
HAL Id: cea-02963719
https://cea.hal.science/cea-02963719

Submitted on 11 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable tiles of computing-in-memory SRAM
architecture for scalable vectorization

Roman Gauchi, Valentin Egloff, Maha Kooli, Jean-Philippe Noel, Bastien
Giraud, Pascal Vivet, Subhasish Mitra, Henri-Pierre Charles

To cite this version:
Roman Gauchi, Valentin Egloff, Maha Kooli, Jean-Philippe Noel, Bastien Giraud, et al.. Reconfig-
urable tiles of computing-in-memory SRAM architecture for scalable vectorization. ISLPED 2020:
ACM/IEEE International Symposium on Low Power Electronics and Design, Aug 2020, Boston, MA,
United States. pp.121-126, �10.1145/3370748.3406550�. �cea-02963719�

https://cea.hal.science/cea-02963719
https://hal.archives-ouvertes.fr


Reconfigurable Tiles of Computing-In-Memory SRAM
Architecture for Scalable Vectorization

R. Gauchi1, V. Egloff1 M. Kooli1, J.-P. Noel1, B. Giraud1, P. Vivet1, S. Mitra2 and H.-P. Charles1
1Université Grenoble Alpes, CEA List, Grenoble, France 2Stanford University, Palo Alto, CA, USA

{roman.gauchi, valentin.egloff, maha.kooli, jean-philippe.noel, pascal.vivet, henri-pierre.charles}@cea.fr, subh@stanford.edu

ABSTRACT
For big data applications, bringing computation to thememory is ex-
pected to reduce drastically data transfers, which can be done using
recent concepts of Computing-In-Memory (CIM). To address ker-
nels with larger memory data sets, we propose a reconfigurable tile-
based architecture composed of Computational-SRAM (C-SRAM)
tiles, each enabling arithmetic and logic operations within the mem-
ory. The proposed horizontal scalability and vertical data communi-
cation are combined to select the optimal vector width formaximum
performance. These schemes allow to use vector-based kernels avail-
able on existing SIMD engines onto the targeted CIM architecture.
For architecture exploration, we propose an instruction-accurate
simulation platform using SystemC/TLM to quantify performance
and energy of various kernels. For detailed performance evaluation,
the platform is calibrated with data extracted from the Place&Route
C-SRAM circuit, designed in 22nm FDSOI technology. Compared to
512-bit SIMD architecture, the proposed CIM architecture achieves
an EDP reduction up to 60× and 34× for memory bound kernels
and for compute bound kernels, respectively.

KEYWORDS
Computing-In-Memory, SRAM, Instruction Set Simulator, System-
C/TLM, SIMD, PolyBench.

1 INTRODUCTION
As artificial intelligence progresses, today’s applications are becom-
ing data and computationally intensive. The cost of transferring
data from the memory to the processing element is very high com-
pared to the cost of the computation itself [11]. New emerging
architectures must be considered to reverse this paradigm by bring-
ing the computation closer to the memory. In-Memory Computing
(IMC) has been introduced in [3, 4, 12] and aims at bringing the
computation as close as possible to the memory, by directly mod-
ifying the SRAM bit-cell design. These IMC designs can perform
logic operations (mainly bit-wise) within the memory by select-
ing multiple word-line of the memory bit-cell array. In order to
provide more complex logic and arithmetic operations, the Near-
Memory Computing (NMC) provides the necessary additional op-
erators inside the SRAM memory tile, as presented in [7, 12]. From
a system integration and software-level, IMC and NMC can be
named as Computing-In-Memory (CIM), since all computations
are performed within the memory interface. Thus, we refer IMC
and NMC as CIM in the rest of this paper and we consider the
Computational-SRAM (C-SRAM) concept as introduced in [4]. It
represents a SRAM tile integrating additional logic allowing arith-
metic and logic operations. In all these schemes, data locality is

preserved and acceleration is performed through parallel comput-
ing, using vector operations, where vector width corresponding to
SRAM width. Recent work on SRAM-based CIM has focused on
computing within a single or a few memory tiles, which drastically
limits the memory capacity and potential applications. In order
to address kernels with larger dataset and real applications, it is
required to scale up the architecture with more memory, while
proposing the adequate programming model allowing vector ac-
celeration. With more available memory, a question raises: how to
organize these tiles of memory to perform large vector operations :
more vectors or larger vectors ?

In order to increase the available memory space and associated
computing capability, we propose to assemble a set of C-SRAM tiles
in a configurable fashion. This allows to extend computing vector
in two manners: either a horizontal memory extension allowing
larger vectors, or a vertical memory extension allowing more vec-
tors. This scalable vectorization scheme allows to directly re-use
existing SIMD (Single InstructionMultiple Data) application kernels
onto the targeted C-SRAM architecture. In order to evaluate this ar-
chitecture, we propose an instruction accurate simulation platform
that considers all transaction events between hardware components
and its integration into a standard software tool chain. For accurate
architecture exploration, all low level performance numbers (cycles
and energies) are extracted from Place&Route implementation in
22nm FDSOI technology, as presented in [17]. Using the simula-
tion platform, we evaluate the performance speed up, the energy
reduction and the Energy Delay Product (EDP) reduction of the
reconfigurable vector-based C-SRAM tiles architecture compared
to tightly-coupled 128-bit, 256-bit and 512-bit SIMD architectures,
using the same vectorized kernels. Simulation results show that
our proposed architecture achieves an EDP reduction up to 60×
and 34× for memory bound kernels and for compute bound ker-
nels respectively, compared to 512-bit SIMD architecture. The main
contributions of this paper are:

• Proposing a reconfigurable multi-tiles of C-SRAM architecture
for scalable vectorization,

• Proposing an instruction accurate and power annotated simula-
tion platform for multi-tile C-SRAM evaluation,

• Comparing performance speed up, memory accesses, energy
reduction and energy-delay product of our proposed architecture
with regards to modern SIMD architectures.

The remainder of this paper is organized as follows: Section 2
discusses the state-of-the-art. Section 3 introduces the proposed
architecture, Section 4 details the simulation platform, Section 5
explains architecture exploration results, and finally, Section 6 con-
cludes the paper.



ISLPED ’20, August 10–12, 2020, Boston, MA, USA Gauchi et al.

Figure 1: Reconfigurable Tiles of C-SRAM Architecture, in-
tegrated with a CPU on a standard system bus.

2 RELATEDWORK
2.1 In and Near Memory Computing
IMC and NMC concepts have been introduced recently and pro-
pose different kind of data-centric architectures. From a circuit
design point of view, many recent works [3, 4, 6, 12] have shown
that IMC provides logic operators using pre-computation capabil-
ities within the memory array. Recent works [10] also explored
IMC using emerging technologies such as Non Volatile Memory
(NVM) to perform Multiply And Accumulate (MAC) operations by
exploiting analog current laws. Such circuits targets neural network
applications, while our architecture uses existing current CMOS
technology SRAMmemories to target general purpose applications,
specifically with vector level parallelism. Compared to IMC, NMC
consists of an optimized design placed close to the memory which
performs operation between several memory tiles. But, this "near
memory logic" is usually not tightly integrated within the memory,
nor respecting a standard memory interface for smooth software
integration, as presented in [21]. A specific IMC type, using bit
serial scheme has shown up 1.9× speed up gain and 2.4× energy
reduction, but requires a high data parallelism (all words active) to
achieve these gains, as presented in [7, 12]. For further system inte-
gration, IMC feature has been integrated within cache architecture
as proposed in [20], nevertheless, the programming model of IMC
through the cache is not explicit and large vector operations are
not supported. For ease of software integration, specific Instruction
Set Architecture (ISA) for IMC has been proposed and evaluated at
functional-level on a single IMCmemory instance in [14]. For larger
dataset, integration of multiple tiles of IMC or NMC has not been
explored in a systematic way in terms of memory organization and
performance trade-offs. In this paper, we propose a reconfigurable
organization of CIM memory tiles, for vector based parallelism
acceleration using a standard programming model.

2.2 Reconfigurable Architecture
For reconfigurable computing, FPGAs are composed of tiles of
logic, using Look-Up-Table (LUT) and tiles of SRAM, called Block
RAM (BRAM). FPGAs are designed for emulating any logic and
memory functions while the proposed reconfigurable C-SRAM
tiles are made of rather similar elements, but organized to act as
an energy efficient vector accelerator. In past years, many vector
processors and associated configurable architectures have been
proposed [22], but they still rely on a register semantic and their
vector width is limited to their local SRAM data bus. The proposed
reconfigurable C-SRAM tiles architecture avoids register transfers
by maintaining data within the local SRAMs and the vector width
can be configured to the maximum number of available tiles.

3 RECONFIGURABLE CIM ARCHITECTURE
3.1 Architecture Overview
As shown in Figure 1, the C-SRAM cluster consists of multiple
tiles of C-SRAM disposed in a physical array. Each C-SRAM tile is
composed of : the SRAM itself, a Local ALU (Arithmetic Logic Unit)
for near-memory operation, a Local FSM (Finite State Machine) for
pipeline control and finally a Vertical Transfer unit. For application
mapping facility, the physical C-SRAM array can be logically re-
configured in two manners : either for horizontal vector extension
to create larger vectors using the Tile Address Mapper unit ; or for
vertical vector extension to create more vectors using the vertical
connections and the Vertical Transfer unit. Each C-SRAM tile stores
and computes data on a 128-bit vector width in one instruction. Us-
ing the horizontal scalability, up to 2048-bit vectors can be handled
in a single cycle. We detail these mechanisms in section 3.2.

For overall control at cluster level, the total vector width is con-
figured by the Tile Address Mapper unit, while the Global Pipeline
Dispatcher unit resolves data hazards and conflicts between inter-
leaved SRAM accesses and CIM instructions. Every CIM instruction
passes through a 5-stage pipeline made up of (1) Decode, (2) Read
left operand, (3) Read right operand, (4) Execute the operation and
(5) Write back into the memory. This C-SRAM cluster array is seen
as an co-processor unit, and is integrated onto a standard system
bus. It is controlled by a CPU (Central Processing Unit) engine with
its tightly coupled data and instruction memories.

3.2 Inter-tiles Reconfiguration and Vertical
Communication

For data-centric kernel, such as matrix multiplication shown in List-
ing 1, reduction operations (perform the same operation between
the elements composing the vector) can be costly when computing
on large vectors. The proposed architecture can dynamically resize
the vector width during execution for each instruction. Actually,
as shown in Figure 2, the kernel defines logical vector width used
as in the layout ➌, then the next instruction uses sub-vectors as
in the layout ➋. After performing an addition between these sub-
vectors, the last instruction splits the vector as in ➊, to complete
the operation reduction in a 512-bit vector. To maintain instruc-
tion throughput, the Tile Address Mapper ensures the vertical data
movement between tiles and the Global Pipeline Dispatcher orders
instruction to avoid pipeline data hazards.



Reconfigurable Tiles of Computing-In-Memory SRAM Architecture for Scalable Vectorization ISLPED ’20, August 10–12, 2020, Boston, MA, USA

A1 A2 A3 A4 C1 C2 C3 C4

B1 B2 B3 B4 D1 D2 D3 D4

C1 C2 C3 C4

D1 D2 D3 D4

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 C2 D3 D4

512 bits

1024 bits

0x
40

0
0x

20
0

A1 A2 A3 A4 C1 C2 C3 C4 B1 B2 B3 B4 D1 D2 D3 D4

B3 B4 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

0x
10

0

Logical Vector Width = 2048 bits
3

2

1

[1x16]

[2x8]

[4x4] Physical view

Logical vector width

Vertical vector address range

Vertical data transfer,
between computing tiles
(through vertical multiplexers)

Horizontal vector extension,
composing a computing tile,
(through tile address mapper)

Figure 2: Physical and logical view for 3 vector configura-
tions: ➊ 512-bit, ➋ 1024-bit and ➌ 2048-bit wide.

Tile Address Mapper – Assembling these C-SRAM tiles hori-
zontally permits to realize vectorized computation by distributing
the same CIM instruction to all the tiles. Moreover, the Tile Ad-
dress Mapper allows 32-bit sequential access to all C-SRAM in a
horizontal way. In Figure 2, the vector size is scalable from 512 bits
up to 2048 bits with a 128-bit step, thus offering an address range
that extends from 1024 vectors of 512 bits to 256 vectors of 2048
bits. Thanks to this vector approach, computations are performed
in an aligned and vertical way. By using a memory partitioning
into smaller tiles, the Tile Address Mapper allows to scale the ar-
chitecture with some limits: energy cost of individual accesses is
inversely proportional to the read access time. In terms of physical
design, the Tile Address Mapper provides an energy/performance
trade-off as long as the number of tiles is limited [9].

Vertical Transfer Multiplexer – For data transfer between
tiles, two additional vertical interconnections of 128 bits width
each redirect a large vector of data respectively in the upper or
lower direction. For example, in tiling configuration ➋, a vector that
moves from tiles A to tiles B implies that the 1024-bit data will be
transferred through rows of multiplexer via the down path of eight
C-SRAM tiles. The vertical transfer is done in the second pipeline
stage, within the read cycle, before the computation cycle.

Data placement and off-chip memory – To read or write a 32-
bit data from the CPU, the Tile Address Mapper selects the aligned
C-SRAMaccording to various layout set-up, as presented in Figure 2.
At software-level, the Tile Address Mapper can stride addresses in
memory to optimize internal data transfer which impacts the vec-
torization performance. In the proposed architecture, all memories
(SRAM and C-SRAM) are on-chip memories in order to evaluate
kernel acceleration. Nevertheless, data movement from off-chip
memories should also be considered to evaluate larger datasets.

3.3 ISA and Programming Model
To use an abstract model from the user’s point of view, a dedicated
ISA for the IMC architecture is detailed in [14]. In this paper, we

Listing 1: Example of Matrix Multiply kernel in language C.

1 /* Typedef used for C-SRAM scalable vector size */
2 typedef CSRAM_Vect_t Mat[N][N / VECTOR_SIZE];
3 /* Memory map define with sections */
4 __attribute__((section(".csram"))) Mat A, B, C;
5 /* Exemple of NxN Matrix Multiply for SIMD & C-SRAM */
6 for(int i = 0; i < N; i++)
7 for(int j = 0; j < N; j++) {
8 int sum = 0;
9 for(int k = 0; k < N / VECTOR_SIZE; k++) {

10 vmul8(tmp[k].v, A[i][k].v, B[j][k].v);
11 vreduce_add8(sum, tmp[k].v);
12 }
13 C[i][j/VECTOR_SIZE].i8[j%VECTOR_SIZE] = sum;
14 }

Listing 2: 8-bit chunk vector multiply macro applied per
tiles for a configured vector size, up to 2048 bits.

1 #define vmul8(D, A, B) do { \
2 volatile uintptr_t* cm_addr = MAKE_ADDR(OPC_MUL8, D); \
3 uintptr_t cm_data = MAKE_DATA(A, B); \
4 *cm_addr = cm_data; /* <=> store instruction */ \
5 asm("" ::: "memory"); /* memory fence */ \
6 } while(0)

demonstrate the extensibility of this ISA with a multi-tile imple-
mentation, without changing the design of the CPU and couple
our multi-tile architecture on a standard 32-bit system bus. From
the execution point a view, sending a compute instruction to the
C-SRAM is equivalent to writing a specific data to a specific address
in a memory (store instruction). From the software-level point of
view, we implement our C-SRAM ISA as a library written in C/C++,
as written in Listing 2, that can be included in any C/C++ compiler
tool chain (clang, gcc, riscv-gcc). In addition, we define a new vector
format type (CSRAM_Vect_t) which ensures the data alignment
inside the targeted memory area, as proposed in Listing 1. This
method is used for both SIMD and CIM software evaluation. Thus,
macro definitions as in Listing 1 and inlined functions allow to be
SIMD-compatible whatever the vector size is. Since the same level
of vector parallelism is targeted, the proposed programming model
permits to reuse directly low level vectorized kernels already writ-
ten for SIMD architecture for our proposed CIM architecture. This
avoids the tedious work of application mapping and parallelism
extraction.

4 SIMULATION PLATFORM
Previous works on IMC have used Low Level Virtual Machine
(LLVM) as a high level compiler tool chain for high level perfor-
mance profiling of the IMC [13]. Nevertheless, it lacks detailed
modeling of instruction control flow and memory sizing with re-
gards to application needs. In order to provide a fast and flexible
modeling platform of the architecture, we propose in this paper a
simulation platform using SystemC Transaction-Level Modeling
(TLM) abstraction [1]. In order to perform an accurate exploration
at system-level, we extract all performance and energy values from
Place&Route design experiments using Global Foundries (GF) 22nm
FDSOI technology node.



ISLPED ’20, August 10–12, 2020, Boston, MA, USA Gauchi et al.

Figure 3: Hardware/Software Simulation Platform.

4.1 Simulation Platform Overview
The proposed simulation platform is composed of both hardware
and software related layers, as shown in Figure 3. On the top, the
software layer relies on the C/C++ C-SRAM library, a Linker De-
scriptor (LD) script and the user program in a GCC tool chain to
create an Executable and Linkable Format (ELF) file. On the bot-
tom, the hardware layer simulates the architecture behaviour and
memory transactions between hardware components, as presented
in Section 3.

Software Layer – To run our target applications on our plat-
form, we use the same riscv-gcc compiler tool chain as the actual
hardware. The C-SRAM ISA library consists of macro definitions
and inlined functions to emulate a vector format such as SIMD,
but expandable up to 8192 bits wide. The LD script file define the
memory map by specifying the program (text), the data (SRAM)
and the CIM (C-SRAM) sections.

Hardware Layer – For RISC-V modeling, we use an open source
instruction-accurate Instruction Set Simulator (ISS) developed by
Western Digital [2]. This ISS is wrapped in SystemC/TLM platform
and execute the binary ELF file given by the compiler. By using
SystemC/TLM, wemodel all other hardware components with cycle
accuracy, including the C-SRAM, the Global Pipeline Dispatcher,
the Tile Adress Mapper, and all other sub-system accesses and asso-
ciated latencies. For power modeling, we inherit the TLM Power
library [15], allowing to annotate power values of all elements,
including idle state and leakage values.

4.2 Simulation Platform Calibration
Regarding the physical scalability of the multi-tile memory archi-
tecture, we have evaluated the wiring cost and the correct trade-off
between C-SRAM tile size and tile performance. As presented in [9],
a wiring cost and energy model based on Place&Route shows the
scalability of multiple SRAM tiles: for a 256 kB of total memory
size, composing an 4×16 array of 4 kB tile, the wiring cost between
tiles is about 50% in read access time, while partitioning in array
allows to save massive dynamic power. The C-SRAM architecture

Table 1: Energy details in 22nm FDSOI used for simulations.

Module name
Average of extracted energy values (pJ)

Core Memory
Compute(s) Fetch Read Write

Inter-connect (on-chip) – 1.63 1.63 1.63
RISC-V core [2.24, 4.83] 1.92 – –
SRAM (4kB, 32-bit access) – – 4.20 4.20

128-bit C-SRAM (4kB, 32-bit access) [3.41, 7.21] – 4.32 6.48

128-bit SIMD (128-bit access) [8.96, 19.32] 1.92 16.80∗ 16.80∗

256-bit SIMD (256-bit access) [17.92, 38.64] 1.92 33.60∗ 33.60∗

512-bit SIMD (512-bit access) [35.84, 77.28] 1.92 67.20∗ 67.20∗
∗SRAMmemory access in one instruction. Notes: RISC-V numbers are adapted from [5]
in GF 22nm, C-SRAM numbers are from Place&Route results under GF 22nm in [17]
and SIMD instruction numbers are adapted according to the bus width as explained in
Section 5.2.

integrates both IMC operations (bitwise logic) and NMC operations
(ADD,MULT ). It has been designed in a GF 22nm FDSOI technology
and implemented with different floor-plans configurations up to fi-
nal Place&Route [17]. We have selected a 4 kB SRAM configuration:
the C-SRAM single tile performance numbers (timing and energy
access) are extracted for the multi-tile architecture exploration. In
this paper, we ensure that all evaluated architectures operate at
the same frequency and each timings (for memories and core) are
constrained using the same parameters, in order to extract energy
values summarized in the Table 1.

As a summary of all related design performances, each row of
Table 1 represents a hardware component converted into TLM
module that have different energy states (Compute, Fetch, Read,
Write). For instance, all instructions perform by the RISC-V core
(Compute) are fetched (Fetch) from the SRAM (instruction) memory
and all CIM instructions are executed in each C-SRAM (Compute).
These energy values are given according to the instruction types.

5 ARCHITECTURE BENCHMARKING
Using the proposed simulation platform, we study five kernels rep-
resenting different application profiles in terms of memory patterns
and computing requirement. All our application evaluations use
the same vectorized code using gcc (7.4.0) and riscv-gcc (7.2.0) com-
pilers at optimization level 3, forcing SIMD vectorization by using
intrinsics on Intel’s Xeon processor.

5.1 Kernels with Scalable Vectorization
Hamming Weight (hw) [8] is a kernel used in information theory
applications to count the number of ones after performing a XOR
operation between two vector of bits (using AND, SRL, ADD, SUB
operators). Shift-OR (so) [8], is a kernel used in bio-informatic
applications to match a pattern in a DNA sequence. It prepares a
set of bit-masks saving each position of the pattern element and
shifts those bit-masks through the DNA sequence with bitwise op-
erators (OR, AND, SRL, SLL) to match the position. PolyBench [18]
is a collection of benchmarks used for evaluating polyhedral prob-
lems and improve auto-parallelization of compilers. By using 8-
bit fixed-point addition and multiplication instructions, we assess
three Basic Linear Algebra Sub-programs as: atax, a matrix trans-
pose and vector multiplication kernel as 𝐴𝑇 .𝐴𝑥 , gemm, a matrix-
multiply as 𝐶 = 𝛼.𝐴.𝐵 + 𝛽.𝐶 kernel and 3mm, three matrix-multiply



Reconfigurable Tiles of Computing-In-Memory SRAM Architecture for Scalable Vectorization ISLPED ’20, August 10–12, 2020, Boston, MA, USA

1

10

100

1000

Sp
ee

d 
Up

[×
] (

lo
g) 512

512

1024

2048
4096

8192

(a)
hw

1

10

100

1000

512
512

1024

2048

4096

8192(b)
so

1

10

100

1000

512
512

1024

2048

4096

8192(c)
atax

1

10

100

1000

512
512

1024

2048

4096

8192(d)
gemm

1

10

100

1000

512
512 512

1024
1024

2048

(e)
3mm

10

1k

100k

10M

M
em

or
y 

Re
qu

es
ts

[#
] (

lo
g)

(f)

10

1k

100k

10M (g)

100

10k

1M

100M (h)

100

10k

1M

100M (i)

100

10k

1M

100M (j)

8 16 32 64 128 256
Data Set Size [kB] (log)

0

20

40

60

80

En
er

gy
 R

ed
uc

tio
n

[×
]

(k)

8 16 32 64 128 256
Data Set Size [kB] (log)

0

20

40

60

80 (l)

8 16 32 64 128 256
Data Set Size [kB] (log)

0

20

40

60

80 (m)

8 16 32 64 128 256
Data Set Size [kB] (log)

0

20

40

60

80 (n)

8 16 32 64 128 256
Data Set Size [kB] (log)

0

20

40

60

80 (o)

This work SIMD 512 bits SIMD 256 bits SIMD 128 bits Baseline 32 bits (Scalar) Off-chip Memory Bandwidth Limit

Figure 4: Simulation results of execution speed up, memory requests and energy reduction of five kernels, compared to the
scalar architecture (RISC-V with SRAM). Each label (in Speed Up) represents the CIM vector width (in bit) for each data set size.

as 𝐸 = 𝐴.𝐵; 𝐹 = 𝐶.𝐷 ;𝐺 = 𝐸.𝐹 . These five kernels represent different
application profiles in terms of memory patterns and computing
requirement.

5.2 SIMD Comparison Methodology
To evaluate SIMD programs on Intel’s SIMD processors, we use
Pin-3.11 [16], a dynamic binary instrumentation program developed
by Intel. Thanks to the set of analysis tools provided, we extract and
log CPU/SIMD instructions and memory accesses sorted by vector
width for SSE2 (SIMD 128 bits), AVX-2 (SIMD 256 bits) and AVX-512
(SIMD 512 bits). Using this instruction level profiling, we obtain
an instruction level analysis and, based on values established in
Table 1, we evaluate each SIMD power state proportional to the bus
width access. For example, an instruction of 512-bit SIMD access to
16 data of 32 bits is equivalent in energy to 16 times the memory
access of the RISC-V core. All SIMD instructions including control
flow and standard memory accesses are also counted and their cost
evaluated.

5.3 Architecture Exploration Results
In Figure 4, we compare four architectures against the baseline
RISC-V scalar architecture for different data set sizes and report
execution speed up, memory requests and energy reduction. For
both SIMD and CIM architectures, all data are pre-loaded in their
256 kB associated SRAMs, and the CIM cluster set-up is a 4×16 array
of 4 kB tile enabling an horizontal scalability of 512-bit up to 8192-
bit vector width. For each data set size, the maximum vectorization
width is configured for each architecture and the labels in the speed
up results represent the CIM vector width used. For small data set
(8 kB and 16 kB), vectorization is limited to 512 bits, where CIM
and SIMD architectures are compared for the same 512-bit width.

Table 2: Memory accesses / instruction analysis of the scalar
baseline to identify memory and compute bound kernels.

Kernel hw so atax gemm 3mm
Memory Accesses (%) 9.1 2.3 27.6 37.1 28.4
Compute Instructions (%) 90.9 97.7 72.4 62.9 71.6

For larger data sets, the largest CIM vector width is selected (up to
8192 bits) while compared to the maximum SIMD available width.
Regarding the Table 2, the so and hw kernels refer as compute
bound kernels and atax, gemm and 3mm refer as memory bound
kernels.

Speed Up Exploration (a,b,c,d,e) – At equivalent vector width
(8 kB and 16 kB), the execution speed up shows that the CIM archi-
tecture has gains close to the 512-bit SIMD architecture. This minor
difference is due to the additional control flow of the proposed ISA,
necessary to execute the instructions in memory (constants, loop
preparation). However, the CIM architecture continues to increase
its speed up using larger vectors, wider than 512 bits for larger data
sets contrary to SIMD architectures, limited to 512 bits. Data de-
pendencies in memory bound kernel are mostly resolved by using
the dynamic tiling configurations from 8192-bit down to 512-bit for
reduction operations as explained in 3.2.

External Memory Bandwidth Limitation (a,b,c,e) – For mod-
eling external memory access, we propose a simple bandwidth
limitation using an 10 GB/s memory bandwidth (LPDDR4). By con-
sidering the data movement from an external memory, the top-line
represents the minimum time to transfer the data set in the cluster
compared to the execution time. For all kernels besides hw and
atax, this limitation is not reached, which means that enough
memory bandwidth is available to feed the kernel. Even using CIM
architecture, off-chip memory accesses is still a concern.



ISLPED ’20, August 10–12, 2020, Boston, MA, USA Gauchi et al.

8 16 32 64 128 256
Data Set Size [kB] (log)

0

5

10

15

20

E.
D.

P.
 R

ed
uc

tio
n 

[×
]

512
512

1024

2048

4096
8192

(a)
hw

8 16 32 64 128 256
Data Set Size [kB] (log)

0
10
20
30
40
50
60

512
512

1024

2048

4096

8192

(b)
so

8 16 32 64 128 256
Data Set Size [kB] (log)

0
10
20
30
40
50
60

512
512

1024

2048

4096

8192
(c)

atax

8 16 32 64 128 256
Data Set Size [kB] (log)

0
10
20
30
40
50
60

512
512

1024
2048

4096

8192
(d)

gemm

8 16 32 64 128 256
Data Set Size [kB] (log)

0

5

10

15

20

512
512

512
1024

1024

2048

(e)
3mm

This work
SIMD 512 bits

Figure 5: Simulation results of EDP reduction compared to the 512-bit SIMD. Each label is the CIM vector width used (in bit).

Memory Requests Exploration (f,g,h,i,j) – The CIM architec-
ture strongly reduces the number of standard memory requests
(read/write) with the CPU. However, for memory bound kernel,
additional memory accesses are still required to complete the re-
duction operation. For a data set size of 256 kB, the vectorization of
the 3mm kernel allows a maximum vector of 2048 bits with the CIM
architecture, thus having more reduction operation and smaller
speed up gain than the other kernel for this data set size.

Energy Reduction Exploration (k,l,m,n,o) – Contrary to the
SIMD architecture, the CIM architecture continues to increase its
speed up while still maintaining a high energy reduction, thanks to
the reduction of data movement between processor and memory
replaced by the vertical data transfers between C-SRAM tiles. By
using an 8192-bit vector width on atax kernel, the CIM architecture
achieves energy reduction of 75× and 4.3× compared to the scalar
baseline and the 512-bit SIMD architectures respectively.

Energy Delay Product Reduction Exploration – The Figure 5
presents the relative EDP reduction of the CIM architecture com-
pared to SIMD 512 bits architecture using the same exploration
methodology as in Figure 4. For memory bound kernels, an EDP
reduction up to 60× is achieved, while for compute bound kernels,
where more control flow is still required, an EDP reduction of 34×
is achieved. Finally, the EDP gain of hw kernel for the CIM archi-
tecture is limited due to the external memory bandwidth limitation
as discussed before.

6 CONCLUSION
In this paper, we proposed a reconfigurable and scalable vector-tile-
based architecture and a simulation platform to evaluate the benefits
of CIM. Our solution allows to implement computing applications
requiring vector acceleration, without changing the overall architec-
ture and reusing vectorized kernels already written for SIMD archi-
tectures. For each kernel, performance gains are achieved thanks to
large vectorization in line with the application kernel. The proposed
horizontal reconfigurability and vertical communication scheme
allow to select the optimal vectorization width for maximum per-
formance, while the SIMD is limited with the maximum width of
512 bits. Using equivalent vector-based instructions, compared to
512-bit SIMD architecture, the CIM architecture achieves an EDP
reduction up to 60× and 34× for memory bound kernels and for
compute bound kernels, respectively. This architecture is a possible
option towards refining the N3XT architecture [19], integrating
fine grain distributed computing within the 3D memory-computing
system. For future works, we will implement the physical design
of our reconfigurable vector-tile-based CIM architecture, compare

it to other vector architectures, and explore kernels with 3D data
movement using larger data sets.

REFERENCES
[1] 2012. IEEE Standard for Standard SystemC Language Reference Manual. IEEE

Std 1666-2011 (Revision of IEEE Std 1666-2005) (Jan. 2012).
[2] 2018. Western Digital’s Open Source RISC-V SweRV Instruction Set Simulator.
[3] A. Agrawal et al. 2018. X-SRAM: Enabling In-Memory Boolean Computations

in CMOS Static Random Access Memories. IEEE Transactions on Circuits and
Systems I: Regular Papers (2018).

[4] K. C. Akyel et al. 2016. DRC2: Dynamically Reconfigurable Computing Circuit
based on memory architecture. In IEEE International Conference on Rebooting
Computing (ICRC).

[5] J.-F. Christmann et al. 2019. A 50.5 ns Wake-Up-Latency 11.2 pJ/Inst Asynchro-
nous Wake-Up Controller in FDSOI 28 nm. Journal of Low Power Electronics and
Applications (2019).

[6] Q. Dong et al. 2017. A 4 + 2T SRAM for Searching and In-Memory Computing
With 0.3-V VDDmin. IEEE Journal of Solid-State Circuits (2017).

[7] C. Eckert et al. 2018. Neural Cache: Bit-Serial In-Cache Acceleration of Deep
Neural Networks. InACM/IEEE International Symposium on Computer Architecture
(ISCA).

[8] S. Faro et al. 2013. The Exact Online String Matching Problem: a Review of the
Most Recent Results. ACM Computing Surveys (CSUR) (2013).

[9] R. Gauchi et al. 2019. Memory Sizing of a Scalable SRAM In-Memory Computing
Tile Based Architecture. In IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC).

[10] S. Hamdioui et al. 2015. Memristor based computation-in-memory architecture
for data-intensive applications. In Design, Automation & Test in Europe Conference
& Exhibition (DATE).

[11] M. Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about
it). In IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC).

[12] J. Wang et al. 2019. A Compute SRAM with Bit-Serial Integer/Floating-Point Op-
erations for Programmable In-Memory Vector Acceleration. In IEEE International
Solid-State Circuits Conference (ISSCC).

[13] M. Kooli et al. 2017. Software Platform Dedicated for In-Memory Computing
Circuit Evaluation. In IEEE/ACM International Symposium on Rapid System Proto-
typing (RSP).

[14] M. Kooli et al. 2018. Smart instruction codes for in-memory computing architec-
tures compatible with standard SRAM interfaces. In Design, Automation & Test
in Europe Conference & Exhibition (DATE) (Dresden, Germany).

[15] H. Lebreton et al. 2008. Power Modeling in SystemC at Transaction Level,
Application to a DVFS Architecture. In IEEE Computer Society Annual Symposium
on VLSI.

[16] G. Lueck et al. 2012. PinADX: An interface for customizable debugging with
dynamic instrumentation. International Symposium on Code Generation and
Optimization (CGO) (2012).

[17] J.-P. Noel et al. 2020. Computational SRAM Design Automation using Pushed-
Rule Bitcells for Energy-Efficient Vector Processing. In Design, Automation & Test
in Europe Conference & Exhibition (DATE).

[18] L.-N. Pouchet. 2015. PolyBench/C, the Polyhedral Benchmark suite.
[19] M. M. Sabry Aly et al. 2019. The N3XT Approach to Energy-Efficient Abundant-

Data Computing. Proc. IEEE (2019).
[20] William Andrew Simon et al. 2019. BLADE: A BitLine Accelerator for Devices

on the Edge. Proceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI)
(2019).

[21] G. Singh et al. 2018. A Review of Near-Memory Computing Architectures:
Opportunities and Challenges. In 21st Euromicro Conference on Digital System
Design (DSD).

[22] N. Stephens et al. 2017. The ARM Scalable Vector Extension. IEEE Micro (2017).


	Abstract
	1 Introduction
	2 Related Work
	2.1 In and Near Memory Computing
	2.2 Reconfigurable Architecture

	3 Reconfigurable CIM Architecture
	3.1 Architecture Overview
	3.2 Inter-tiles Reconfiguration and Vertical Communication
	3.3 ISA and Programming Model

	4 Simulation Platform
	4.1 Simulation Platform Overview
	4.2 Simulation Platform Calibration

	5 Architecture Benchmarking
	5.1 Kernels with Scalable Vectorization
	5.2 SIMD Comparison Methodology
	5.3 Architecture Exploration Results

	6 Conclusion
	References

