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1 INTRODUCTION

The TDT (Two and Three Dimensional Transport) deterministic code of the APOLLO3 R© calculation

platform utilises the Method of Characteristics (MOC) to solve the Boltzmann equation for neutrons. In

order to reduce the bias and the errors of the current schemes, in the recent years the TDT application has

been extended to three-dimensional extruded geometries [1], to provide a better representation of 3D

environment effects also in view of a future one-step core calculation.

Even more recently, a polynomial description for the neutron flux has been introduced [2]: along the axial

(extruded) direction a per-region constant (“step-constant”) flux representation has been substituted by a

description assigning to each region a set of coefficients for the polynomial expansion. At the price of a

greater complication in the equations, this has permitted to reduce the number of axial meshes by a factor

higher than 10, the memory required by a factor ∼ 3 and the computation time by a factor ∼ 2.

The present work constitutes the natural continuation of the one above, as the same treatment is given to

both the neutron flux and the cross sections. The aim is to apply the polynomial expansion in the case of

evolution calculations: as a matter of fact, the combination of a polynomial flux expansion and

step-constant cross sections over extended axial meshes is highly inaccurate if non-zero burnup cases are

considered, since a refined axial mesh is required to describe the modification of cross-section profiles due

to nuclide depletion. A polynomial expansion for cross sections is therefore needed, together with the one

for the flux, to fully utilize the MOC 3D polynomial method.

2 THE POLYNOMIAL EXPANSION

If a polynomial profile is assumed for their spatial dependence, the angular mono-group neutron flux

ψ(~r, ~Ω) and the arbitrary mono-group macroscopic cross section Σ(~r) can be written as

ψ(~r, ~Ω) ∼ ~P (~r ) · ~ψr(~Ω), Σ(~r ) ∼ ~P (~r ) · ~Σr

~P (~r ) = {Pp(~r ), p = 0, Np}, ~ψr(~Ω) = {ψr,p(~Ω), p = 0, Np} ~Σr = {Σr,p, p = 0, Np},
(1)



Gammicchia A. and Santandrea S.

where ~P is the set of expansion polynomials, and ~ψr(~Ω) and ~Σr the associated flux and cross-section

coefficients, respectively. Np is the chosen degree for the expansion. At least for a first implementation, the

choice has been made to use the same expansion base for the two physical quantities, which seems

reasonable given their close interdependence. As in [2], the polynomial representation is adopted only

along the axial direction, while step-constant values characterize the radial one; moreover, exactly the same

polynomials are employed:

~P (z̃r) = {(z̃r)p, p = 0, Np}, z̃r =
zr − z̄r
∆zr/2

, (2)

where r is the region index, z̄r the region mid-height axial coordinate, ∆zr the region height and zr the

absolute axial coordinate ranging from the bottom to the top of region r. In this way, (z̃r)
p ∈ [−1, 1] for

every region.

In order to highlight how this impacts the numerical problem, one may consider the mono-group integral

transport equation evaluated along a characteristic line of direction ~Ω:

ψ(~r0 + l~Ω, ~Ω) = ψ(~r0, ~Ω) e−τ(l) +

∫ l

0
dt q(~r0 + t~Ω, ~Ω) eτ(t)−τ(l), (3)

l being the length of the considered chord and ~r0 the chord entry endpoint. According to Eq. (1), the

optical path length corresponding to t, τ(t), reads

τ(t) =

∫ t

0
dt′ Σ(~r(t′)) =

∫ t

0
dt′ ~P (z̃r(t

′)) · ~Σr =

Np∑
p=0

∫ t

0
dt′
(
zinr − z̄r + µt′

∆zr/2

)p
Σr,p

=

Np∑
i=0

Λi0 t+

Np−1∑
i=0

Λi1 t
2 +

Np−2∑
i=0

Λi2 t
3 + · · ·+ Λ0Np t

Np+1,

(4)

where Λij = Pi(z
in
r )Σr,i+j

(
2µ

∆zr

)j
1
j+1

(
j+i
i

)
, µ is the cosine of the polar component of ~Ω and zinr is the

axial component of ~r0. The angular dependence of the emission source q(~r, ~Ω) is classically expressed in

terms of an expansion over real spherical harmonics, up to the chosen anisotropy order K: q(~r, ~Ω) =∑K
l=0

∑m=l
m=−lA

m
l (~Ω) qml (~r) =

∑Nm
n=1An(~Ω) qn(~r), where a single index is used to indicate the angular

moments, whose number is Nm = (K + 1)2. The emission source for group g can therefore be written as

qg(~r, ~Ω) =

=
∑
n

An(~Ω)
∑
g′

Σg′→g
s,n (~r ) Φg′

n (~r ) +
1

keff

∑
i

χgi
∑
g′

νΣg′

f,i(~r ) Φg′

0 (~r )

=
∑
n

An(~Ω)
∑
g′

~Σg′→g
s,n,r

(
~P (z̃r)⊗ ~P (z̃r)

)
~Φg′
n,r +

1

keff

∑
i

χgi
∑
g′

−→
νΣg′

f,i,r

(
~P (z̃r)⊗ ~P (z̃r)

)
~Φg′

0,r

= ~P 2Np(z̃r) · ~Q
2Np,g
r (~Ω),

(5)

where
~Q

2Np,g
r (~Ω) = {Qgr,p(~Ω), p = 0, 2Np}, Qgr,p(~Ω) =

∑
n

An(~Ω)
∑
g′

∑
k+l=p

Σg′→g
s,n,r,kΦ

g′

n,r,l

+
1

keff

∑
i

χgi
∑
g′

∑
k+l=p

νΣg′

f,i,r,kΦ
g′

0,r,l.
(6)
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In Eq. (5) the spatial behaviour of the angular flux moments {Φg
n(~r )}, of the average numbers of neutrons

emerging from fission per unit path for each fissile isotope {νΣg
f,i(~r )} and of the coefficients of the

scattering cross-section expansion over Legendre polynomials {Σg′→g
s,n (~r )} is expressed in terms of the

polynomials of Eq. (2). Σg′ and Σi represent the sums over energy groups and fissile isotopes, respectively,

and the superscript 2Np indicates that vectors contain the elements corresponding to polynomial orders

from 0 to 2Np. Substituting the emission source into Eq. (3) (and omitting the energy index g), this latter

results as

ψ(~r0 + l~Ω, ~Ω) = ψ(~r0, ~Ω) e−τ(l) +

2Np∑
k=0

Pk(z
in
r )

2Np∑
p=k

Q
2Np
r,p (~Ω)

(
p

k

)(
2µ

∆zr

)p−k ∫ l

0
dt tp−keτ(t)−τ(l), (7)

where Pk(zinr ) =
(
zinr −z̄r
∆zr/2

)k
. The employment of the equation above requires knowing how to evaluate the

integrals over the chord length, which, for how the optical path length is expressed (Eq. (4)), are of the kind

En(a1, a2, . . . , aNp+1 , l) =

∫ l

0
dt tne

a1(t−l)+a2(t2−l2)+ . . . +aNp+1
(tNp+1−lNp+1 )

. (8)

Since no analytical solution is available for Np > 1 and since it would be desirable to treat higher-order

profiles (at least parabolic), we have decided to adopt a Prony approximation to express eτ(t)−τ(l) as

e
a1(t−l)+a2(t2−l2)+ . . . +aNp+1

(tNp+1−lNp+1 ) ≈
Ni/2∑
i=1

Cie
biRx

{
cos(biIx)

sin(biIx)
, (9)

Ni being the chosen number of interpolation points. The presence of a cosine or a sine function depends on

the bi coefficients: for each pair of complex conjugates, there will be two subsequent terms having the

same coefficient real parts (biR and bi+1R) and imaginary parts (biI and bi+1I ), the former with the cosine

function and the latter with the sine one.

3 FROM STEP-CONSTANT TO POLYNOMIAL CROSS SECTIONS

To obtain a first polynomial cross-section representation, we started translating a step-constant mesh into a

polynomial one: for this purpose, we considered a set of macro-regions {r}, each one composed of a set of

regions {i} having constant cross-section values. To determine the coefficients {Σr,p, p = 0, Np} of the

polynomial expansion within region r, one can first compute the cross-section moments with respect to the

polynomials, which by definition read

′~Σr =
1

Vr

∫
r
d~r ~P (z̃r)Σ(~r) =

1

∆zr

∫ zmax
r

zmin
r

dz ~P (z̃r)Σ(z) =
1

2

∫ 1

−1
dz̃r ~P (z̃r)Σ(z̃r), (10)

Vr being the region volume. The integral over z̃r is equal to the sum of the contributions due to all the

step-constant regions contained in r: therefore, the pth-order moment can be written as

′Σr,p =
1

2

∑
i

Σi

∫ z̃upi

z̃lowi

dz̃rPp(z̃r) =
1

2(p+ 1)

∑
i

Σi

[
(z̃upi )p+1 − (z̃lowi )p+1

]
, (11)
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where

z̃upi =
z̄i − z̄r
∆zr/2

+
∆zi
∆zr

, z̃lowi =
z̄i − z̄r
∆zr/2

− ∆zi
∆zr

. (12)

Once the moments have been the computed, the expansion coefficients can be retrieved as

~Σr = ¯̄P−1 ′~Σr, (13)

where the elements of matrix ¯̄P read

Pij =
1

Vr

∫
r
d~r Pi(z̃r)Pj(z̃r) =

1

∆zr

∫ z̄r+∆zr/2

z̄r−∆zr/2
dzr

(
zr − z̄r
∆zr/2

)i+j
=

{
1

i+j+1 for i+ j even

0 for i+ j odd
. (14)

Applying this to a cell of the ASTRID reactor [3], for an expansion of order 2 we have obtained the results

shown in Fig. 1 for the fissile region (15 cm) and the fertile one above (10 cm). Figures refer to the energy

group #1896 in a library of 1968 groups, in the case of burnup = 37500 MWd/t. The choice of this group is

due both to the relatively strong variation it undergoes during evolution and to the relatively high values of

the first- and second-order coefficients required for the polynomial expansion.

Figure 1: Total cross section plots for the fissile (left) and the fertile region (right).

4 PERSPECTIVES

The described method is currently being implemented in TDT, where Eq. (7) will be used as transmission

equation for the trajectory sweep, at the inner iteration level of the power method. The problem will be

closed by a suitable formulation of a balance equation, which has not been reported here because of lack of

space and that will also be implemented. Once the code supports the polynomial cross-section

environment, it will be necessary to accelerate the simulation.

REFERENCES

[1] S. Santandrea, D. Sciannandrone, R. Sanchez, L. Mao, L. Graziano, “A Neutron Transport
Characteristics Method for 3D Axially Extruded Geometries Coupled with a Fine Group
Self-Shielding Environment,” Nuclear Science and Engineering, 186, pp. 239-276 (2017).

4/5



Polynomial cross sections for 3D MOC

[2] S. Santandrea, L. Graziano, D. Sciannandrone, “Accelerated polynomial axial expansions for full 3D
neutron transport MOC in the APOLLO3 R© code system as applied to the ASTRID fast breeder
reactor,” Annals of Nuclear Energy, 113, pp. 194-236 (2017).

[3] B. Fontaine, N. Devictor, P. Le Coz, A. Zaetta, D. Verwaerde, J.-M. Hamy, “The french R&D on
SFR core design and ASTRID project,” In: Global. Makuhari, Japan (2011).

5/5


