987; Gerkema et al. 2008;
Mathis et al. 2014; Prat et al. 2016).

Thus, methods are needed that are able to describe consis-
tently the full effects of rotation on the oscillation spectra when
the rotation is not a perturbation. Indeed, except in some spe-
cial cases (see e.g. Bryan 1889, for inertial waves in a spheroid),
the problem is fully bidimensional, that is not separable. The
first non-traditional calculations in stellar physics have been car-
ried out by Dintrans & Rieutord (2000), and generalised to dif-
ferentially rotating cases by Mirouh et al. (2016). A promising
way of elaborating such methods is to build asymptotic theories
of modes based on the short-wavelength approximation, which
describes the propagation of waves using ray models similar to
geometrical optics. Such a theory has been first built for high-
frequency acoustic modes (Lignières & Georgeot 2008, 2009;
Pasek et al. 2011, 2012).

Concerning gravito-inertial modes, a first step in this direc-
tion has been achieved by Prat et al. (2016; hereafter refered to
as Paper I). We have derived a general eikonal equation (i.e. a lo-
cal dispersion relation) of gravito-inertial waves in a uniformly
rotating, centrifugally deformed star and the equations governing
ray dynamics. The structure of the phase space has been investi-
gated thanks to a ray-tracing code. In particular, the phase space
is nearly integrable at low frequencies as the dominant structures
are invariant tori.

The purpose of the present paper is to derive an approxi-
mate version of the ray dynamics that is integrable to analytically
compute the mode frequencies and propose simple prescriptions
for period spacings that go beyond the traditional approximation.
A summary of the ray-based asymptotic theory of Paper I is pre-
sented in Sect. 2. The low-frequency approximation used to sim-
plify the dynamics is derived in Sect. 3. Period spacings based
on the approximate dynamics are proposed in Sect. 4. Then, the
new formalism is compared with the traditional approximation
in Sect. 5. Finally, we discuss the range of validity of our results
and conclude in Sect. 6.

2. Summary of the asymptotic theory

2.1. General case

According to Paper I, the general eikonal equation (i.e. local dis-
persion relation) for non-axisymmetric gravito-inertial waves in
a uniformly rotating star is written

ω2 =
f 2k2

z + N2
0

(
k2
⊥ + k2

φ

)
+ f 2 cos2 Θk2

c

k2 + k2
c

, (1)

where ω is the pulsation in the rotating frame; f = 2Ω, where Ω
is the rotation rate; N0 is the Brunt-Väisälä frequency, which is
the upper bound for frequencies of pure gravity waves; kz, k⊥, kφ,
and k are the component parallel to the rotation axis, the com-
ponent perpendicular to the effective gravity (which takes the
centrifugal acceleration into account) in the meridional plane,
the azimuthal component, and the norm of the wave vector k,
respectively; Θ is the angle between the rotation axis and the

direction opposite to the effective gravity; kc is a term that be-
comes dominant near the surface and is responsible for the back
refraction of waves.

Equation (1) was derived in Paper I assuming a polytropic
background stellar model, but in fact, only the surface term is
affected by this assumption. For more realistic background mod-
els, one might want to find a more general form for this term (see
Appendix A.3 of Paper I), but the polytropic version is sufficient
to refract waves back into the star, so we choose to keep it here,
even without assuming a polytropic model for N0.

In the axisymmetric case (kφ = 0) and far from the surface
(where kc can be neglected), the eikonal Eq. (1) can be seen as
a quadratic equation in any meridional component of the wave
vector, say kz. The propagation of waves requires the existence of
real solutions, which means that the discriminant of the equation
has to be positive. This reduces to the condition Γ ≥ 0, where

Γ = −ω4 + ω2( f 2 + N2
0 ) − N2

0 f 2 cos2 Θ. (2)

Near the centre of the star, N0 vanishes, and the condition of
propagation simplifies into ω ≤ f . In the corresponding regime,
called sub-inertial, waves can propagate near the centre of the
star. Besides, in regions where N0 � f , the same condition
yields ω ≥ f | cos Θ|, which means that sub-inertial waves are
trapped in the equatorial region (see Fig. 2b of Paper I).

The equations governing the ray dynamics are derived from
the eikonal Eq. (1) using the relations

dxi

dt
=
∂ω

∂ki
, (3)

dki

dt
= −

∂ω

∂xi
, (4)

where ki = ∂Φ/∂xi is the covariant component of the wave vector
in the natural basis ei = ∂x/∂xi associated with the variable xi (Φ
is the phase of the wave). These relations ensure that the pulsa-
tion ω is invariant along the ray trajectories. In Paper I, we only
investigated the axisymmetric case numerically. An overview
of the nature of the dynamics can be obtained by looking at
Poincaré surfaces of section (PSS). A PSS is the intersection
of all ray trajectories with a given surface, here the equatorial
plane. An example of PSS in the low-frequency regime is shown
in Fig. 1. In particular, one can see that in this regime, the phase
space is mostly made of invariant tori that intersect the PSS on
unidimensional curves. The evolution of the phase space with
increasing rotation shows that these tori result from a smooth
deformation of the non-rotating tori and that they persist even
for large centrifugal deformations. This suggests the existence
of a nearby integrable system.

2.2. Traditional approximation

One may think that such a system can be obtained using the so-
called traditional approximation. This approximation consists in
neglecting the centrifugal deformation and assuming that in the
Coriolis acceleration, only the radial part of the rotation vector
Ωmatters (i.e.Ω ' Ω cos θer, where θ is the colatitude and er the
radial unit vector). This implies the separability of eigenmodes
using the so-called Hough functions in latitude, which reduce to
Legendre polynomials in the non-rotating case (e.g. Lee & Saio
1997).

We investigated the impact of the traditional approximation
on the ray dynamics in Paper I. In particular, the eikonal equation
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Fig. 1. PSS of a polytropic model of star (with a polytropic index µ = 3)
rotating at 84% of its critical velocity ΩK =

√
GM/R3

e , where M is the
mass of the star and Re its equatorial radius, where ω/ f = 0.5.

written in spherical coordinates becomes

ω2 =
f 2 cos2 θ

(
k2

r + k2
c

)
+ N2

0

(
k2
θ + k2

φ

)
k2 + k2

c
, (5)

where kr and kθ are the components of the wave vector in
the spherical coordinates (r, θ). The corresponding condition of
propagation in the traditional approximation is

(ω2 − f 2 cos2 θ)(N2
0 − ω

2) ≥ 0. (6)

This implies that near the centre, sub-inertial waves in the tradi-
tional approximation can only propagate near the rotation axis.
As we have shown in Sect. 4.2 of Paper I, it is possible to sepa-
rate the ray dynamics into radial and latitudinal parts and to find
a second invariant, which allows one to describe the structure of
the phase space analytically.

3. Low-frequency approximation

In this section we search for such an integrable system that
would allow us to find an analytical prescription for the mode
frequencies while taking the full Coriolis acceleration (without
neglecting any component of the rotation vector) into account.
The first step is to use the assumption that the frequency is much
lower than the Coriolis frequency to simplify the eikonal equa-
tion, as explained in Sect. 3.1. Then, one can deduce the exis-
tence of a second invariant from the corresponding ray dynam-
ics, as shown in Sect. 3.2. Finally, the Einstein-Brillouin-Keller
(EBK) quantisation method is used to describe the frequency
spectrum that can be constructed from rays (Sect. 3.3).

3.1. Approximation of the eikonal equation

One of the problems raised by Eq. (1) is that the numerator in-
volves kz and k⊥, the components of the wave vector along ez
and e⊥, which do not form an orthonormal frame. When writ-
ing the eikonal equation in the cylindrical or the spherical frame,
mixed terms with products of different components of k appear.

For example, Eq. (1) becomes in the cylindrical frame

ω2 =

[(
f 2 + N2

0 sin2 Θ
)

k2
z − 2N2

0 sin Θ cos Θkskz

+N2
0 cos2 Θk2

s + N2
0 k2

φ + f 2 cos2 Θk2
c

]
k2 + k2

c
, (7)

where ks is the component of the wave vector in the direction
orthogonal to the rotation axis.

It is possible to get rid of the mixed term by introducing a
new orthonormal frame given by

kz = kβ cosα − kγ sinα, (8)
ks = kβ sinα + kγ cosα, (9)

where the angle α is chosen in such a way that the mixed term
vanishes. This condition is written

N2
0 sin[2(α − Θ)] = f 2 sin 2α. (10)

The eikonal Eq. (7) then becomes

ω2 =

{[
f 2 cos2 α + N2

0 sin2(α − Θ)
]

k2
β + f 2 cos2 Θk2

c

+
[
f 2 sin2 α + N2

0 cos2(α − Θ)
]

k2
γ + N2

0 k2
φ

}
k2 + k2

c
· (11)

In the low-frequency regime defined by ω � f , the first term of
Γ in Eq. (2) can be neglected and the condition of propagation
for axisymmetric waves becomes

N2
0

N2
0 + f 2

cos2 Θ ≤
ω2

f 2 � 1, (12)

which implies that those waves are trapped near the equato-
rial plane. Similarly to what was explained in Sect. 2.1, for
non-axisymmetric waves and when surface effects are neglected,
Eq. (7) can be rewritten as a quadratic equation in kz as follows:(

f 2 + N2
0 sin2 Θ − ω2

)
k2

z − 2N2
0 sin Θ cos Θkskz

+
(
N2

0 cos2 Θ − ω2
)

k2
s +

(
N2

0 − ω
2
)

k2
φ = 0.

(13)

The reduced discrimant of this equation,

∆′ =
(
k2

s + k2
φ

)
Γ − k2

φN2
0 sin2 Θ

(
N2

0 + f 2 − ω2
)
, (14)

has to be positive for kz to be real and for waves to propagate. For
sub-inertial waves, N2

0 + f 2 − ω2 is always positive. The propa-
gation condition ∆′ ≥ 0 thus implies that Γ ≥ 0. This means that
Eq. (12) is also verified for low-frequency, non-axisymmetric
waves and that those are also trapped near the equatorial plane.

We now use this trapping, through Eq. (12), to simplify the
canonical eikonal Eq. (11). Choosing the solution of Eq. (10) for
which kβ = ks at the equator, we finally obtain (see Appendix A)

ω2 =
f 2 cos2 δ

(
k2
β + k2

c

)
+

(
N2

0 + f 2
)

k2
γ + N2

0 k2
φ

k2 + k2
c

, (15)

where δ is defined by

cos2 δ =
N2

0

N2
0 + f 2

cos2 Θ. (16)

A105, page 3 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629637&pdf_id=1


A&A 598, A105 (2017)

0.0 0.2 0.4 0.6 0.8 1.0
r/R

0.0

0.2

0.4

0.6

0.8

1.0

r/
R

Fig. 2. New coordinate system in the meridional plane of a spherical
star of radius R with N0(r) = 4 f exp(−2r/R). Green dash-dotted lines,
red dotted lines, and blue dashed lines are iso-contours of β, δ, and γ, as
defined in Eqs. (17), (16), and (18), respectively.

3.2. Separable ray dynamics

To benefit from the simplified version of the eikonal equation
and write the corresponding equations of the ray dynamics, one
first has to define the coordinate system (β, γ) associated with
the components kβ and kγ of the wave vector. Using Eqs. (8)
and (9) and the fact that in a natural coordinate system, one has
ki = ∂Φ/∂xi, where Φ is the phase of the wave, we write

dβ = ds sinα + dz cosα, (17)
dγ = ds cosα − dz sinα. (18)

These new coordinates are illustrated in Fig. 2.
When close to the equator, we observe that surfaces of con-

stant γ are close to those of constant δ. Besides, Eq. (15) is writ-
ten in terms of δ. Thus, we choose to replace kγ by its expression
as a function of kδ, which is the natural component of the wave
vector associated with δ. With some approximations explained
in Appendix B, one can write

kγ '
kδ
ζ
, (19)

where ζ is defined by

ζ =
r
√

N2
0 + f 2

N0
· (20)

Similarly, kφ can be expressed as a function of the natural com-
ponent of the wave vector associated with φ, that is

kφ =
m
s
, (21)

where m is the number of nodes in the azimuthal direction. Since
sin θ ' 1 near the equator, one can further write

kφ '
m
r
· (22)

The final eikonal equation expressed in the coordinate system (β,
δ) is then

ω2 =
f 2 cos2 δ

(
k2
β + k2

c

)
+

(
N2

0 + f 2
) k2

δ+m2

ζ2

k2 + k2
c

· (23)

To go further, we make the coarse approximation that N0, kc,
and ζ depend only on β. It is rigourously true only in the non-
rotating case, but because waves are trapped near the equatorial
plane, the variations of those quantities with δ may be neglected.
Equation (23) then yields

dβ
dt

=

(
f 2 cos2 δ − ω2

)
kβ

ω(k2 + k2
c )

, (24)

dkβ
dt

=

{[
(N2

0 )′ζ2 − (ζ2)′
(
N2

0 + f 2 − ω2
)] k2

δ+m2

ζ4

+(k2
c )′

(
f 2 cos2 δ − ω2

)}
ω(k2 + k2

c )
, (25)

dδ
dt

=

(
N2

0 + f 2 − ω2
)

kδ

ωζ2(k2 + k2
c )

, (26)

dkδ
dt

=
f 2 sin δ cos δ

(
k2
β + k2

c

)
ω(k2 + k2

c )
, (27)

where ′ denotes the derivative with respect to β.
We deduce from these equations that the quantity

χ =
N2

0 + f 2 sin2 δ

ζ2(k2 + k2
c )

(28)

is an invariant of the dynamics (see Appendix C). The existence
of this second invariant (in addition to the pulsation ω) proves
that the considered system is integrable.

The new invariant allows us to write the components of the
wave vector as functions of the two invariants and of the spatial
coordinates,

k2
β + k2

c =
N2

0 + f 2 − ω2

ζ2χ
, (29)

k2
δ =

ω2 − f 2 cos2 δ

χ
− m2. (30)

The system is thus separable in β and δ in the sense that spatially,
kβ (resp. kδ) depends only on β (resp. δ).

Since kβ = kr on the equatorial plane, Eq. (29) can be used to
compute analytically the imprints of the rays considered here on
PSS, such as those presented in Paper I. As shown in Fig. 3, the
low-frequency approximation (green dashed line) works well in
the sub-inertial regime, including near the centre. Surprisingly,
it also works rather well in the super-inertial regime far from
large island chains and chaotic regions, as illustrated in Fig. 4.
However, when rotation increases, the low-frequency approxi-
mation becomes less accurate (see Fig. 5). This is likely be-
cause the dependence of structure quantities, such as N0 and
kc, on δ can no longer be neglected when the star becomes
fully two-dimensional (see for example models described by
Espinosa Lara & Rieutord 2013).

Even if looking at PSS is insightful, it is not sufficient to
test the validity of the low-frequency approximation. To do so,
one may check how the new invariant is conserved in the full
ray dynamics. This gives the following results: the invariant is
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Fig. 3. PSS of a polytropic model of star (with a polytropic index
µ = 3) rotating at 38% of its critical velocity with ω/ f = 0.8. The
green dashed and blue dash-dotted lines are imprints of trajectories in
the low-frequency approximation and in the traditional approximation,
respectively.

Fig. 4. Same as Fig. 3, but with ω/ f = 3.1.

typically conserved up to 10% in most of the star, except in a
very thin region near the surface and in a small region between
the core, where N0 is much smaller than f , and the envelope,
where it is much larger.

3.3. From rays to modes

Modes are formed by positive interference of propagating waves,
which are described here by rays. To interfere positively with it-
self, the phase of a wave has to vary by a multiple of 2π after
going back to the same point. This is formalised by the quanti-
sation condition∫
C

k · dx = 2π
(
p +

ε

4

)
, (31)

where C is a closed curve formed by a ray trajectory, p and ε are
integers, and ε is the Maslov index accounting for phase shifts
induced by boundaries (see for example Lignières & Georgeot
2009, and references therein).

For N-dimensional integrable systems, N conditions can
be obtained using N independent closed curves, which do not

Fig. 5. Same as Fig. 3, but with a rotation of 84% of the critical velocity
and ω/ f = 0.5.

Cβ
Cδ

Fig. 6. Contours used for the quantisation. The black dashed lines cor-
respond to an example of limits of the domain of propagation. The blue
dotted line represents the contour Cβ and the red dash-dotted line repre-
sents Cδ.

necessarily correspond to rays. Typically, one can choose curves
defined by varying one coordinate and fixing the others. In our
case, it is particularly convenient to vary β in the equatorial
plane and δ along the rotation axis, as illustrated in Fig. 6.
Equation (31) then yields∫
Cβ

kβdβ = 2π
(
ñ +

1
4

)
, (32)∫

Cδ

kδdδ = 2π
(
˜̀ +

1
2

)
, (33)

where ñ and ˜̀ are non-negative integers that are related to the
radial order and to the degree of the mode, respectively. By anal-
ogy with the non-rotating case, we have ñ = n−1 and ˜̀ = `µ−1,
where n is the radial order and `µ is the number of nodes in the
latitudinal direction.

The contours Cβ and Cδ are closed curves, which means that
the integrals in Eqs. (32) and (33) can be split into two identical
parts. The symmetry of Cδ with respect to the equatorial plane
implies that the integral can be further split into four identical
parts. Using Eqs. (29) and (30), one obtains

∫ rs

0

√
N2

0 + f 2 − ω2

ζ2χ
− k2

cdr = π

(
ñ +

1
4

)
, (34)

∫ π
2

δc

√
ω2 − f 2 cos2 δ

χ
− m2dδ =

π

2

(
˜̀ +

1
2

)
, (35)

A105, page 5 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629637&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629637&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629637&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629637&pdf_id=6


A&A 598, A105 (2017)

where rs is the radius where kβ vanishes and δc is the limit value
of δ given by

δc = arccos

√
ω2 − m2χ

f
· (36)

For δc to exist, ω2 −m2χ has to be positive. In others words, one
has the condition

|m| ≤
ω
√
χ
· (37)

The quantity λ = ω/
√
χ, which is an invariant, is the equivalent

in the rotating case of L = ` + 1/2, where ` is the total number
of nodes on the sphere.

In the general case, for given ñ, ˜̀, and m, Eqs. (34) and (35)
form a non-linear system of equations for ω and χ. It is possible,
however, to simplify it. First, in the low-frequency regime, ω can
be neglected in Eq. (34), and rs can be considered independent
of ω. Besides, if one considers that kc has a negligible impact on
the value of the integral, Eq. (34) yields

√
χ =

∫ rs

0
N0
r dr

π
(
ñ + 1

4

) · (38)

Using a Taylor expansion in
√
ω2 − m2χ/ f = cos δc, Eq. (35)

can be rewritten

ω2 = m2χ + (2 ˜̀ + 1) f
√
χ. (39)

Expressed as a function of λ, one obtains

λ2 = (2 ˜̀ + 1)λν + m2, (40)

where ν = f /ω is the so-called spin factor. This equation is very
similar to what Townsend (2003) derived within the traditional
approximation (see his Eqs. (29) and (31)). However, we miss
one term, mν, because the term that accounts for Rossby and
Kelvin waves has not been retained when deriving the eikonal
equation in Paper I. This means that the present study cannot
describe the corresponding modes.

Combining Eqs. (38) and (39) yields

ω2 =
(2 ˜̀ + 1) f

∫ rs

0
N0
r dr

π
(
ñ + 1

4

) + m2

(∫ rs

0
N0
r dr

)2

π2
(
ñ + 1

4

)2 · (41)

The low-frequency assumption is verified when the two terms
on the right-hand side of Eq. (41) are much smaller than f 2. This
implies that both 2 ˜̀+1 and m are much smaller than the quantity
π f (ñ+1/4)/

(∫ rs

0 N0dr/r
)
, i.e. the radial order is much larger than

the non-radial orders.

4. Period spacing

For non-axisymmetric modes, the observed frequency differs
from the eigenfrequency computed in the rotating frame. It is
given by the relation

ωobs = ω − mΩ. (42)

Moreover, gravity modes are usually considered in terms of the
observed period

Π =
2π
ωobs
· (43)

In general, the period of the mode characterised by the three
numbers ñ, ˜̀, and m is thus

Πñ ˜̀m =
2π√√√√√ (2 ˜̀ + 1) f

∫ rs

0
N0
r dr

π
(
ñ + 1

4

) + m2

(∫ rs

0
N0
r dr

)2

π2
(
ñ + 1

4

)2 − mΩ

· (44)

4.1. Axisymmetric modes

We first consider the axisymmetric case. Equation (44) simplifies
into

Πñ ˜̀ =

√√√√
π3

(
ñ + 1

4

)(
˜̀ + 1

2

)
Ω

∫ rs

0
N0
r dr
· (45)

The corresponding spectrum has regularities, but these are sig-
nificantly different from the non-rotating case. In particular, Πñ ˜̀

is proportional to
√

ñ + 1/4, which means that the period spac-
ing ∆Π = Πñ+1 ˜̀ − Πñ ˜̀ is not constant. For large values of ñ, one
can instead write

∆Π '
π3/2√

2
(
ñ + 3

4

)
(2 ˜̀ + 1)Ω

∫ rs

0
N0
r dr
· (46)

At a given ˜̀, the observation of period spacings, which scale
as 1/

√
ñ + 3/4, would allow one to determine the value of the

product Ω
∫ rs

0 N0dr/r.

4.2. Non-axisymmetric modes

The general expression given in Eq. (44) is not usable as such for
giving simple prescriptions to interpret observations. However,
in the low-frequency regime, for non-zero m, ω is much smaller
than mΩ. Using a Taylor expansion of Eq. (44) in ω/Ω, it yields

Πñ ˜̀m ' −
2π
mΩ


1 +

√√√√√ (2 ˜̀ + 1) f
∫ rs

0
N0
r dr

π
(
ñ + 1

4

) + m2

(∫ rs

0
N0
r dr

)2

π2
(
ñ + 1

4

)2

mΩ


·

(47)

When computing the period spacing, the dominant term cancels
out, and one obtains

∆Π '
2
∫ rs

0
N0
r dr

mΩ
(
ñ + 3

4

)2

1 + σ
2

√
1 + σ

, (48)

where

σ =
(2 ˜̀ + 1) fπ

(
ñ + 3

4

)
m2

∫ rs

0
N0
r dr

�
2 ˜̀ + 1

m
· (49)

Only modes with low ˜̀ and m are likely to be visible using as-
teroseismology. As a consequence, we can expect σ to be much
larger than one. This means that the dependence of ω in m can
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be completely neglected as a first approximation. Thus, Eq. (48)
becomes

∆Π '
2

m2

√√√√√(
˜̀ + 1

2

)
π
∫ rs

0
N0
r dr

Ω3
(
ñ + 3

4

)3 · (50)

This time, for given ˜̀ and m, the spacings scale as (ñ + 3/4)−3/2,
and allow one to measure the ratio

(∫ rs

0 N0dr/r
)
/Ω3.

4.3. Potential targets

The laws we derived are a priori valid when the mode frequen-
cies are much lower than the rotation frequency of the star.
Therefore, such modes and the corresponding period spacings
are more likely to be observed in rapidly rotating stars ex-
hibiting g modes, such as γ Doradus (Van Reeth et al. 2016),
SPB (Pápics et al. 2012; Moravveji et al. 2016), or Be stars
(Neiner et al. 2012). However, to obtain quantitative information
about the domain of validity of these expressions, it is necessary
to compare them with full numerical computations of modes.

5. Comparison with the traditional approximation

For axisymmetric modes, period spacings similar to those given
in Eq. (46) can be derived within the traditional approximation
in the limit of low frequencies (using e.g. Eq. (29) of Townsend
2003). This suggests that the traditional approximation is valid
in this regime. However, the traditional approximation fails to
describe the propagation of waves near the centre of stars, as al-
ready mentioned in Sect. 2.2. In our new approximation, in con-
trast, rays do propagate near the centre because in the eikonal
Eq. (15) the factor N2

0 in front of k2
θ in Eq. (5) is replaced by

N2
0 + f 2 (in front of k2

γ). This difference also appears clearly
when looking at the imprint of trajectories in the two approxi-
mations on PSS (see Fig. 3). Both approximations qualitatively
agree with the full dynamics far from the centre, but only the
low-frequency approximation (green dashed line) also correctly
describes the behaviour near the centre, where the traditional ap-
proximation (blue dash-dotted line) fails.

As seen in Sect. 3.2, the new invariant is also much better
conserved in computations using the full dynamics than the in-
variant of the traditional approximation tested in Paper I. The
latter can vary by several orders of magnitude near the bound-
aries of the resonant cavity, which are not well reproduced by
the traditional approximation, and up to a factor two in the bulk
of the resonant cavity.

Finally, the traditional approximation is limited to the spher-
ical geometry, whereas our formalism is not, allowing us to ac-
count for the centrifugal deformation of stars.

6. Discussion and conclusions

Sub-inertial modes are strongly affected by rotation in the sense
that their domain of propagation is limited to a region around
the equatorial plane. Thanks to the present study, we are now
able to extract signatures of rotation when its effects are impor-
tant. We provide two different period spacings with two different
scalings in I =

∫ rs

0 N0dr/r and Ω: one in (IΩ)−1/2 and the other
in (I/Ω3)1/2. By combining the two, it could be possible to de-
termine stratification (through the integral I) and rotation at the
same time, thus constraining mixing processes in rapidly rotating

stars (see Moravveji et al. 2016). Besides, for stars whose fun-
damental parameters are known, the profile of the Brunt-Väisälä
frequency can be obtained using stellar models. Thus, only one
of the scalings would be needed to determine the rotation. For
example, this is performed within the traditional approximation
for a sample of γ Doradus stars by Van Reeth et al. (2016).

The new predictions for the period spacings found in this
paper have been obtained thanks to a certain number of ap-
proximations. In particular, the derivation relies on the assump-
tion that the mode frequencies are much lower than the rota-
tion frequency, and we used the fact that the considered modes
are trapped near the equator in this regime. However, our model
cannot describe some low-frequency modes, such as Rossby and
Kelvin modes, because of the form of our eikonal equation (see
Paper I). In addition, we approximated N0, kc, and ζ as functions
of the pseudo-radial coordinate β alone. This is probably the lim-
iting factor, since centrifugal deformation induces a stronger de-
pendence of the structure on the latitude when rotation increases
towards the critical velocity. To test the quantitative influence of
the approximations we made in this study on the domain of va-
lidity of our predictions, we need to confront these predictions
to numerical mode calculations, which will be peformed in a
forthcoming paper. Nevertheless, in this study we verified that
the approximated dynamics is in qualitative agreement with the
asymptotic theory proposed in Paper I by comparing PSS and
verifying the conservation of the new invariant. We found that
the full ray dynamics is well approximated up to moderate rota-
tion rates (such as 40% of the critical velocity).

In the super-inertial regime, our tests suggest that the approx-
imation also gives good results. However, one has to be cau-
tious because the PSS we showed correspond to the intersection
of trajectories with the equatorial plane. There is no evidence
that the approximation correctly describes the dynamics near the
poles. Besides, in this regime, prescriptions for island modes and
chaotic modes are also needed.

Because it takes the full Coriolis and centrifugal accelera-
tions into account, the new approximation appears to be more
accurate than the traditional approximation, especially near the
centre, where it allows for the propagation of waves.

A next step, to go further, would be to introduce differen-
tial rotation. This would modify the domain of propagation of
the waves and the associated seismic diagnoses (Mathis 2009;
Mirouh et al. 2016). A more general version of the asymptotic
theory of Paper I, including the effects of differential rotation, is
being built. If the corresponding ray dynamics also shows inte-
grable structures at low frequency, a generalised version of the
low-frequency approximation presented in this paper might be
used to derive seismic diagnoses such as period spacings, thus
adding new constraints on differential rotation of stars.
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Appendix A: Simplification of the canonical eikonal
equation

The aim of this Appendix is to simplify Eqs. (11) into Eq. (15).
First, Eq. (10) can be rewritten

tan 2α =
2N0 sin Θ cos Θ

2N2
0 cos2 Θ −

(
N2

0 + f 2
) , (A.1)

which, using Eq. (12), becomes

tan 2α ' −2
N2

0

N2
0 + f 2

sin Θ cos Θ. (A.2)

This shows that tan 2α is much smaller than one, and given the
fact that kβ = ks at the equator, that α is close to π/2. The identity

tan 2α =
2 tanα

1 − tan2 α
(A.3)

can thus be simplified into

tan 2α ' −
2

tanα
· (A.4)

Finally, we obtain

sinα ' 1 and cosα '
N2

0 sin Θ cos Θ

N2
0 + f 2

· (A.5)

Consequently, we have

cos(α − Θ) ' sin Θ and sin(α − Θ) '
f 2 cos Θ

N2
0 + f 2

· (A.6)

Equation (11) then yields

ω2 =

[
k2
β

f 2N2
0 cos2 Θ

(N2
0 + f 2)2 + k2

γ

] (
f 2 + N2

0

)
+ N2

0 k2
φ + f 2 cos2 Θk2

c

k2 + k2
c

, (A.7)

where we used the fact that f 2 + N2
0 sin2 Θ ' f 2 + N2

0 . Besides,
in outer layers where kc is dominant, we also expect N0 to be
much larger than f , and thus cos Θ ' cos δ in the last term of the
numerator. This gives Eq. (15), as expected.

Appendix B: Relation between kγ and k δ
Using Eqs. (18) and (A.5), one can write

dγ '
N2

0 sin Θ cos Θ

N2
0 + f 2

ds − dz. (B.1)

Near the equator, θ and Θ are expected to be close to each other.
In spherical coordinates, Eq. (B.1) becomes

dγ ' −
f 2

N2
0 + f 2

cos θdr + r sin θdθ. (B.2)

We now distinguish between two cases. First, near the centre, N0
is much smaller than f , and thus

dγ ' −d(r cos θ). (B.3)

The definition of δ in Eq. (16) yields

dγ ' −d(ζ cos δ), (B.4)

where ζ is defined by Eq. (20) and is nearly constant near the
centre, since N0 scales as r. It follows that

dγ ' ζdδ, (B.5)

where we used the fact that sin δ ' 1.
Second, when N0 is much larger than f ,

dγ ' r sin θdθ. (B.6)

Using again Eq. (16) and the fact that
√

N2
0 + f 2/N0 is almost

constant in the considered regime, one can write

− sin θdθ ' −

√
N2

0 + f 2

N0
dδ, (B.7)

which implies Eq. (B.5), as before.
In both regimes, we thus have

kγ =
∂Φ

∂γ
=
∂Φ

∂δ

∂δ

∂γ
'

kδ
ζ
, (B.8)

as stated in Eq. (19).

Appendix C: Derivation of the new invariant

We search for an invariant that makes the problem separable in
β and δ. This invariant then can be expressed as a function of δ
and kδ only χ(δ, kδ). The fact that χ is invariant is written

∂χ

∂δ

dδ
dt

+
∂χ

∂kδ

dkδ
dt

= 0. (C.1)

This implies that χ is constant along the characteristics given by

dδ
dδ
dt

=
dkδ
dkδ
dt

· (C.2)

Using Eqs. (26) and (27), one obtains after simplifications

sin δ cos δdδ

sin2 δ +
N2

0
f 2

=
kδdkδ

ζ2
(
k2
β +

k2
δ

ζ2 + k2
c

) · (C.3)

Assuming that N0, ζ and kc do not depend on δ, the integration
of this equation yields

ln
sin2 δ +

N2
0

f 2

 = ln
ζ2

k2
β +

k2
δ

ζ2 + k2
c

 + C, (C.4)

where C is constant.
If C is an invariant, any function of C is so. In particular, we

choose χ as defined in Eq. (28). To verify that χ really is invari-
ant, one must verify that it can also be expressed as a function of
β and kβ only, which requires

∂χ

∂β

dβ
dt

+
∂χ

∂kβ

dkβ
dt

= 0. (C.5)

This is easily carried out using Eqs. (24) and (25).
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