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Passive guided waves tomography for structural
health monitoring
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2IEMN UMR CNRS 8520, Université Polytechnique Hauts-de-France, F-59313 Valenciennes cedex 9,

France

In this paper is presented a baseline-free quantitative method for imaging corrosion flaws in
thin plates. It only requires an embedded guided wave sensor network used in a fully passive
way, i.e. without active emission of waves. This method is called passive guided waves to-
mography. The aim of this development is the use of this method for the Structural Health
Monitoring (SHM) of critical structures with heavy limitations on both sensor’s intrusiveness
and diagnostic’s reliability because it allows to use sensors that cannot emit elastic waves
such as Fiber Bragg Gratings (FBGs) which are less intrusive than piezoelectric transduc-
ers (PZTs). The idea consists in using passive methods in order to retrieve the impulse
response from elastic diffuse fields - naturally present in structures - measured simultane-
ously between the sensors. In this paper, two passive methods are studied: the ambient
noise cross-correlation and the passive inverse filter. Once all the impulse responses between
the sensors are retrieved, they are used as input data to perform guided wave tomography.

c©2020 Acoustical Society of America. [http://dx.doi.org/10.1121/1.5128332]
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I. INTRODUCTION

In most industries such as aeronautic, space, railway,
shipbuilding, petrochemical or nuclear industry a failure
can create a disaster, and thus asserting the structural
integrity is critical. Hence, maintenance operations have
a great impact on both costs and security.

The Structural Health Monitoring (SHM) consists in
acquiring and analyzing data from sensors embedded in
a structure in order to evaluate its health (SAE Inter-
national, 2013). It allows to perform either scheduled
maintenance, and thus to anticipate potential failures,
or, in the long term, SHM-triggered maintenance. To
that end, a SHM system must be able to provide a tech-
nical diagnostic with several levels of information on the
flaw - detection, localization, classification, estimates of
size - and then a technical prognostic in order to estimate
the remaining lifetime of the structure.

Various defects needing to be taken care of exists in
industrial applications. These defects can appear dur-
ing the fabrication or during the life of the structure.
The SHM generally addresses the issue of the inspection
during the operational life of the structure. The flaws
can either appear instantaneously or slowly progress over
time. This paper deals with the latter kind of flaws such
as corrosion or erosion.

A physical way to interrogate large and thin struc-
tures such as aircraft fuselages, pipes or ship hulls can
be offered by guided elastic waves emitted and received
by a network of piezoelectric transducers (PZTs) (Yu and

a)tom.druet@cea.fr

Giurgiutiu, 2008). Generally, the SHM methods based on
elastic guided waves use a baseline. This baseline is com-
pared to the current state by performing, for instance, a
subtraction between signals in order to highlight the con-
tribution of the defect. If the algorithms do not take into
account external phenomena, these methods with a base-
line are usually not robust to changes of environmental
conditions. This may cause false alarms, which is very pe-
nalizing for SHM systems (Croxford et al., 2007). Many
methods aim at correcting the effects of the changes of en-
vironmental conditions (Croxford et al., 2010; Liu et al.,
2015; Putkis and Croxford, 2013) but, for now, they suf-
fer from performance problems or seem to be impossible
to implement in real structures.

In order to avoid the use of a baseline, it has been
decided to increase the number of sensors used compared
to classical solutions (Michaels, 2008; Quaegebeur et al.,
2014; Zhao et al., 2007). This allows to get more informa-
tion about the structure inspected, and thus to avoid the
need of a baseline. Guided wave tomography algorithms
are used here to that end. Moreover, this kind of algo-
rithms are able to not only localize but also quantify the
severity of defects consisting in a loss of thickness such as
corrosion or erosion. However, increasing the number of
sensors has a cost, particularly in terms of intrusiveness.
A response to that issue could be to use undersampled
data (Druet et al., 2019; Shi and Huthwaite, 2018) but,
for now, the number of sensors’ reduction achieved is of
a factor two to four with respect to the optimal num-
ber. This reduction seems to be not enough for some
industrial sectors such as aeronautic industry which has
a tremendous added mass constrain.
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Another interesting possibility is to design a guided
wave based SHM system with minimal intrusiveness
thanks to the use of fiber Bragg gratings (FBGs). How-
ever, these sensors cannot emit waves, they can only work
in a passive way. This means that passive methods are
needed to retrieve the response between two sensors. In-
deed, in the past years researchers have shown that it is
possible to use ambient structure-borne elastic noise in-
stead of actively emit the waves in the structure in order
to retrieve the impulse response of the medium between
two sensors (Sabra et al., 2007a). Moreover, it has been
shown in (Druet et al., 2018) that passive guided wave
measurements are possible thanks to the coupling be-
tween FBGs and passive methods. In this paper is shown
how to perform passive tomography by coupling guided
wave tomography adapted to SHM framework (Druet
et al., 2019) with passive methods. Finally, the passive
methods have several other advantages in the context of
SHM (Chehami et al., 2014; Sabra et al., 2008). First,
since it is not necessary to inject energy in the structure
for wave emission, the power consumption of the SHM
system can be significantly reduced. This could be of
crucial importance for embedded systems with limited
or no access to power sources like aircraft or underwa-
ter monitoring systems. Then, the complexity of both
the electrical cabling and the embedded electronics are
reduced, since no emission circuitry is necessary.

This paper shows in a first section the methodology
to perform passive guided wave tomography. Two passive
methods are presented: the first one is called “ambient
noise cross-correlation” and the second one is called “pas-
sive inverse filter”. Then some keys presented in (Druet
et al., 2019) to adapt guided waves tomography to the
SHM framework are recalled. Finally, comparisons be-
tween active and passive signals are presented and pas-
sive guided wave tomographies for both passive methods
are studied for an ambient noise respecting more or less
the equipartition hypothesis.

II. METHODS

In this section is presented how to perform a passive
guided wave tomography. First the basis of the two pas-
sive methods used in this paper are given and then the
main steps of guided wave tomography are recalled.

A. Passive methods: from cross-correlation to passive inverse

filter

The first step of any imaging algorithm is the data ac-
quisition. This step usually consists in successively emit-
ting a wave with a sensor and measuring the signal with
all others. These signals are called in the following ac-
tive signals. Another way to obtain equivalent data is to
measure the ambient noise at all sensors simultaneously
and then process it to reconstruct the data used in the
imaging algorithm. This method is called in the follow-
ing passive acquisition and the corresponding signals are
called passive signals.

A few algorithms exist to retrieve the data from the
ambient noise. The most known is the ambient noise
cross-correlation (Lobkis and Weaver, 2001), which has
been applied in various domains (Campillo and Paul,
2003; Davy et al., 2016; Duvall Jr et al., 1993; Lobkis and
Weaver, 2001; Roux et al., 2004; Sabra et al., 2007a,b).
This method is fully justified in many cases, but some hy-
potheses are needed concerning the noise spatial repar-
tition, and it is well known that the quality of the re-
construction is strongly linked to the fulfilment of these
hypotheses. To increase the quality of the reconstruc-
tion, it is then possible to use the correlation of the coda
of the noise cross-correlation (Stehly et al., 2008): when
many sensors are involved in the acquisition, this method
enhance the spatial distribution of the signal by using the
coda of all reconstructed signals.

Another possibility is the passive inverse filter (Gal-
lot et al., 2012), which is well suited when many receivers
are used as in the case of the guided-wave tomography.
As the passive inverse filter is based on the inversion,
after regularization, of the noise response matrix, it is
a global process, which reconstructs all passive signals
from all measured ambient noises simultaneously. In this
section will be described the passive inverse filter. To
the authors’ knowledge, a proof of this method is still an
open subject which would give interesting insights on its
necessary hypotheses. The description below gives the
idea of the method.

In all the following, we consider linear acoustic waves.
For a given source f , the acoustic field ϕ in the domain
Ω ⊂ Rd, d ∈ {2, 3}, is solution to

∂2ϕ

∂t2
− 1

c2
∆ϕ = f, in Ω× R, (1)

to which is added relevant initial and boundary condi-
tions.

First of all, let us start with a short recall of the
ambient noise cross-correlation. Consider a set of point
sensors placed at (xj), j = 0, . . . , N − 1. The empirical
cross-correlation of the signals u measured over the time
interval [0, T ], T > 0, at xi and xj is

C(xi,xj , t;T ) =
1

T

∫ T

0

u(xi, τ)u(xj , τ + t) dτ . (2)

Suppose now that the source term f is an unknown noise
source, which is a space-time stationary random field that
is also delta correlated in space, which means that, for
all t, τ > 0 and points x and y, the following relation
holds

〈f(x, t)f(y, τ)〉 = K(x)δ(x− y)F (t− τ), (3)

where 〈·〉 denotes the ensemble average, K is a func-
tion characterizing the spatial distribution of the noise
sources and F is the normalized time correlation func-
tion, its Fourier transform being linked to the spectral
energy density of the ambient noise. A common further
assumption to be able to recover active signals from pas-
sive acquisitions using the cross-correlation is then that
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the ambient noise is well distributed in space, that is
K ≡ 1 over a suitable subdomain of Ω, typically all Ω.
This last assumption combined with (3) is often refered
to as the equipartition hypothesis. It can then be proved
(Garnier and Papanicolaou, 2016) that

lim
T→+∞

dC

dt
(xi,xj , t;T ) ∝ F ∗ [G(xi,xj , ·)−G(xi,xj ,−·)] (t),

(4)

where ∗ denotes the convolution operation in time and
G(·,xj , ·) is the Green function of the problem, that is
the solution of (1) with f = δ(·−xj). An interesting fact
about the cross-correlation is its link to the time reversal
operator (Gallot, 2010): consider the Fourier transform
of the limit of the empirical cross-correlation (2) as T
goes to infinity,

Ĉ(xi,xj , ω) = û(xi, ω)û(xj , ω). (5)

For a given frequency ω, define the cross-correlation ma-
trix C as

Cij = Ĉ(xi, xj , ω). (6)

This matrix is then equal to the time-reversal operator,
which would equal to uu∗, where u is the signal vector,
the coefficients of which are the Fourier transform of the
measurements at each sensor. Consider now that P noise
acquisitions are done or equivalently if T is big enough,
that the acquired ambient noise can be cut into P parts,
P > N . Instead of u, consider U which is a N×P matrix
containing all noise acquisitions. The link between the
cross-correlation matrix and the time-reversal operator
holds:

C = UU∗. (7)

This enables the introduction of the passive inverse fil-
ter: instead of considering UU∗, the passive inverse filter
consists in right-multiplying U by a regularized inverse
of U , namely Ũ−1. More precisely, the regularization is
done thanks to a singular value decomposition, in which
only the biggest singular values are kept, which will be ex-
plained at the end of this section. If we denote U = VDW
the singular value decomposition of U , where V and W
are unitary matrices containing the left and right sin-
gular vectors and D is a diagonal matrix containing the
singular values of U σi sorted in descending order, then

UŨ−1 = V

(
IM 0

0 0

)
V∗, (8)

where M < N is the number of singular values kept after
regularization. Again, this operator is close to the time-
reversal one:

UU∗ = VDNV∗, (9)

where DN is a N × N diagonal matrix of coefficients
|σi|2. Hence, the passive inverse filter can be seen as

a regularized version of the cross-correlation (Seydoux
et al., 2017).

The difference between the two operators is the rel-
ative weight given to each singular direction. Whereas
the time-reversal operator gives a bigger weight to the
first singular directions, with a quick decrease due to the
squared singular values, the passive inverse filter gives
the same weight to all selected singular directions, which
seems to enable the extraction of pieces of information
from the ambient noise which would be neglected oth-
erwise. In the same way, the normalization at each fre-
quency implies that they all have the same weight in the
final reconstructed signal, which induces a whitening of
the reconstructed signal. The difficulty is then to cor-
rectly choose the singular directions of interest, which
will be kept in the regularized inverse of U . To do so, a
classic technique is to consider the variations of the mod-
ulus of the singular values: a usual behavior consists in
a fast decay followed by a slower decay. The point of the
change of slope is a good truncation candidate (Gallot
et al., 2012) and will be used in our experimental study.

B. Guided wave tomography

In this article, the used guided wave tomography al-
gorithm is based on the original iterative Hybrid Algo-
rithm for Robust Breast Ultrasound Tomography (HAR-
BUT) (Huthwaite and Simonetti, 2013) but adapted to
the heavy constraints imposed by the SHM framework.
This adaptation has been detailed in a previous work
(Druet et al., 2019). The same algorithm is used here
to produce images of corrosion-like defects but this time
using passive data. In this section are recalled the main
elements of the imaging algorithm and a regularization
method called “variable relaxation” which help to im-
prove significantly the quality of the image when under-
sampled data are used.

In all the following, a single mode is considered. The
wavenumbers and velocities used in this section are im-
plicitly those of this mode. The iterative version of HAR-
BUT includes the following principal steps. In order to
initialize the algorithm, a time-of-flight tomography im-
age of the plate thickness is computed in order to fulfill
the Born approximation in the subsequent diffraction to-
mography step. For the time-of-flight tomography, the
structure to be imaged is represented at the position x
by the scalar slowness field s(x) = 1/vG(x), where vG is
the group velocity of the considered mode. To represent
the slowness s(x), we project it on a finite basis. The
projection of the scalar slowness s̃(x) thus reads

s̃(x) =
∑
i,j

Sijβij(x), (10)

where β is a 2D B-spline basis and Sij is the coefficient
associated to the B-spline βij . The slowness is then linked
to the time-of-flight τk→l for a trajectory γk→l between
the emitter k and the receiver l:

τk→l =
∑
i,j

SijAijkl, (11)
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where Aijkl =
∫
γk→l

βij(γ) dγ is the contribution of the

basis element βij to the time-of-flight τk→l. The image
is then updated thanks to an absolute estimator based
on the difference between the data τdefectk→l and the com-

puted time-of-flight τ
(n−1)
k→l on the (n − 1)th map. The

nth iteration of the time-of-flight tomography step reads:

S
(n)
ij = S

(n−1)
ij + δkS

(n)
ij , where δkS

(n)
ij is the correction

applied to the coefficient Sij and is computed according
to the following formulation:

δkS
(n)
ij =

1

Nijk

∑
l

(
Wijkl

τdefectk→l − τ
(n−1)
k→l

λk→l

)
, (12)

where λk→l is the trajectory’s length, Wijkl is a weight-
ing of the path, consisting of Aijkl in the simplest case
but usually including a Hamming window to avoid side
effects, and the normalization factor Nijk reads: Nijk =∑
lAijkl.

Once the time-of-flight tomography image is com-
puted, it becomes the first guess of an iterative diffrac-
tion tomography process. The image is then represented
thanks to an object function O(x), which reads

O(x) = k(x)2 − k20 = k20

((
v0
v(x)

)2

− 1

)
, (13)

where k0 is the background wavenumber, v0 the back-
ground phase velocity and v(x) the phase velocity at the
position x, which is linked to the thickness thanks to
the dispersion curves when the algorithm has converged.
One can show (Huthwaite, 2016a) that O(x) reads

O(x) =

π∫
−π

π∫
−π

ϕ̂sk0
(xl)

G0(xl;x)G0(x;xk)
W(θk, θl) dθk dθl,

(14)
where ϕ̂s is the scattered field, G0 the Green’s func-
tion of the unperturbed domain, W a weighting function
coming from a variable change, xk, respectively xl, the
position of the emitter k, respectively the receiver l, and
θi, i ∈ {k, l}, the angles of the emitter and receiver. Note
that it is possible (Huthwaite, 2016a) to replace scat-
tered field ϕ̂s by the total field ϕ̂. Iterative HARBUT
consists in computing iteratively the correction Oδ(x),
which is added to the previous estimation Ob(x) so that
O(x) = Ob(x) + Oδ(x).

More details about original HARBUT can be found
in (Huthwaite and Simonetti, 2013) but also in (Huth-
waite, 2014, 2016a,b,c; Huthwaite et al., 2013) for many
following developments. Concerning the adaptations to
the constraints imposed by the SHM framework which
are used also in this paper, they can be found in (Druet
et al., 2019). We recall here one of these adaptations
which concern the regularization called “variable relax-
ation” and which allows to limit the amplification of spa-
tial fluctuations at each iteration due to the noise and the
lack of sensors, while still allowing us to accurately re-
construct localized defects above the noise threshold. Let

eij and ẽ be two parameters depending on the used algo-
rithm. More precisely, let eij be the difference between
the computed thickness and the pristine one denoted ẽ for
the time-of-flight tomography, and let eij be the object
function O and ẽ = −min O for the diffraction tomogra-
phy. Let e′ij be the new considered value at the position
ij. The “variable relaxation” is defined as follows:

e′ij =


eij(

1 + 1
z2ij

)α
2

if |eij | < γβẽ,

eij otherwise,

(15)

with β a threshold depending on the amplitude fluctu-
ation of the noise level of the image, γ a constant de-
termining the relaxation limit, α a constant defining the
strength of the regularization and zij reads

zij =


|eij |
βẽ

if |eij | < βẽ,

|eij |
1
2βẽ

[
1− cos

(
π
|eij |−γβẽ
(1−γ)βẽ

)] if βẽ ≤ |eij | < γβẽ.

(16)

As explained in (Druet et al., 2019), we chose to take
γβ = 1, β = 0.1, α = 4 for the time-of-flight tomography
and α = 2 for the diffraction tomography.

III. RESULTS

In this section, we present experimental results on
passive tomography. First, the experimental setup is
presented. Then the differences between the cross-
correlation and the passive inverse filter presented in the
section II A are illustrated with classical signal process-
ing tools. In order to confirm the good convergence of
passive methods, passive and active signals are compared
for several distances in the following section. Finally, we
present passive guided wave tomography images for both
cross-correlation signals and passive inverse filter signals.

A. Experimental setup

The experimental setup used to obtain all the re-
sults of this paper is shown in figure 1. We consider
an aluminum plate of density ρ = 2.7 g.cm−3, longitudi-
nal velocity VL = 6360 m.s−1, transversal velocity VT =
3140 m.s−1 and dimensions 1400 mm× 1250 mm× 2 mm.
On this aluminum plate are glued 30 piezoelectric trans-
ducers of diameter ∅ = 18 mm using epoxy glue. These
sensors are equally distributed on a circle of radius r =
300 mm.

The ambient noise required to perform passive to-
mography has been generated in the plate by manually
spraying compressed air randomly on its surface (Druet
et al., 2018; Larose et al., 2007). The distance between
the nozzle and the plate was of approximately 5 cm. Ten
seconds sampled at 2.5 MHz of this ambient noise were
recorded and then post-processed in order to obtain pas-
sive signals for all the couples of sensors.
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FIG. 1. (Color online) Aluminum plate and piezoelectric

transducers positions.

B. Cross-correlation versus Passive inverse filter

In this section are illustrated the differences between
the cross-correlation and the passive inverse filter on typ-
ical passive signals.

First, we present raw passive signals in figure 2 for a
distance between sensors of 52 cm. The case of the cross-
correlation is presented in figure 2(a) whereas the case
of the passive inverse filter is presented in 2(b). We also
present in figure 3 there spectral content.

Concerning the cross-correlation, we can identify
wave packets around 400µs for the causal part and
−400µs for the anticausal one. They correspond approx-
imately to the theoretical time-of-flight of the A0 mode
for low frequencies, around 20 kHz - 30 kHz. This seems
to be consistent because the spectral content of the cross-
correlation is centered around 25 kHz as can be seen fig-
ure 3. Moreover, the cross-correlation of figure 2(a) is
globally symmetrical, which is expected from the passive
reconstruction and is an indication of a good reconstruc-
tion.

Concerning, the passive inverse filter, we would like
to recall that the 30 sensors where used altogether to
obtain the passive signal between the two sensors of fig-
ure 2(b) as explained in section II A. It is not possible
to identify specific wave packets on the passive signal of
figure 2(b) because of the whitening effect of the passive
inverse filter: indeed, as can be seen figure 3, the spec-
tral density of the passive inverse filter has a wider fre-
quency range and the spectral density is somewhat con-
stant over this frequency range, whereas the signal recon-
structed thanks to the cross-correlation has the same en-
ergy repartition as the elastic noise. Thus high-frequency
components, including electromagnetic noise, will con-
tribute to the passive signal resulting from the inverse
filter process. This noise induces significant autocorrela-
tion peak at zero time as can be observed in figure 2(b).
Since this peak, as well as the whole part of the signal be-
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fore the first modal wavepacket arrival (at approximately
100µs), does not contain useful physical information, it
is set to zero between −65µs and 65µs. This operation
eliminates undesirable electromagnetic noise, while keep-
ing the information concerning the guided modes. The
figure 3 shows that the electromagnetic coupling has its
energy at frequencies higher than 150 kHz / 200 kHz.

In order to compare the physical information of
the passive signals, the signals are projected in a
time-frequency plan thanks to a reassigned spectrogram
(Auger and Flandrin, 1995) presented in figure 4. The
same experiment as before has been conducted but with
a larger bandwidth in order to highlight the whitening
effect of the passive inverse filter. To this end, we used
two piezoelectric transducers of diameter 13 mm spaced
60 cm apart from each other. The reassigned spectrogram
corresponding to the cross-correlation signal is plotted
figure 4(a) and the one corresponding to the passive in-
verse filter is plotted figure 4(b). Once again it can be
seen that the passive inverse filter has a whitening effect
compared to the cross-correlation. Moreover, the power
spectral density in both cases corresponds to the theo-
retical time-of-flight (red dash-line) of the A0 mode.

In both cases, the reconstructed signals are coherent
with the theoretical ones. Signals reconstructed thanks
to the passive inverse filter have a wider frequency range,
which may be of interest for applications. It should
be noted that the influence of the spatial repartition of
the noise could not be fully studied in this case as the
used plate was very reverberant, inducing a good spatial
repartition of the ambient noise even for a localized noise
source.

C. Passive and active signals comparisons

In this section are presented comparisons between
active and passive signals for the frequency range of in-
terest of this paper and for both the cross-correlation and
the passive inverse filter.

Active signals s(A,B, t) are obtained by emission
of a 5 cycles toneburst at 20.4 kHz from a piezoelectric
transducer placed in A. The receiver is placed in B.
The elastic guided waves are measured after their propa-
gation for several distances between the emitter and the
receiver (see figure 5). In order to get the same spec-
tral density for passive signals named sP(A,B, t) and
active signals s(A,B, t), the following normalization is
performed (Druet et al., 2018):

ŝP(A,B, ω) =


Ĉ(A,B, ω)∣∣∣Ĉ(A,B, ω)

∣∣∣ |ŝ(A,B, ω)| ω ∈ Ωε,

Ĉ(A,B, ω) otherwise,
(17)

where ·̂ denotes the Fourier transform of
a variable and the set Ωε reads Ωε ={
ω ∈ R

∣∣∣ |Ĉ(A,B, ω)| > εmaxω|Ĉ(A,B, ω)|
}

, with ε

a threshold taken as ε = 0.01 here. It should be noted
that Equation (17) ensures the same power spectral
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FIG. 4. (Color online) Reassigned spectrogram of (a) cross-

correlation raw signal and (b) Passive inverse filter raw signal.

density between active and passive signals but leaves the
phase of the signals unchanged.

The comparison between the cross-correlation signals
and the active signals is plotted figure 5(a) and the one
concerning the passive inverse filter is plotted figure 5(b).
For both cases, a very good match is observed. The the-
oretical time-of-flight is also plotted and corresponds to
the maximum of the envelop of the wave packet corre-
sponding to the A0 mode. Note that in both cases (figure
5(a) and 5(b)) the electromagnetic coupling around the
time t = 0µs is observed.

The study in this section allows us to conclude that
the passive signals seems to be of adequate quality to per-
form passive imaging and more precisely passive guided
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FIG. 5. (Color online) Comparison between active signals and

(a) cross-correlation (b) passive inverse filter.

wave tomography. This is the subject of the following
section.

FIG. 6. (Color online) Defect position.
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FIG. 7. (Color online) Reference measured thanks to an im-

mersion ultrasonic scan.

D. Passive images with guided wave tomography

In order to test passive tomography a defect was cre-
ated into the zone of interest (see the figure 6) by ma-
chining locally the aluminum plate. A reference of the
defect has been obtained thanks to an immersion ultra-
sonic scan, such a scan being significantly more precise
than a global method such as guided wave tomography.
The reference is plotted on figure 7.

During the acquisition of the ambient noise, an effort
has been made to respect, as a first step, the equiparti-
tion hypothesis as much as possible. This means that
the compressed air jet was moved on the whole surface
in order to spend an equivalent time on each surface ar-
eas. Passive tomography is first computed without the
use of the “variable relaxation”. The result is visible fig-
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FIG. 8. (Color online) Passive guided wave tomography with-

out regularization for (a) the cross-correlation and (b) the

passive inverse filter.

ure 8(a) for the cross-correlation and figure 8(b) for the
passive inverse filter. We can see on both images typical
aliasing due to the fact that we use undersampled data
(see (Druet et al., 2019) for more details). Moreover,
both passive tomography images seem to be of the same
quality.

In order to compensate the aliasing effect, the “vari-
able relaxation” is added in the guided wave tomography
process, as explained section II B. The results are pre-
sented figure 9, image (a) for the cross-correlation and
image (b) for the passive inverse filter. Once again, both
images are of same quality but this time the aliasing effect
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FIG. 9. (Color online) Passive guided wave tomography with

regularization for (a) the cross-correlation and (b) the passive

inverse filter.

is significantly reduced. The background of the image is
very clean so that the defect clearly appears in the in-
spected area. Moreover, compared to the reference, the
localization of the defect is well identified and the geom-
etry is almost fully reconstructed. In order to compare
more quantitatively the results, we propose cross-sections
of the images on figure 10. The position of the cross-
section is visible on the reference (figure 7). The small
variations within the defect visible in the reference of the
figure 7 are the only thing that is not reconstructed by
the passive tomography algorithm. This is because the
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FIG. 10. (Color online) Cross-sections of the passive guided

wave tomographies with regularization.

working wavelength is too large to be able to reconstruct
such a variation.

Passive tomography gives really good results with
an ambient noise which respects as much as possible the
equipartition condition but this condition is not always
respected in real industrial applications. That is why we
now study a case which is closer to reality. Indeed, this
time the compressed air jet is only moved onto left-half
of the plate area. This is supposed to throw the en-
ergy repartition off balance. The passive guided wave to-
mographies corresponding to that configuration are pre-
sented figure 11(a) for the cross-correlation and figure
11(b) for the passive inverse filter. The results are of the
same quality as the ones for the equipartition case (figure
9). This can be explained by the fact that the aluminum
plate is a very reverberant structure compensating for
the bad equipartition of the ambient noise.

To conclude, passive guided wave tomography gives
a really good image of corrosion flaws whether it be with
the cross-correlation or with the passive inverse filter.
However, as explained in section II A, the passive inverse
filter should give better results than the cross-correlation
in cases where the noise does not fill the equipartition
hypothesis. The structure studied in this paper did not
permit to break this hypothesis and to illustrate this fact.
Future studies in this direction seem interesting.

IV. CONCLUSIONS

In this paper were presented imaging results of
corrosion-like flaws using a passive guided wave tomogra-
phy algorithm. To do so, two passive data reconstruction
were compared: the usual ambient noise cross-correlation
and the passive inverse filter. Even though the results are
very similar for both methods, the passive inverse filter
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FIG. 11. (Color online) Passive guided wave tomography with

regularization for (a) Correlation (b) Passive inverse filter.

Non equipartition case.

seem to be a promising method as its working hypotheses
seem to be weaker. Indeed, the passive inverse filter can
be seen as a regularized version of the cross-correlation
and thus, it should be more robust. A thorough study
is yet to be done. Furthermore, the passive inverse fil-
ter is naturally well-suited for configurations using many
sensors, which is the case of tomography algorithms.

This study was done using classical piezoelectric
transducers, but the use of passive algorithms allow the
use of sensors not able to emit waves, for example the
fiber Bragg gratings. These sensors are really inter-
esting because of their low intrusiveness in the context
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of SHM and our current work focus on the use of fiber
Bragg gratings.

The application presented in this paper is a rather
well-controlled laboratoy configuration. We plan on ap-
plying the method to real structures, using the ambient
noise coming from their environment to image it.
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