
HAL Id: cea-02974228
https://cea.hal.science/cea-02974228

Submitted on 21 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of Polluting Test Objectives for Dataflow
Criteria

Thibault Martin, Nikolai Kosmatov, Virgile Prévosto, Matthieu Lemerre

To cite this version:
Thibault Martin, Nikolai Kosmatov, Virgile Prévosto, Matthieu Lemerre. Detection of Polluting Test
Objectives for Dataflow Criteria. Lecture Notes in Computer Science, In press, 12546, �10.1007/978-
3-030-63461-2_18�. �cea-02974228�

https://cea.hal.science/cea-02974228
https://hal.archives-ouvertes.fr


Detection of Polluting Test Objectives for
Dataflow Criteria

Thibault Martin1, Nikolai Kosmatov1,2, Virgile Prevosto1, and Matthieu
Lemerre1

1CEA, LIST, Software Safety and Security Laboratory, Palaiseau, France
firstname.lastname@cea.fr

2Thales Research & Technology, Palaiseau, France
nikolaikosmatov@gmail.com

Abstract. Dataflow test coverage criteria, such as all-defs and all-uses,
belong to the most advanced coverage criteria. These criteria are defined
by complex artifacts combining variable definitions, uses and program
paths. Detection of polluting (i.e. inapplicable, infeasible and equiva-
lent) test objectives for such criteria is a particularly challenging task.
This short paper evaluates three detection approaches involving dataflow
analysis, value analysis and weakest precondition calculus. We imple-
ment and compare these approaches, analyze their detection capacities
and propose a methodology for their efficient combination. Initial exper-
iments illustrate the benefits of the proposed approach.

1 Introduction
Among a large range of test coverage criteria proposed in the literature, dataflow
(coverage) criteria [1, 2], such as all-defs and all-uses, belong to the most ad-
vanced. These criteria are defined by complex artifacts combining a (program)
location where a variable is defined, a location where it is used, and a path from
the definition to the use such that the variable is not redefined in between (called
a def-clear path). Like for many other criteria (e.g. conditions, mutations), some
test objectives are not relevant (or polluting): they should be removed to prop-
erly ensure or evaluate test coverage [3,4]. Polluting test objectives for dataflow
criteria include inapplicable test objectives [5], where a def-use pair cannot be
linked by a def-clear path. They also include infeasible test objectives, where a
def-use pair can be linked by at least one def-clear path, but none of these paths
is feasible (i.e. can be activated by a test case). Finally, they include duplicate (or
equivalent) test objectives, which are always covered simultaneously: it suffices
to keep only one objective for each equivalence class.

While creating a list of (candidate) test objectives for dataflow criteria can
look easy, detection of polluting objectives for such criteria is challenging, due
to a complex definition, mixing reachability and def-clear paths. Yet it is crucial
to avoid a waste of time during test generation (trying to cover polluting test
objectives) and to allow a correct computation of coverage ratios (by ignoring
polluting objectives in the total number of objectives). While applying dataflow
criteria for testing [2,6–10] and detection of polluting test objectives for simpler
criteria (see [3, 11] for some recent results and related work) were previously
studied, evaluating and combining various program analysis techniques for their
detection for dataflow criteria—the purpose of this work—was not investigated.



Contributions. This short paper evaluates three approaches to detecting pollut-
ing test objectives for dataflow criteria, involving dataflow analysis, (abstract
interpretation based) value analysis, and weakest precondition calculus. We im-
plement these approaches inside the LTest open-source testing toolset [12]. We
evaluate and compare them by some initial experiments and analyze their de-
tection capacities and limitations. We focus on the key ingredients of dataflow
criteria: def-use pairs. The detection capacities we observed appear to be dif-
ferent from similar experiments made previously for other criteria. Finally, we
propose a methodology for an efficient combination of several techniques.

2 Background and Motivating Example
Background. A large range of test coverage criteria have been defined [1]. Recent
work proposed HTOL (Hyperlabel Test Objective Language) [4], a generic spec-
ification language for test objectives, that can express most of these criteria. We
present here only the subset of HTOL that is useful to express dataflow criteria.

Given a program P , a label ` (in the sense of [13]) is a pair (loc, ϕ) where loc
is a location in P and ϕ is a predicate. Label ` is covered by a test case t when the
execution of t reaches loc and satisfies ϕ. While labels can express many simple
criteria, test objectives for more complex criteria, including dataflow criteria,
need a more general notion, hyperlabels. In our context, we use labels only
for reachability, thus we always consider ϕ = true and simplify the notation
` , (loc, true) as ` , loc, that is, a usual label in the sense of C.

Hyperlabels [4] extend labels by relating them with several constructions,
that include, among others, sequences, conjunctions and disjunctions. Given two

labels ` and `′ and a predicate ψ, a sequence hyperlabel h , `
ψ−→ `′ is covered by

a test case t when the execution of t covers both labels ` and `′ (in that order),
such that the path section between them satisfies predicate ψ. A conjunction
h1 · h2 requires both hyperlabels h1, h2 to be covered by (possibly distinct) test
cases. A disjunction h1 + h2 requires covering at least one of hyperlabels h1, h2.

A key test objective of dataflow criteria is a def-use pair. For a given variable
v and two labels `, `′, we say that (`, `′) is a def-use pair for v if ` is a definition
of v and `′ is a use (i.e. a read) of v. It is linked by a def-clear path for v if there
is a path from ` to `′ such that v is not redefined (strictly) between ` and `′.
A def-use pair (`, `′) (for v) is covered by a test case t when the execution of
t covers both labels (i.e.—in our context—passes through both locations) `, `′

so that the path between them is a def-clear path (for v). When there is no
ambiguity, we omit the variable name.

Thus, the test objective to cover a def-use pair (`, `′) can be expressed by a

sequence (hyperlabel) h , `
dc(v)−−−→ `′, where predicate dc(v) requires the path to

be def-clear for variable v. Dataflow criteria rely on such sequences and require
to cover all or some of them in various ways. Therefore we focus in this paper
on detection of polluting sequences.

Polluting Test Objectives. While the generation of candidate def-use pairs by
combining definitions and uses for each variable can seem to be a simple task,
many of them are irrelevant, or polluting, for various reasons. First, a def-use



1 int f(){
2 int res=0, x=1, a;
3 `1: a = ...;
4 if (Cond){
5 `2: a = a + 1;
6 `3: res = a;
7 x = 0;
8 }
9 if (x){

10 `4: res += 2*a;
11 `5: res *= a;
12 }
13 return res;
14 }

Def-use pairs for variable a:

h1 , `1
dc(a)−−−→ `2 h5 , `2

dc(a)−−−→ `3

h2 , `1
dc(a)−−−→ `3 h6 , `2

dc(a)−−−→ `4

h3 , `1
dc(a)−−−→ `4 h7 , `2

dc(a)−−−→ `5

h4 , `1
dc(a)−−−→ `5

All-uses criterion objectives for a:

h8 , h1 · h2 · h3 · h4 h9 , h5 · h6 · h7

All-defs criterion objectives for a:

h10 , h1 + h2 + h3 + h4 h11 , h5 + h6 + h7

Fig. 1. Example of def-use pairs and objectives for all-uses and all-defs for variable a.

pair (`, `′) for variable v is inapplicable if there is no structurally possible def-
clear path from ` to `′ for v. Second, a def-use pair (`, `′) is infeasible if such
def-clear paths exist (structurally) but are all infeasible (i.e. cannot be executed
by any test case). Inapplicable and infeasible def-use pairs are both uncoverable.
Finally, a def-use pair (`, `′) is equivalent to another def-use pair (`, `′′) if for
every test case t, the execution of t covers either both pairs or none of them.

Recent research showed that value analysis and weakest precondition calculus
can be efficient to detect polluting test objectives for several (non dataflow)
criteria [3, 11] expressed in HTOL. For dataflow criteria, model-checking was
applied to detect infeasible test objectives [14]. Continuing those efforts, this
work adapts several existing program analysis techniques to detect polluting
test objectives for dataflow criteria, implements and evaluates them.

Generating only relevant test objectives for dataflow criteria for an arbitrary
program is undecidable. Indeed, it requires to identify which uses can be reached
from a specific definition. If it were possible, one could apply it to solve the
general reachability problem for a label ` in a given program P : {code1; ` : code2;}

by considering program P ′ : {`0 :int new=0; code1; ` : return new; code2;} with a fresh
variable new and checking whether the def-use pair (`0, `) is generated for P ′.

Motivating Example. Figure 1 gives a simple C code illustrating various cases of
polluting objectives. The upper right of the figure shows all (candidate) def-use
pairs for variable a (h1, . . . , h7), that include polluting objectives. The all-uses
criterion requires to cover all possible def-use pairs for each definition. For the
definition `1 (resp., `2), this corresponds to the conjunctive hyperlabel h8 (resp.,
h9). The all-defs criterion requires to cover at least one def-use pair for each
definition, which is illustrated by the disjunctive hyperlabel h10 (resp., h11). We
see that sequences are key ingredients to express test objectives of these dataflow
criteria, and we focus on them below. Naturally, detecting polluting sequences
will automatically simplify the combined hyperlabels.

In this example, h2 is inapplicable: structurally, there is no def-clear path
from `1 to `3 since all such paths pass through `2. This sequence should be
strictly speaking discarded, i.e. erased from the combined objectives.

In addition, we can see that h6 and h7 are both infeasible since no test
case can cover `2 and `4 (or `5) at the same time because of x. In this case,



the combined objective h9 becomes infeasible as well. It is also easily seen that
having Cond always false (or true) also makes some objectives infeasible.

Finally, since `4 and `5 lie in the same consecutive block, sequences h3, h4

are equivalent: a test case t either covers both of them, or none of them; and
so are h6, h7. Keeping only one in each group would be sufficient both for test
generation or infeasibility detection. We can keep h3 for h3, h4. If h3 is infeasible,
h4 is as well. If h3 is covered by some test case t, h4 is covered too1.

For simplicity, we assume here that the C code has been normalized (like it
is automatically done in Frama-C [15]), in particular, expressions contain no
side effects and each function has a unique return point.

3 Detection Techniques
3.1 Dataflow Analysis for Inapplicable and Equivalent Sequences

Inapplicable Sequences. A simple approach to generate sequences expressing def-
use pairs consists in performing a simple run through the Abstract Syntax Tree
(AST) and creating a sequence for each definition and use of the same variable in
the program. This approach leads to a significant number of inapplicable objec-
tives. Their detection for an arbitrary program (e.g. with goto’s) is non trivial.
For Fig. 1, we would generate h1, ..., h7, including the inapplicable objective h2.

To avoid generating this kind of objectives, we use a standard dataflow anal-
ysis [16]. This analysis propagates (over the program statements) a state asso-
ciating to each variable v the set Defsv of labels corresponding to definitions of
v that may reach this point through a def-clear path. This dataflow analysis,
denoted MNA, is very efficient to identify Non-Applicable sequences.

Figure 2 illustrates this method for Fig. 1 and variable a. The Defsa set near
a node shows the set of definitions that may have assigned to a the value that a
has at this node. So, after visiting `2, the definition of a at `1 is replaced with
that at `2. Hence, at `3, we will create one sequence (h5) for this use of a, and h2

will not be generated. Notice that at node x, the state contains both definitions
of a after the merge of both branches.

Equivalent Sequences. We distinguish two kinds of equivalent sequences. The
first kind is trivial. If a variable v is used more than once in the same expression,
assuming expressions do not contain side effects, the value of v will be the same
for each occurrence. We consider each corresponding def-use pair only once.

The second kind is more complex and relies on the notions of dominance and
post-dominance [17]. For two statements S1 and S2, we say that: S1 dominates
S2 if all paths from the entry point of the function to S2 pass through S1; S2

post-dominates S1 if all paths from S1 to the return point of the function pass
through S2.

We enrich the state propagated by MNA by a set associating to each vari-
able v the set Usesv of (labels corresponding to the) uses of v that must (i.e.
are guaranteed to) reach this point through a def-clear path. Before creating a

1 unless the flow is interrupted by a runtime error between `4 and `5; hence we rec-
ommend keeping the first sequence h3, so that a test case covering it either covers
h4 as well, or detects a runtime error, that is thus detected and can be fixed.



`1 Defsa: {} Usesa: {}

Cond Defsa: {`1} Usesa: {}

`2 Defsa: {`1} Usesa: {}

`3 Defsa: {`2} Usesa: {}

x Defsa: {`1; `2} Usesa: {}

`4 Defsa: {`1; `2} Usesa: {}

`5 Defsa: {`1; `2} Usesa: {`4}

return Defsa: {`1; `2} Usesa: {}

true

fa
lse

true

fa
lse

Fig. 2. Dataflow analysis for Fig. 1.

1 int f(void)
2 {
3 /*@ ghost int Ca

6 = 0; */
4 int res = 0, x = 1, a;
5 /*@ ghost Ca

6 = 0; */
6 `1: a = ...;
7 if (Cond) {
8 /*@ ghost Ca

6 = 0; */
9 `2: a = a + 1;

10 /*@ ghost Ca
6 = 1; */

11 `3: res = a;
12 x = 0;
13 }
14 if (x) {
15 /*@ check Ca

6 != 1; */
16 `4: res += 2 * a;
17 `5: res *= a;
18 }
19 return res;
20 }

Fig. 3. Figure 1 instrumented for h6.

sequence with a use at `′′, we check its associated Uses set. If it contains a label
`′ for the same variable, it means that `′ dominates `′′. Then we check if `′′

post-dominates `′ using standard dataflow analysis. If so, for each definition ` in
our state, def-use pairs (`, `′), (`, `′′) are equivalent. Figure 2 illustrates that the
Usesa state at `5 contains `4, and since `5 also post-dominates `4, h4 (resp., h7)
is found equivalent to h3 (resp., h6). Notice that after the merge of branches at
the last node, Usesa is empty. We denote this method by MEq.

3.2 Static Analysis for Uncoverable Sequences

Consider a sequence hyperlabel hi expressing a def-use pair `
dc(v)−−−→ `′ for v. Let

Cvi be a fresh variable associated to sequence hi, that will represent its status: 0
for uncovered, and 1 for partially covered, i.e. after seeing only its definition, but
not its use. More precisely, Cvi is initialized to 0 at the beginning of the function.
When we reach ` we set it to 1, meaning that we covered the first member of our
sequence hi. If dc(v) is violated (i.e. if we encounter another definition on our
path) we set Cvi back to 0. If we can prove that Cvi 6= 1 is always true at `′, then
we show that covering hi is impossible, that is, hi is inapplicable or infeasible.
A similar method was used in [14] with a model-checking approach.

Figure 3 illustrates this method for Fig. 1 for h6 = `2
dc(a)−−−→ `4. We express

the instrumented code in acsl [15] as ghost code, used to provide additional code
for analyzers, without interfering with the original code semantics. We create the
ghost variable Ca6 that stands for the status of sequence h6 over variable a (cf.
lines 3, 5, 8, 10 in Fig. 3). We also generate an acsl check clause Ca6 6= 1 before
`4 (line 15). If it is proved, then covering h6 is impossible. Notice that h7 would
be proved infeasible as well, since they are equivalent.

To detect polluting sequences automatically, we apply static analysis tech-
niques on the instrumented program, more precisely, Value Analysis based on
abstract interpretation and Weakest Precondition calculus. The resulting detec-
tion techniques are denoted MVA and MWP.



Ex./ Indi- Cand. Polluting objective detection
Size cator obj.gen. MNA MEq MVA MWP MNA,Eq MNA,Eq,VA MNA,Eq,WP MNA,Eq,VA,WP

cwe787
34 loc

time 0.3s 0.3 0.3s 4.9s 28.3s 0.3s 1.1s 5,6s 6,4s
#seq. 207 144 99 144 108 171 171 171 171
%seq. 69.6% 47.8% 69.6% 52.2% 82.6% 82.6% 82.6% 82.6%

2048
376 loc

time 0.6s 0.5s 0.5s 6.3s 1m45 0.5s 2.9s 50.2s 52.7s
#seq. 560 159 187 161 14 293 295 294 295
%seq. 28.4% 33.4% 28.8% 2.5% 52.3% 52.7% 52.5% 52.7%

papa-
bench

1399 loc

time 1.2s 1.3s 1.3s 3.4s 1m7s 1.2s 4.1s 42.4s 45.3s
#seq. 376 41 106 102 21 139 181 139 181
%seq. 10.9% 28.2% 27.1% 5.6% 37.0% 48.1% 37.0% 48.1%

debie1
5165 loc

time 1.5s 1.5s 1.5s 1m20s 9m3s 1.5s 37.7s 4m2s 4m43s
#seq. 2149 815 825 876 181 1272 1320 1280 1323
%seq. 37.9% 38.4% 40.8% 8.4% 59.2% 61.4% 59.6% 61.6%

gzip
4790 loc

time 3.3s 2.7s 2.9s 22m20s 71m14s 2.6s 4m40s 29m28s 33m58s
#seq. 7299 3710 2042 3806 1264 4738 4834 4741 4835
%seq. 50.8% 28.0% 52.1% 17.3% 64.9% 66.2% 65.0% 66.2%

itc-
benchm.
11825 loc

time 8.4s 8.4s 8.2s 32.3s 16m57s 8.2s 33.2s 11m45s 12m18s
#seq. 3776 301 892 1145 152 1107 1703 1174 1708
%seq. 8.0% 23.6% 30.3% 4.0% 29.3% 45.1% 31.1% 45.2%

Mono-
cypher
1913 loc

time 28.2s 1.4s 7.0s MO TO 0.9s 16m32s 64m31s 80m10s
#seq. 45707 38880 23839 – – 43410 43414 43410 43414
%seq. 85.1% 52.2% – – 95.0% 95.0% 95.0% 95.0%

Average %seq. 41.5% 35.9% 41.5% 15% 60.0% 64.4% 60.4% 64.5%

Fig. 4. Polluting objectives detected by different techniques and their combinations.

4 Implementation and Evaluation
Implementation. We implemented the detection techniques described in Sect. 3
in LTest2 [12], a set of tools for coverage oriented testing, mostly written in
OCaml as plugins of Frama-C [15], a program analysis platform for C code. One
of the tools, LAnnotate, creates test objectives for a given criterion. It sup-
ports various dataflow criteria (such as def-use, all-defs, all-uses) and generates
(candidate) objectives inside each function. We implemented dataflow analysis
techniques MNA and MEq in LAnnotate to filter out, resp., Non-Applicable
and Equivalent objectives. It does not support pointers yet, and overapproxi-
mates arrays (meaning that an assignment at index i is seen as an assignment
to the entire array). We implemented MVA and MWP in another tool, LUncov.
detecting uncoverable objectives. It performs interprocedural analysis and relies
on Frama-C plugins Eva for value analysis and Wp for weakest precondition.

Experiments. In our evaluation, we address the following research questions:

RQ1: Is dataflow analysis with MNA and MEq effective to detect inapplicable
and equivalent test objectives? Can it scale to real-world applications?

RQ2: Can sound static analysis techniques MVA,MWP effectively find uncover-
able objectives? Can they scale to real-world applications?

RQ3: Is it useful to combine these approaches? What is the best combination?

We use a set of real-life C benchmarks3 of various size (up to 11 kloc) and
nature, and focus on sequences encoding def-use pairs (cf. Sect. 2). Figure 4
illustrates the results. For each benchmark, we first generate all candidate def-use
pairs using LAnnotate without any additional analysis (see the third column
in Fig. 4). Next, we apply the techniques, first separately (columns MNA–MWP)
and then in combination (last four columns). We report execution time, the

2 available at https://github.com/ltest-dev/LTest
3 taken from https://git.frama-c.com/pub/open-source-case-studies



number of sequences (i.e. def-use pairs) detected as polluting, and the percentage
it represents over the total number of candidate objectives. The last line gives
an average percentage. TO and MO denote a timeout (set to 10 hours) and
memory-out. Experiments were run on an Intel(R) Xeon(R) E-2176M with 32
GB RAM.

Notice that MVA requires an entry point function and an initial context to
start the analysis, meaning that objectives are identified as uncoverable with
respect to these starting point and initial context. Value analysis can require a
certain expertise to find optimal settings for a better analysis. As we want our
tool to be as automatic as possible, we used default parameters. As for MWP, it
does not require a global entry point but can be made more precise by providing
contracts, i.e. pre- and postconditions and loops annotations. Again, in our ex-
periments, annotations were not written for the same reason. Hence, an expert
user can probably further improve the reported results. Similarly, using Frama-
C plugins dedicated to generating acsl annotations might improve these results
as well. However, this demands some adaptations of our own implementation
and is left for future work.

Results. Regarding RQ1, dataflow analysis techniques MNA and MEq are very
fast and very effective. MNA detects an average rate of 41.5% (of all objectives)
as inapplicable. MEq detects an average of 35.9% as equivalent. The rate of
MNA (between 8% and 85.1%) strongly depends on the example. Together, they
identify a very significant number of polluting objectives (column MNA,Eq).

Regarding RQ2, MVA performs really well on smaller programs, and becomes
more expensive for larger examples (e.g. it runs out of memory for Monocypher).
It detects between 27.1% and 69.6% (with an average of 41.5%). MWP is by far
the slowest method of detection. It takes up to 71m14s, times out on Mono-
cypher, and detects almost no new uncoverables compared to MVA (see below).

Regarding RQ3, while it is natural to expect benefits of a combination of
different analyses, the results were somewhat surprising. Unlike in the previous
work for other (non dataflow) criteria [3,11], the weakest precondition based tech-
nique brings only very slight benefits (see columns MNA,Eq,VA–MNA,Eq,VA,WP).
We believe it is due to the complex nature of dataflow criteria where infeasibility
is less likely to be detected by local reasoning. It is left as future work to study
whether these results can be significantly improved using additional annotations.
Using MNA,Eq before MVA or MWP to filter out some objectives is clearly very
efficient (and makes it possible for MVA, MWP to terminate on the Monocypher
example). Overall, our results show that the best combination appears to be
MNA,Eq,VA, whereas executing MWP in addition is very costly and detects at
most 0.2% more sequences. When execution time is very limited, MNA,Eq can
be already very effective.

5 Conclusion and Future Work
Polluting test objectives can be an important obstacle to efficiently applying
test coverage criteria, both for test generation or computation of coverage ra-
tios. We adapted, implemented and evaluated several sound techniques to detect
(a subset of) such objectives for dataflow criteria. Combining dataflow analysis



to detect inapplicable and equivalent objectives with value analysis to identify
uncoverable ones seems to be the best trade-off for effective and fast detection.
While this work provided a comparison of the detection power of the analysis
techniques, future work is needed to evaluate their results with respect to the
real set of polluting objectives (or its overapproximation computed by replaying
a rich test suite). Other possible improvements include better support of C lan-
guage constructs (pointers and arrays), refining the analyses, notably MWP, by
automatically generating additional annotations, as well as extending this study
to subsumed (i.e. implied) test objectives and to other coverage criteria.

Acknowledgements. This work was partially supported by ANR project SATOCROSS (grant ANR-

18-CE25-0015-01). We thank Sébastien Bardin, and the anonymous reviewers for valuable comments.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press (2017)

2. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In:
ICSE. (1982) 272–278

3. Bardin, S., Delahaye, M., David, R., Kosmatov, N., Papadakis, M., Traon, Y.L.,
Marion, J.: Sound and quasi-complete detection of infeasible test requirements.
In: ICST. (2015) 1–10

4. Marcozzi, M., Delahaye, M., Bardin, S., Kosmatov, N., Prevosto, V.: Generic and
effective specification of structural test objectives. In: ICST. (2017) 436–441

5. Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria.
IEEE Trans. Softw. Eng. 14(10) (1988) 1483–1498

6. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Trans. Softw. Eng. 11(4) (1985) 367–375

7. Harrold, M.J., Soffa, M.L.: Interprocedual data flow testing. SIGSOFT Softw.
Eng. Notes 14(8) (1989) 158–167

8. Weyuker, E.J.: The cost of data flow testing: An empirical study. IEEE Trans.
Software Eng. 16 (1990) 121–128

9. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. Softw. Eng. 15(11) (1989) 1318–1332

10. Su, T., Wu, K., Miao, W., Pu, G., He, J., Chen, Y., Su, Z.: A survey on data-flow
testing. ACM Comput. Surv. 50(1) (2017)

11. Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Correnson,
L.: Time to clean your test objectives. In: ICSE. (2018) 456–467

12. Marcozzi, M., Bardin, S., Delahaye, M., Kosmatov, N., Prevosto, V.: Taming
coverage criteria heterogeneity with LTest. In: ICST. (2017) 500–507

13. Bardin, S., Kosmatov, N., Cheynier, F.: Efficient leveraging of symbolic execution
to advanced coverage criteria. In: ICST. (2014) 173–182

14. Su, T., Fu, Z., Pu, G., He, J., Su, Z.: Combining symbolic execution and model
checking for data flow testing. In: ICSE. (2015) 654–665

15. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Asp. Comput. 27(3) (2015) 573–609

16. Kildall, G.A.: A unified approach to global program optimization. In: PoPL. (1973)
194–206

17. Prosser, R.T.: Applications of boolean matrices to the analysis of flow diagrams.
In: Eastern Joint IRE-AIEE-ACM Computer Conference. (1959)


