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Doppler harmonic generation of a high-power laser on a relativistic plasma mirror is a promising path
to produce bright attosecond light bursts. However, a major challenge has been to find a way to generate
isolated attosecond pulses, better suited to timed-resolved experiments, rather than trains of pulses. A promising
technique is the attosecond lighthouse effect, which consists in imprinting different propagation directions to
successive attosecond pulses of the train, and then spatially filtering one pulse in the far field. However, in the
relativistic regime, plasma mirrors get curved by the radiation pressure of the incident laser and thus focus the
generated harmonic beams. This increases the harmonic beam divergence and makes it difficult to separate the
attosecond pulses angularly. In this article, we propose two novel techniques readily applicable in experiments
to significantly reduce the divergence of Doppler harmonics, and achieve the generation of isolated attosecond
pulses from the lighthouse effect without requiring few-cycle laser pulses. Their validity is demonstrated using
state-of-the-art simulations, which show that isolated attosecond pulses with 10 TW peak power in the XUV
range can be generated with PW-class lasers. These techniques can equally be applied to other generation
mechanisms to alleviate the constraints on the duration on the laser pulses needed to generate isolated attosecond
pulses.

DOI: 10.1103/PhysRevResearch.2.043007

I. INTRODUCTION

High-order harmonic generation of femtosecond lasers has
been key to the advancement of attosecond science [1]. This
physical process occurs when focusing an intense femtosec-
ond laser in different media, such as atomic or molecular
gases [1], bulk crystals [2], or overdense plasmas generated
at the surface of solid targets [3,4]. In all cases, the general
picture is the same: due to the high laser intensity, the strong
nonlinear optical response of the medium to the incident field
periodically distorts the waveform of the transmitted or re-
flected field, resulting in a spectrum of a high-order harmonics
in the frequency domain. Filtering off the fundamental laser
frequency, one can then obtain a train of sub-fs pulses in
the time domain, provided the induced waveform distortion
is localized in time within each laser optical cycle.

In overdense plasmas, the harmonic generation processes
require very high laser intensities (I > 1016 W/cm2) at which
the initial solid target is turned into a so-called plasma mirror
[5,6] (abbreviated PM in the reminder of this article) that
can specularly reflect the incident light. Two main harmonic
generation processes on PM have been identified in the lit-
erature, depending on laser intensity. The first one called
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“coherent wake emission” (CWE) [7] starts occurring at mod-
erately high intensities (I � 1016 W/cm2) and is triggered by
laser-driven electron bunches that excite collective electronic
plasma oscillations in the density gradient between vacuum
and the plasma bulk.

The second mechanism, called “relativistic oscillating mir-
ror” (ROM) [4,8–13], occurs at even higher intensities (I >

1018 W/cm2) at which the laser drives periodic oscillations of
the PM surface at relativistic velocities. These periodic oscil-
lations induce a Doppler effect on the reflected field, which
is responsible for the waveform distortion mentioned above.
As plasmas can sustain arbitrary large electromagnetic field
amplitudes, the ROM mechanisms is expected to scale with
laser intensity and produce very bright attosecond light pulses
that could be used to perform attosecond pump-attosecond
probe experiments on electron dynamics in matter. Yet a
major difficulty to overcome with this harmonic source is to
produce isolated attosecond pulses, better suited to perform
time-resolved experiments, rather than trains of pulses.

Some evidence for the generation of such isolated at-
tosecond pulses have recently been reported, using few-cycle
long laser pulses [14–17] to drive the laser-plasma interaction
[18,19]. The short duration of the driving laser pulse, com-
bined with the strong nonlinearity of the generation process,
ensures that one attosecond pulse only is produced if the high-
est harmonic orders are selected—a scheme called intensity
gating. Such few-cycle laser pulses are, however, extremely
difficult to produce at ultrahigh laser intensities: they require
custom-made state-of-the-art laser systems, whose powers are
still far below the present records achieved by more conven-
tional systems delivering pulse durations of the order of 6 to
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15 optical periods. Other approaches are thus needed to fully
exploit the potential of relativistic plasma mirrors driven by
multi-PW lasers.

More advanced gating techniques have been developed to
generate isolated attosecond pulses, either to alleviate the con-
straint on the duration of the driving laser pulse, or to extend
the range of harmonics that can be selected [20–26]. Among
those, a general gating technique, called the attosecond light-
house effect [23,24,27,28], consists in applying a controlled
spatiotemporal coupling called wavefront rotation (WFR) [29]
to the driving laser at focus: the direction of the incident laser
light varies linearly in time along the femtosecond envelop
of the laser pulse. Due to this temporal rotation, successive
attosecond light pulses are emitted in slightly different di-
rections. If the angular separation between two successive
attosecond pulses is high enough, one can then obtain an
isolated attosecond pulse in the far field by simply placing a
slit to spatially select one pulse of the train. Considering that
all attosecond pulses are emitted in the divergence cone of the
incident laser, the total number of attosecond pulses that can
be isolated with this scheme (or equivalently the maximum
laser duration that can be used) is simply given by the ratio
θL/θn of laser and harmonic beam divergences.

However, for Doppler harmonics produced by a ROM, it
has been shown that laser radiation pressure curves the PM
surface [30,31], leading to an enhanced harmonic divergence
and a ratio θL/θn of the order of unity (for laser-plasma con-
ditions optimizing harmonic generation). Obtaining isolated
attosecond pulses through the lighthouse effect in the ROM
regime would thus require high-power laser pulses with du-
rations of at most two cycles, with limited benefits compared
to conventional intensity gating. This has severely hindered
the use of the attosecond lighthouse scheme in the ROM
regime, for which no experimental demonstration has yet been
reported.

In this article, we propose two techniques to significantly
reduce the divergence of Doppler harmonics, and implement
the gating of isolated attosecond pulses with the attosecond
lighthouse effect in the ROM regime. We emphasize that these
schemes are not specific to the ROM mechanism—although
they are particularly relevant in this case—but equally apply to
any type of source of attosecond pulses. These two techniques
require a simple tuning or tailoring of the driving laser phase
or amplitude profile (on top of the applied WFR), which is in
both cases achievable with current experimental know-how.
This article is divided as follows.

(i) In Sec. II, we remind the limitations of the attosecond
lighthouse effect in the ROM regime in a more quantitative
way.

(ii) In Sec. III, we present a technique to reduce harmonic
beam divergence by tuning the wavefront curvature of the
incident laser.

(iii) In Sec. IV, we present a second technique to reduce
the harmonic beam divergence by tailoring the amplitude pro-
file of the incident laser beam.

(iv) In Sec. V, we perform a three-dimensional (3D)
numerical experiment with the particle-in-cell (PIC) code
WARP+PXR to validate the first technique and provide quan-
titative estimates of the properties of the isolated attosecond
pulses that could be obtained with a PW-class laser.

FIG. 1. Principle of the attosecond lighthouse effect: separation
criterion. The incident laser beam is shown in red and the multiple
attosecond beamlets generated through the highly nonlinear interac-
tion are shown in purple. The wavefront rotation (WFR) of the laser
field at focus is sketched in the upper inset.

II. LIMITATIONS OF THE LIGHTHOUSE EFFECT IN THE
RELATIVISTIC REGIME

A. Separation criterion

The spatial separation of two successive attosecond pulses
is possible provided that the angular offset �θ between two
successive attosecond pulses, induced by WFR, is larger than
the divergence θn of the harmonic beam [cf. Fig. 1]

�θ = vr�T � θn, (1)

where vr is the WFR velocity of laser wavefronts at focus
and �T is the time delay between the emission of two suc-
cessive attosecond pulses. �T is equal to the laser period T0

for attosecond pulses emitted on relativistic PMs at oblique
incidence. The velocity vr can be estimated by stating that
during the entire laser pulse, the laser wavefront rotate by
an angle θ0 corresponding to the divergence of the focused
laser beam. This leads to vr = θ0/NT0, where N is the number
of optical cycles in the incident laser pulse. The separation
criterion then writes

θn � θ0/N. (2)

For a given harmonic beam divergence, the above criterion
gives the maximum number of optical cycles Nmax ≈ θ0/θn of
the incident laser pulse up to which it is possible to induce a
clear angular separation of successive attosecond pulses in the
far field with the lighthouse effect.

B. Current limitations in the relativistic regime

At very high laser intensities, the spatially inhomogeneous
radiation pressure exerted by the incident laser field induces
a denting of the PM surface [32,33], resulting in a curvature
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FIG. 2. PM denting by laser radiation pressure. This figure shows
simulation results of a 2D particle-in-cell (PIC) simulation. In this
simulation, the laser impinges on the PM at a 45◦ angle of incidence.
The PM has an exponential density profile of gradient scale length
L = λ0/15. The simulation results are displayed in a special Lorenz
boosted frame [43] where the laser is at normal incidence on the
PM, thereby simplifying the visualization of simulation results. The
gray colorscale represents a snapshot of the PM electron density. The
colorscale represents the generated Doppler harmonic field (zoom on
a single attosecond pulse within the generated train of pulses), where
we filtered harmonic orders 8 to 22.

of this surface [30,31]. This, in turn, results in a curvature
of the harmonic wavefronts, leading to a tight focusing of
the harmonic beam in front of the PM surface [34]. This is
illustrated on Fig. 2 showing a snapshot of the PM electron
density (gray scale) and of the reflected field (color scale)
frequency-filtered from harmonic orders 8 to 22, obtained
from PIC simulations with the pseudo-spectral 3D PIC code
WARP+PXR [35–42].

This significantly increases the divergence of the harmonic
beam. Assuming a Gaussian laser and harmonic beams, it can
be shown that the divergence θn of the nth harmonic beam
writes [31]

θn = θ0
n

√
1 + (nψ )2, (3)

where θ0
n = λn/πwn is the diffraction-limited divergence (i.e.,

without focusing by the PM) and ψ is defined as

ψ = 2π

cos θ

(wn

w0

)2 δp

λ0
(4)

with wn the harmonic beam waist on the PM, w0 the laser
waist, θ laser angle of incidence on the PM, λ0 the laser
wavelength, and δp the parameter describing the denting of
the curved PM as defined on Fig. 2. For a high-enough laser
amplitude a0 � 1, this last parameter is given by

δp ≈ 4L cos θ2, (5)

where L is the scale length of the density gradient at the PM-
vacuum interface. This scale length is a key parameter of the
interaction and is much shorter than the laser wavelength λ0

in the regime of efficient harmonic generation. As L increases,
the local plasma density of the PM decreases, which makes
it easier for the incident laser to dent the PM surface by
radiation pressure. This results in an increased harmonic beam
divergence for large L. Assuming wn = w0, one can show that
for harmonic orders that are focused by the PM (i.e., such that
nψ � 1)

θL

θn
= λ0

8π cos θL
. (6)

FIG. 3. 2D PIC simulations of attosecond pulse emission by a
relativistic PM. Simulation results are displayed in the same boosted
frame as in Fig. 2, where the laser is normally incident on the
PM. Panels (a) and (b): Schematic representation of driving laser
wavefronts. Panels (c) and (d): The colorscale represents the elec-
tromagnetic field of one attosecond pulse of the train, when the
PM surface is placed at the best focus of the laser beam, and at a
distance δz = 0.6Zr after this best focus (Zr Rayleigh length of the
laser beam), respectively. The gray colorscale represents the electron
density of the PM.

For a gradient scale length in the range L ≈ λ0/20 − λ0/8
that optimizes harmonic generation efficiency for laser angles
of incidence between 60◦ and 45◦ [44,45], Nmax = θ0/θn is
thus of the order of 1. This shows that generating isolated
attosecond pulses with the lighthouse effect in laser-plasma
conditions that are optimal for Doppler harmonic generation
is very challenging, as it would require laser pulses with a
duration of the order of one optical cycle. Such single-cycle
pulses are extremely hard to obtain for high-power lasers,
which usually rather provide pulses with durations between
15 and 40 fs (i.e., from 6 to 15 laser periods for a central
wavelength � 800 nm).

To break this barrier, we hereby propose two techniques
to significantly reduce the harmonic beam divergence θn, by
combining WFR with an additional shaping of the spatial
phase or amplitude profile of the incident laser beam.

III. REDUCTION OF HARMONIC DIVERGENCE BY
TUNING THE CURVATURE OF LASER WAVEFRONTS

A. General principle

The general principle of the technique is sketched on Fig. 3
and consists in placing the PM slightly away from the laser
best focus, so that the incident laser wavefronts are curved and
compensate for the wavefront curvature induced by the PM
on the reflected field. To achieve this, the PM must be placed
at a defocusing distance �z > 0 such that the incident laser
wavefronts are diverging in the PM plane, as illustrated on
Fig. 3(b). This compensation scheme has been demonstrated
experimentally in [31], in the absence of WFR.

In the following, we develop a theoretical model from
which we can predict the optimal defocusing distance that
maximizes the ratio between the angular separation of
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successive attosecond pulses and the harmonic beam diver-
gence, as a function of laser-plasma parameters.

B. Model for a Gaussian laser beam with WFR out of focus

Determining the angular separation of attosecond pulses
with the defocusing technique first requires to know the ve-
locity of WFR out of focus. In this section, we derive the
analytical expression of WFR at a distance �z from the laser
best focus (located at �z = 0).

We first remind the properties of a beam with WFR at
best focus, considering a Gaussian laser beam in space and
time. WFR is a spatiotemporal coupling, whose spatiospectral
counterpart is spatial chirp (SC), i.e., the focusing of different
frequencies within the pulse bandwidth at different transverse
positions. These couplings at focus can be easily induced by
applying a spatio-temporal coupling known a pulse front tilt
(PFT) [23,29] on the collimated beam before focusing. PFT
corresponds to a tilt between the wavefront and energy front
of the beam, and is quantified by a parameter ξ , typically
expressed in fs/mm, which can for instance be controlled by
rotating one of the gratings in the compressor of a chirped
pulse amplification laser.

The laser propagates along the direction z and the SC is
induced along the transverse direction x. The laser electric
field at focus writes

E (x, t, z = 0) = E0e−x2/w2
ξ e−t2/τ 2

ξ eiω0t+ik0vξ xt , (7)

where E0 is the field amplitude and vξ is the rotation velocity
of the wavefront at the laser best focus, given by

vξ = ξ/ξ0

1 + (ξ/ξ0)2
v0, (8)

with

v0 = 2

τ0k0w0
(9)

the maximum WFR rotation velocity reached for an optimal
PFT ξ = ξ0 [23] given by

ξ0 = τ0

wi
,

where wi is the laser waist before focusing (i.e., the size of the
unfocused beam), and τ0 is the local duration of the unfocused
beam [46]. At best focus, the local pulse duration is no longer
τ0, but is increased to

τξ = τ0

√
1 + (ξ/ξ0)2. (10)

In addition, due to SC, the spectrally integrated laser focal
spot is elongated along x. The laser waist at focus along the
direction of SC is thus

wξ = w0

√
1 + (ξ/ξ0)2,

while it remains equal to w0 in the other transverse direction.
The corresponding elliptical shape of the focal spot with WFR
will be shown to have important consequences on the spatial
properties of the generated attosecond pulses.

To get the expression of WFR at an arbitrary longitudi-
nal position �z, we propagate the field [initially known at

�z = 0, see Eq. (7)] at position �z using a plane wave de-
composition, and obtain (see derivation in the Appendix)

E (x, t ′ = t − �z/c, z = �z)

∝ e
− k0x2

2(Zξ +i�z) × e
− t ′2

τ2
ξ

[
1+ (ξ/ξ0 )2�z2

�z2+Z2
ξ

]
× e

− i(ξ/ξ0 )2t ′2
τ2
ξ (Zξ /�z+�z/Zξ ) × e

i
[
ω0+ ζx

1+i �z
Zξ

]
t ′

, (11)

where Zξ = πw2
ξ /λ0 is the laser Rayleigh range in the plane

of WFR and ζ = k0vξ is the SC of the laser beam at focus
defined in the spatiospectral domain. The physical meaning of
the different terms in Eq. (11) is explained in the Appendix.

The WFR effect is all contained in the phase of the last
exponential. It can be shown (see Appendix) that the WFR
velocity vξ (�z) at a distance �z from focus is given by

vξ (�z) = vξ

1 + (
�z
Zξ

)2 . (12)

The above equation shows that the WFR velocity decreases
with �z. However, as long as �z is smaller than the laser
Rayleigh range Zξ , this decrease is limited. The above formula
can be used to derive the angular separation of attosecond
pulses generated from a target placed at distance �z from best
focus, through

�θξ (�z) = vξ (�z)T0. (13)

In the following, we combine this result with a model of
harmonic divergence θn(ξ,�z) to find the optimal defocusing
distance beyond which �θξ (�z) > θn(ξ,�z).

C. Model for the harmonic beam spatial phase and divergence

The total harmonic phase in the PM plane along the direc-
tion of WFR can be written [31]

φn(x) = 2πn

λ0

[
x2

2Rξ (�z)
+ x2

2 fξ (�z) cos θ

]
. (14)

The left term at the right-hand side of Eq. (14) accounts for the
spatial curvature of the laser wavefront on the PM. If �z →
0, |Rξ | → ∞ and this term vanishes—this corresponds to the
standard case where PM is placed at best focus. In this case,
the harmonic phase is only governed by the second term on
the right-hand side, corresponding to the phase term induced
by the PM curvature, where

fξ (�z) = wξ (�z)2

4L cos θ2
(15)

is the focal length of the curved PM as derived in [31] with
wξ (�z) the laser beam-waist at position �z as obtained from
Eq. (11) (cf. Appendix).

When �z < 0 (i.e., the laser is focused before the PM),
Eq. (14) shows that the mitigation of the phase term induced
by the PM curvature arises from two physical effects:

(i) the negative quadratic phase term associated to the
wavefront curvature of the laser beam, which tends to com-
pensate the opposite curvature induced by the PM surface;

(ii) an increase of the PM focal length fξ , resulting from
the increase of wξ (�z) as the target surface is moved away
from best focus.
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Both effects lead to a reduction of the harmonic beam
divergence. Using Eq. (14) and following the same approach
as in [31], one can derive a modified model of the harmonic
beam divergence for a defocusing distance �z:

θn(�z, ξ ) = θ0
n (�z, ξ )

×
√

1 + [nψξ (�z)]2

[
1 + fξ (�z) cos θ

Rξ (�z)

]
(16)

with

ψξ (�z) = 2π

cos θ

[
wn(�z, ξ )

wξ (�z)

]2
δp

λ0
(17)

and δp defined by Eq. (5). θ0
n (�z, ξ ) = λn/πwξ (�z) cor-

responds to the diffraction-limited divergence of harmonic
beams when those are generated with the target at a distance
�z from best focus. In the above Eq. (16), the only quantity for
which there is currently no analytical model is the harmonic
source size wn, which depends on laser-plasma parameters. In
the limit of ultra-high laser amplitudes a0 � 1 in the plane
of generation, it was shown that harmonic source sizes (for
harmonic orders below cutoff) hardly vary with harmonic
order [34]. Providing that the optimal defocusing distance �z
is of the order of a laser Raileygh range Zξ (as we show
later on), at which the laser amplitude on target is only de-
creased by a factor

√
2, one can thus reasonably assume that

wn(ξ,�z) ≈ wξ (�z) for a broad range of harmonic orders. At
lower intensities however, one has to rely on PIC simulations
for a more accurate estimation of this quantity.

D. Optimal defocusing distance

The optimal defocusing distance �zξ is reached when the
ratio ηξ (�z) = �θξ (�z)/θn(ξ,�z) is maximized, where �θξ

is given by Eq. (13) and θn by Eq. (16). For a fixed value
of PFT ξ , �zξ can simply be found by solving the following
equation:

dη

d�z
(�zξ ) = 0. (18)

1. Optimal defocusing distance for a fixed PFT

Equation (18) is a third-order polynomial equation in �z
that can be exactly solved numerically. This optimal distance
�zξ depends on laser and plasma parameters—mostly the
laser angle of incidence θ and the plasma density gradient
scale length L.

Actually, one can find a very good analytical approxima-
tion of �zξ by using the facts that (1) �θξ hardly varies with
�z as long as �z � Zξ , and (2) ηξ is maximum when θn is
minimum (i.e., close to its diffraction-limited value θ0

n ). The
second condition occurs when the total harmonic phase φn(x)
defined in Eq. (14) is constant, i.e., when

R(�zξ ) = − fp(�zξ ) cos θ. (19)

Note that according to Eq. (16), this condition is indeed the
one minimizing θn(�z, ξ ). Solving the above equation yields

�zξ = −Zξ

[
1

2�p
+

√
1

4�2
p

− 1

]
(20)

FIG. 4. Optimal defocusing distance as a function of the gradient
density scale length L at the PM surface. The red crosses are obtained
from 2D PIC simulations, and the black dashed line corresponds to
the prediction of Eq. (20) for a laser amplitude a0 = 30 (without
WFR), an angle of incidence θ = 45◦, a laser duration τ0 = 16 fs,
and a PFT parameter ξ = ξ0.

with �p = 4π cos θL/λ0 a dimensionless parameter that only
depends on the laser angle of incidence and PM gradient scale
length L. This solution exists as long as �p � 1/2. Beyond
this limit value, the PM denting phase is not fully compen-
sated by the incident laser phase and one has to rely on the
numerical resolution of Eq. (18) to determine �zξ .

To check the validity of this model, we ran a parameter
scan of two-dimensional (2D) particle-in-cell (PIC) simula-
tions with the WARP+PXR code where we varied the gradient
scale length L and the PM defocusing distance �z. For each
gradient scale length L, we extracted from these simulations
the optimal defocusing distance �zξ (L) that maximizes the
ratio ηξ . These are indicated as red markers on Fig. 4. As
expected, when L is increased, the required defocusing dis-
tance increases due to the augmentation of PM denting (and
thus harmonic divergence) as shown in Eq. (5). One can see
on Fig. 4 that optimal defocusing distances obtained from
simulations match those predicted by the analytical model
(black dashed line) given by equation Eq. (20), except for a
small overall offset.

The main price to pay in experiments for this optimisation
of the ratio ηξ (�z) is a reduction of the peak intensity on
target, and hence of the harmonic generation efficiency. This
intensity reduction can be deduced from the beam waist and
pulse duration provided by Eq. (11), and writes for the optimal
defocusing distance �zξ :

� = 1

1 + (ξ/ξ0)2
× 1

1 + [
1

2�p
+

√
1

4�2
p
− 1

]2
. (21)

The first term on the right-hand side of the above equa-
tion is the intensity decrease due to the introduction of
PFT, while the second term is the intensity decrease due
to the laser defocusing. For ξ = ξ0 (maximizing WFR at
laser focus) and realistic laser-plasma parameters optimizing
harmonic generation (θ = 55◦, L ≈ λ0/15) [45] one finds
� ≈ 3. This intensity reduction does not compromise the
use of this scheme for high-order harmonic generation from
relativistic plasma mirrors: indeed, the current generation of
high-power femtosecond lasers can now deliver intensities
I > 1020 W/cm2, more than two orders of magnitude higher
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FIG. 5. (a) Evolution of ηξ as a function of ξ . The black curve
represents ηξ as given by Eq. (22) for harmonic order n = 20. Red
circles correspond to ηξ obtained from 2D PIC simulations for har-
monic order n = 20. In both cases, we assumed an angle of incidence
θ0 = 55◦, a laser duration τ0 = 16 fs (without WFR), a PM gradient
scale length L = λ0

20 , and a normalized laser amplitude a0 = 30 (at
best focus, without WFR). (b) Evolution of the actual laser amplitude
at the target surface obtained using Eq. (21), with WFR and optimal
defocusing.

than the threshold for Doppler harmonic generation (I �
1018 W/cm2).

2. Effect of PFT on the angular separation of attosecond pulses

At the optimal defocusing distance �z = �zξ , harmonic
divergence reaches its diffraction-limited value and the ratio
ηξ [obtained using results of Eqs. (13) and (20)] writes

ηξ = 2ξ/ξ0√
1 + (ξ/ξ0)2

v0T0/θ
0
n√

1 + [
1

2�p
+

√
1

4�2
p
− 1

]2
. (22)

The evolution of ηξ with ξ as given by Eq. (22) is dis-
played in Fig. 5(a). For ξ < ξ0, when ξ increases, the WFR
velocity increases and the diffraction-limited divergence θn

decreases (due to the increase of the laser waist), resulting in
a rapid growth of the ratio ηξ when ξ increases. For ξ > ξ0,
the rotation velocity now slowly decreases with ξ but the
diffraction-limited divergence θ0

n keeps decreasing. This still
leads to a net increase of ηξ when ξ is increased, yet at a
slower pace.

Attosecond pulses are angularly separated when �θξ > θn,
i.e., ηξ > 1. This occurs starting at ξ ≈ 0.3ξ0. Further increas-
ing ξ leads to a better angular separation quality of attosecond
pulses as illustrated Figs. 6(a) and 6(b), at the cost of a further
reduction of the laser intensity on target [see Fig. 5(b)]. The
amount of PFT ξ needed ultimately depends on the contrast
ratio desired between the main spatially filtered attosecond
pulse and the portions of satellite attosecond pulses that an-
gularly overlap with the main pulse.
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FIG. 6. Angular profiles of Doppler harmonic beams (orders 20
to 30) obtained from 2D PIC simulations for two different pulse-
front tilt values: (a) ξ = ξ0 and (b) ξ = 1.5ξ0. All other laser and
plasma parameters are kept constant otherwise: θ0 = 55◦, L = λ0

20 , a
laser duration τ0 = 16 fs (without WFR, at best focus), and a0 = 30
(at best focus, without WFR). On each panel, the red dots highlight
the direction of emission of the successive attosecond pulses of the
train.

IV. SHAPING THE LASER BEAM SPATIAL INTENSITY
PROFILE

In this section, we propose a second technique to reduce
the divergence of Doppler harmonics, and achieve a good
angular separation of attosecond pulses via the attosecond
lightouse effect. Compared to the defocusing technique, the
main advantage of this second scheme is that the target surface
is kept at the laser best focus, where the beam intensity profile
is usually of much better quality than out of focus and the
WFR velocity is optimal. Yet, as we show in this section, this
technique comes with an additional experimental complexity.

A. General principle

The general principle of this second technique, illustrated
on Fig. 7, relies on shaping the spatial intensity profile of
the incident laser beam at focus. By flattening this profile
[cf. Fig. 7(a)], one can suppress, or at least reduce, the
laser-induced PM curvature, and thus mitigate the associated
increase of harmonic divergence [cf. Fig. 7(b)].

Such a top-hat spatial profile of the laser intensity at focus
can in principle be obtained by tailoring the spatial phase of
the beam before focusing, using either a simple phase plate
[47] or a set of optical paths mirrors [48]. These schemes
have, however, proved difficult to implement efficiently on
high-power femtosecond lasers, even in the TW range. More-
over, they no longer apply in the conditions of the attosecond
lighthouse gating scheme: WFR is unavoidably associated to
SC, and the laser spatial intensity profile at focus is then
partly determined by the laser spectrum. Pure spatial shaping
techniques are then no longer suitable to control the spatial
intensity profile at focus.

In the following, we present a technique that takes advan-
tage of this coupling between spatial and spectral degrees of
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FIG. 7. Illustration of (a) PM denting for a spatially flat laser
beam intensity profile and (b) of the Doppler harmonic beam gen-
erated by such a flat PM.

freedom in the attosecond lighthouse scheme. This could be
used in a rather straightforward way in experiments to flatten
the spatial intensity profile of a laser pulse with WFR, and
relax the constraints for the generation of isolated attosecond
pulses with the lighthouse scheme.

B. Flattening the spatial intensity profile of a laser
pulse with WFR

As explained in Sec. III B, WFR in the space-time do-
main corresponds to SC in the space-frequency domain [cf.
Fig. 8(a)]. In the presence of SC, the laser central frequency
ω0 varies as a function of the transverse position at focus x.
This implies that in the limit of strong SC along direction x,
the laser spatial profile along x at focus actually corresponds
to the spectral profile of the laser pulse—just as in the focal
plane of a spectrometer.

FIG. 8. (a) Intensity of a laser beam with SC (but without any
spectral shaping) in the spatio-spectral domain (x, ω). (b) Spectrally
integrated spatial profile of this beam along the x direction. (c, d)
Same quantities, now with the application of the spectral shaping of
Fig. 9.
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FIG. 9. Effect of spectral shaping on the laser spectrum. The
red curve is the laser spectrum without any spectral shaping. Using
a programmable acousto-optic filter, the gain modulation function
shown in black is applied to the whole beam, leading to the spectrum
plotted in blue. This beam is then shaped spatiotemporally (applica-
tion of PFT) and focused to induce the attosecond lighthouse effect
on target.

As a result, one could exploit SC to tailor the spatial inten-
sity profile of the laser beam at focus, simply by shaping the
laser spectrum. More precisely, this profile could be flattened
by damping the central frequency of the laser pulse as illus-
trated on Fig. 9. Such a spectral shaping is nowadays possible
and rather straightforward using programmable acousto-optic
modulators—such as the Dazzler [49,50]—placed in the front
end of high-power laser systems.

To simulate this scheme, we used the following frequency
filter to damp the central laser frequency

G(ω) = 1 − αe−[(ω−ω0 )× τ0
β

]2

, (23)

α and β are tuning parameters that are used to control the
amplitude as well as the standard deviation of the filter gain
function. Figure 9 illustrates the effect of this filter on the laser
spectrum for α = 0.7 and β = 1.3. These parameters will be
used later on for simulations.

With this technique, an efficient flattening of the spatial
intensity profile is possible, provided that SC is large enough
to ensure a good coupling between spatial and spectral degrees
of freedom. In practice, we found out that an efficient flatten-
ing is possible for a PFT parameter ξ > ξ0. Figure 8 illustrates
the effect of such filtering on the laser spatiospectral profile
at focus, where we assumed an initially Gaussian laser beam
with a PFT ξ = 1.5ξ0 and a beam waist of w0 = 3.2 μm.
Figures 8(a) and 8(b), respectively, show the properties of
such a beam without and with spectral shaping (applied before
focusing). Thanks to SC at focus, the pure spectral filtering
applied before focusing [cf. Fig. 9] damps the laser intensity
mostly around x f = 0, where the local laser frequency is close
to the central frequency ω0 [cf. Fig. 8(c)]. The effect of this
spectral shaping on the laser beam profile at focus is revealed
in Figs. 8(b) and 8(d). The flattening of the laser beam profile
at focus is clear.

In the following, we assume that the filtering operation
conserves the incident beam energy. (This could be achieved
using a Dazzler where the energy of the central frequency
would be redistributed to other frequencies of the pulse.) In
these conditions, the modification of the laser spectrum by the
spectrum only leads to a modest decrease of the maximum
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TABLE I. Physical and numerical setups for simulations used to compare the laser pulse shaping technique with the defocusing technique
and the standard lighthouse scheme. d is the size of the mesh step along all directions, ppcell the number of pseudoparticles per cell, and n0

the bulk PM density (in units of critical density nc). N.B: a0 and τ0 are laser amplitude and laser duration without WFR.

Laser Plasma PIC

Technique a0 θ0 τ0 w0 ξ (ξ0) α β
�zξ
Zξ

L n0 d ppcell

Simple Gaussian beam 0 0 0
Laser defocusing 30 55◦ 16 fs 3.2 μ m 1.5 0 0 −0.31 λ0

20 220nc
λ0
285 6

Intensity shaping 0.7 1.3 0

laser intensity at focus by 30% only, compared to the case
with WFR only. In the next subsection, we conduct 2D PIC
simulations using such laser beam profile to assess the effec-
tiveness of this technique in producing low divergence and
angularly separated attosecond light pulses, and compare it to
the technique of the previous section.

C. PIC simulations of Doppler harmonic generation with a
spatially flattened laser beam

The effect of the spatial flattening of the laser beam profile
on the separation of attosecond light pulses has been inves-
tigated using 2D PIC simulations with the WARP+PXR code.
For this matter, we performed three 2D PIC simulations whose
parameters are summarized in Table I.

(i) Case 1 has been performed employing a standard Gaus-
sian laser beam with WFR to assess the angular separation of
Doppler harmonic beams with the lighthouse effect without
any tailoring of the laser spatial phase or beam profile.

(ii) Case 2 has been performed with the same parameters
as Case 1, but now using the defocusing scheme to optimize
the curvature of the laser spatial phase and reduce harmonic
beam divergence.

(iii) Finally, case 3 has been performed with same param-
eters as Case 1, but using the spatial flattening of the laser
beam profile to reduce harmonic beam divergence.

Note that the same PFT parameter (ξ = 1.5ξ0) has been
used in the three cases.

Figure 10 displays the angular profile of the generated
harmonic beams (harmonic orders 15 to 20) obtained from
each of these simulations. As expected, a standard Gaussian
beam with WFR cannot produce angularly separated light
pulses in the relativistic regime [Fig. 10(a)] due to the large
harmonic divergence.

In contrast, Figs. 10(b) and 10(c) show that a good angular
separation is obtained using either the defocusing technique
or the spatial-flattening one. The comparison of the results of
Case 2 and Case 3 is very instructive.

(1) The angular separation between successive attosecond
pulses is larger in Case 3 than in Case 2. This is because the
WFR is larger when the PM is placed at the laser best focus
(Case 3) than when it is slightly out of focus (Case 2).

(2) The divergence of the individual attosecond pulses is
larger in Case 3 than in Case 2. This is because the focusing ef-
fect of the PM cannot be completely mitigated by the shaping
of the intensity profile (Case 3), while it is fully compensated
by adjusting the laser wavefront curvature (Case 2).

(3) A larger number of attosecond pulses are generated
in Case 2 than in Case 3. This is because the laser pulse is
locally chirped out of focus for Case 2 [see Eq. (11)], while it
is locally Fourier-transform limited at focus for Case 3.

Quantitatively, computing the separation ratio obtained in
case 2 and case 3, respectively, yields ηξ = 1.72 and ηξ =
1.89, thus showing a comparable angular separation quality
between the two techniques.

V. APPLICATION TO A PW-CLASS LASER

In this section, we use 3D PIC simulations to determine
the properties of the attosecond pulses that can be generated
with a PW-class laser by combining the attosecond lighthouse
effect with the defocusing scheme described in Sec. III. This
3D study enables us to
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FIG. 10. Angular profile of the Doppler harmonic beam (be-
tween harmonic orders 15–20) obtained for each simulation case
of Table I. Panels (a) to (c) correspond to simulation cases 1 to 3
(see text and Table I), respectively. On panels (b) and (c), the red
dots highlight the direction of emission of the successive attosecond
pulses of the train.
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TABLE II. Physical/numerical parameters for the 3D-PIC lighthouse simulation. d is the step of the spatial mesh along all directions,
ppcell the number of pseudo-particles per cell and n0 the bulk PM density (in units of critical density nc). N.B: a0 and τ0 are laser amplitude
and laser duration without W FR and at best focus.

Physical parameters

Laser Plasma PIC parameters

a0 θ0 τ0 w0 ξ (ξ0) �zξ (Zξ ) L n0 d ppcell
40 45◦ 22 fs 2.4μ m 1 −0.5 λ0

15 220nc
λ0
190 1

(i) validate the 2D PIC simulations ran in the previous
sections to assess the efficiency of this divergence reduction
technique,

(ii) obtain quantitative estimates of the properties (diver-
gence, energy, duration) of the generated isolated attosecond
pulses, and

(iii) investigate 3D spatial properties of the harmonic
emission that are not accessible with 2D simulations.

A. Physical/numerical setup

For this goal, we performed a single 3D PIC simulation of
the lighthouse effect using the pseudospectral WARP+PICSAR

code. The physical and numerical parameters are summa-
rized in Table II. Taking into account typical energy losses
between the laser output and the target area, this simulation
corresponds to a laser of ≈1PW peak power just after the
compressor. The pulse duration of τ0 = 22 fs prior to the
application of WFR is characteristic of state-of-the-art PW
femtosecond lasers.

In this simulation, the reflected field is captured at each
time step on a probe plane located at a position z0 � 10λ0

from the target surface. This probe field E (x, y, z0, ω) is then
used an an input to calculate the spatial properties of the
harmonic beam E (x, y, z, ω) at any arbitrary plane z, using
plane-wave decomposition. This spectrally resolved 3D prop-
agation postprocessing was computationally very demanding

as the reflected field data occupies hundreds of gigabytes
of memory. We therefore had to develop specific parallel
post-processing tools to parallelize all the distributed Fourier
transforms required in the plane wave decomposition method.

This 3D PIC simulation required 32,768 BLUE GENE-Q
nodes of the MIRA supercomputer at ALCF during 20 hours,
leading to a total of 10 millions core hours for the entire
simulation.

B. Simulation results

Figure 11 represents the angular profiles of the emitted
harmonic beams. WFR occurs along the x axis. The profiles
plotted in the side panels are obtained by integrating the 2D
angular profile along the direction θy.

From the one-dimensional (1D) angular profiles along
θx, one can estimate that ηξ = 1.15 for harmonic orders
>16 [Fig. 11(a)] and ηξ = 1.75 for harmonic orders >26
[Fig. 11(b)]. This shows that the attosecond light pulses are
angularly well separated over a large harmonic range. It also
validates the efficiency of the defocusing technique in re-
ducing the harmonic beam divergence and achieving angular
separation of the successive attosecond pulses of the train with
the lighthouse effect.

On both panels, Fig. 11 shows that the harmonic diver-
gence is larger along the θy direction (orthogonal to the
direction of WFR) than along the θx direction. In other words,

)b()a(

FIG. 11. Angular profiles of Doppler harmonics obtained from 3D PIC simulations for (a) harmonic orders � 16 and (b) harmonic orders
� 26. The side graphs represent lineouts (integrated along θy) of the harmonic angular profiles as a function of θx (direction of WFR). On each
panel inset, the red dots highlight the angles of emission of the successive attosecond pulses of the train.
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FIG. 12. Temporal profile of the attosecond pulse train in the 3D
simulation. The blue curve represents the temporal evolution of the
reflected field amplitude (where we filtered harmonic orders �26).
The red curve corresponds to the reflected laser field (fundamental
frequency only).

the attosecond light pulses are elliptically shaped in the far-
field, with a larger divergence along the axis without WFR.
This result from the combination of two effects.

(i) In the presence of WFR, the laser focal spot is elliptical
on target, with a larger waist along the axis of WFR (i.e., x-
axis). A larger waist results in a smaller divergence in the far
field.

(ii) The second effect comes from the different impact
of laser defocusing in the two planes. Indeed, the laser is
defocused by �zξ from the PM surface so that the laser
wavefront curvature compensates the PM curvature in the
plane of WFR, leading to harmonic divergences close to its

diffraction-limited value in this plane. However, in the or-
thogonal direction, the PM curvature is larger, due to the
smaller value of the laser waist. The PM curvature is not fully
compensated by laser curvature in this plane, thus leading to
a higher harmonic beam divergence.

A striking feature of Fig. 11 is that there is little to no at-
tosecond light beams emitted for θx > 0. Since emission time
is encoded in emission direction in the lighthouse scheme, this
suggests that that the emission of attosecond pulses is almost
suppressed in the second half of the laser pulse. Figure 12 ver-
ifies that this is indeed the case, by representing the temporal
profile of the attosecond pulse train close to the target (blue
line). The driving laser field is shown in red as a reference. The
harmonic emission efficiency is indeed observed to signifi-
cantly drop during the second half of the laser pulse. This drop
of harmonic efficiency comes from a sharpening of the PM
density gradient due to laser radiation pressure (hole boring)
[31,33]. This effect strongly reduces the harmonic generation
efficiency (which is higher for longer PM scale length) [45].
As initially suggested in [23], this simulation thus illustrates
how the attosecond lighthouse effect can be exploited as a
powerful time-resolved probe of the laser-plasma interaction
dynamics in experiments.

Finally, Fig. 13 displays the spatiotemporal profiles of
attosecond light pulses propagating around the angular posi-
tion −27 mrad, for two different harmonic ranges: harmonic
orders n > 16 [Fig. 13(a)] and harmonic orders n > 26
[Fig. 13(b)]. Each attosecond pulse divergence is as low as
4.5 mrad. Figures 13(c) and 13(d) represent the signal ob-
tained after spatial filtering by a 6 mrad slit placed on the path

(a)

(c)

(b)

(d)

FWHM=182as

FWHM=200as

E=1.5mJ

E=0.18mJ

FIG. 13. (a, c): Spatiotemporal profile of central attosecond pulses along the θx axis, for harmonic orders (a) � 16 and (b) � 26. (b, d)
Intensity profile of the attosecond pulse obtained after the 6 mrad slit filter [sketched in panels (a) and (c)]. After the slit, we obtain a central
attosecond pulse with a duration of 182 as and 200 as (FWHM), respectively and an energy of 1.5 and 0.18 mJ leading to a peak power of
7TW for the first harmonic range (harmonic orders >16) and of 0.7 TW for the second one (harmonic orders >26).
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of the central attosecond pulse from Figs. 13(a) and 13(b). The
filtered signal is made of one central attosecond pulse, and two
satellite pulses stemming from the neighboring attosecond
pulses. For harmonic orders n > 16, Fig. 13(b) shows that the
central attosecond pulse has a 182-as duration and carries an
energy of 1.5 mJ, corresponding to a peak power of 10 TW.
The energy contrast of the filtered attosecond signal is larger
than 10. This shows that bright isolated attosecond pulses of
10TW power (in the 20 to 50 eV photon energy range) can
effectively be obtained with this setup.

VI. CONCLUSION

This article proposes two novel techniques, readily appli-
cable in experiments, to reduce the divergence of Doppler
harmonics generated on relativistic plasma mirrors and
achieve angular separation of the associated attosecond pulses
by the attosecond lighthouse effect. The first technique
consists in optimizing the curvature of the incident laser wave-
fronts to compensate for the PM curvature induced by laser
radiation pressure and that tends to increase Doppler harmonic
divergence. In practice, this is achieved by moving the PM
surface slightly away from the laser best focus. The second
technique is based on the flattening of the laser beam intensity
profile at focus, to suppress or reduce the laser-induced PM
curvature. In the attosecond lighthouse scheme, this is possi-
ble by applying a simple spectral shaping to the laser beam.
Both techniques have been validated using state-of-the-art 2D
and 3D PIC simulations and show excellent angular separation
of attosecond light pulses with the lighthouse effect in realistic
conditions, using laser pulses with durations of the order of
eight optical periods. This work provides realistic pathways
to achieve the lighthouse effect in future experiments with
high-power lasers.
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APPENDIX

1. Analytical form of a Gaussian beam with WFR
out of laser focus

In this Appendix, we first derive the analytical ex-
pression at an arbitrary position �z of a Gaussian beam
with SC at focus (located at �z = 0) using a plane wave
decomposition.

Fourier transforming Eq. (7) with respect to transverse
spatial coordinates (x, y) and time t :

Ê (kx, ky, ω, z = 0) = 1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E (x, y, t, z = 0)

× e−ikxx−ikyy−iωt dtdxdy (A1)

yields

Ê (kx, ky, ω, z = 0) ∝ e− w2
0

4 k2
y e

− w2
ξ

4+τ2
ξ

w2
ξ
ζ2 k2

x

× e
− τ2

ξ
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ξ

w2
ξ
ζ2 (ω−ω0 )2

× e
−i

τ2
ξ

w2
ξ
ζ

4+τ2
ξ

w2
ξ
ζ2 kx (ω−ω0 )

. (A2)

In Fourier space, the propagation of the field by �z simply
writes

Ê (kx, ω, z = �z) = Ê (kx, ω, z = 0)eikz�z, (A3)

where

kz =
√

ω2

c2
− k2

x − k2
y . (A4)

Under the paraxial approximation kx � k = ω/c and ky �
k = ω/c, the above equation becomes

kz ≈ ω

c
− k2

x

2k
− k2

y

2k
. (A5)

In the following, we assume that k = k0 + �k ≈ k0 in the
second term of the right-hand side of Eq. (A6). Physically,
this approximation means that all the frequency components
of the laser beam diffract the same way. This holds as long as
�k/k0 � 1, which is verified for a laser pulse duration of a
at least a few optical cycles. As introduced in Sec. II B, high-
power lasers considered here are at least five optical cycles
long and we can thus reliably use

kz ≈ ω

c
− k2

x

2k0
− k2

y

2k0
. (A6)

Note that for a laser pulse duration close to a single optical
cycle, other spatiotemporal couplings may arise from a differ-
ent diffraction of the different frequency components and the
above approximation fails.

Fourier transforming back Eq. (A3) along kx, ky, and ω

E (x, y, t ′ = t − z/c, z = �z)

= 1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ê (kx, ω, z = �z)dkxdkydω (A7)

finally yields

E (x, y, t ′ = t − �z/c, z = �z)

∝ e− k0y2

2(ZR+i�z) e
− k0x2

2(Zξ +i�z)

×e
− t ′2

τ2
ξ

[
1+ (ξ/ξ0 )2�z2

�z2+Z2
ξ

]
×e

− i(ξ/ξ0 )2t ′2
τ2
ξ

(Zξ /�z+�z/Zξ )

× e
i
[
ω0+ ζx

1+i �z
Zξ

]
t ′

, (A8)
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where ZR = πw2
0/λ0 is the laser Rayleigh range without SC

and Zξ = πw2
ξ /λ0 is the laser Rayleigh range in the plane

of SC.
Let us analyze the physical meaning of each term in

Eq. (A8).
(i) The first two terms correspond to the spatial amplitude

and phase profiles of the laser at �z along y and x directions.
From this term we can deduce the following formulas for the
laser waist wξ (�z) at �z in the plane of SC

wξ (�z) = wξ

√
1 +

(
�z

Zξ

)2

(A9)

as well as the laser wavefront radius of curvature Rξ (�z):

Rξ (�z) = �z + Z2
ξ

�z
. (A10)

(ii) The second term corresponds to the local laser tempo-
ral profile, from which we can deduce the modified laser pulse
duration at �z:

τξ (�z) = τξ

√
1 + (Zξ /�z)2

1 + (ξ/ξ0)2 + (Zξ /�z)2
. (A11)

As one moves closer to the best focus z → 0, we find τξ (z) →
τξ , while in the far field z → ∞, τξ (z) → τξ /

√
1 + (ξ/ξ0)2 =

τ0, as expected.
(iii) The third term is a phase term corresponding to a

temporal chirp βξ (�z) given by

βξ (�z) = − (ξ/ξ0)2

τ 2
ξ

( Zξ

�z + �z
Zξ

) . (A12)

This term tends to zero at best focus.

(iv) The last term corresponds to a mix of WFR and PFT
term. The PFT term ξ (�z) is given by its real part

ξ (�z) = ζ

�z
Zξ

+ Zξ

�z

. (A13)

When �z → ∞ one finds that ξ (�z) → 0. This is expected
as the beam waist wξ (�z) → ∞ while the pulse duration
τξ (�z) → τ0. However, one can check that ξ (�z)wξ (�z) →
τ0 when �z → ∞ and ξ is initially set such that ξw0 = τ0

before focusing. The SC ζ (�z) is given by the imaginary part
of the last term of Eq. (11)

ζ (�z) = ζ

1 + (
�z
Zξ

)2 . (A14)

2. Expression of WFR velocity out of laser focus

Here, we use the expression of the laser field derived in the
previous section to deduce an analytical formula for the WFR
velocity out of laser focus. The WFR effect is all encoded in
the phase of the last exponential. The velocity vξ (�z) at a
distance �z from focus is given by

vξ (�z) = d�(�z, t ′)
dt ′ , (A15)

where � = kx/k, kx(�z, t ′) = ζ (�z)t ′ and k(�z,′ t ) = ω0 −
t ′β(�z)/c + ζ (�z)x/c. In the following, we derive the ex-
pression of WFR velocity at the center of the laser beam x = 0
and neglect the variation of k with x due to spatial chirp. With
the attosecond lighthouse effect, we use ξ ≈ ξ0 to maximize
WFR while avoiding a too high reduction of laser intensity
at focus. In addition, as we show in the paper, the required
defocusing distance is of the order of Zξ . This implies that
β ≈ 1/τ 2

ξ . In these conditions, the laser frequency variation
due to temporal chirp is of the order of βτξ ≈ 1/τξ which
is negligible compared to ω0 in the approximation τξ � T0

where T0 is the laser period. As a result, we can assume
k(�z,′ t ) ≈ k0, which gives

vξ (�z) = vξ

1 + (
�z
Zξ

)2 . (A16)
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