
HAL Id: cea-02956583
https://cea.hal.science/cea-02956583

Submitted on 3 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Does the mean-field α effect have any impact on the
memory of the solar cycle?

Soumitra Hazra, Allan Sacha Brun, Dibyendu Nandy

To cite this version:
Soumitra Hazra, Allan Sacha Brun, Dibyendu Nandy. Does the mean-field α effect have any im-
pact on the memory of the solar cycle?. Astronomy and Astrophysics - A&A, 2020, 642, pp.A51.
�10.1051/0004-6361/201937287�. �cea-02956583�

https://cea.hal.science/cea-02956583
https://hal.archives-ouvertes.fr


A&A 642, A51 (2020)
https://doi.org/10.1051/0004-6361/201937287
c© S. Hazra et al. 2020

Astronomy
&Astrophysics

Does the mean-field α effect have any impact on the memory of the
solar cycle?

Soumitra Hazra1,2, Allan Sacha Brun1, and Dibyendu Nandy3,4

1 Département d’Astrophysique/AIM, CEA/IRFU, CNRS/INSU, Université Paris-Saclay, Université de Paris, CEA Paris-Saclay,
Bât. 709, 91191 Gif-sur-Yvette, France
e-mail: soumitra.hazra@cea.fr; sacha.brun@cea.fr

2 Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay, France
3 Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal,

India
4 Center of Excellence and Space Sciences India, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246,

West Bengal, India
e-mail: dnandi@iiserkol.ac.in

Received 9 December 2019 / Accepted 17 July 2020

ABSTRACT

Context. Predictions of solar cycle 24 obtained from advection-dominated and diffusion-dominated kinematic dynamo models are
different if the Babcock–Leighton mechanism is the only source of the poloidal field. Some previous studies argue that the discrepancy
arises due to different memories of the solar dynamo for advection- and diffusion-dominated solar convection zones.
Aims. We aim to investigate the differences in solar cycle memory obtained from advection-dominated and diffusion-dominated
kinematic solar dynamo models. Specifically, we explore whether inclusion of Parker’s mean-field α effect, in addition to the Babcock–
Leighton mechanism, has any impact on the memory of the solar cycle.
Methods. We used a kinematic flux transport solar dynamo model where poloidal field generation takes place due to both the Babcock–
Leighton mechanism and the mean-field α effect. We additionally considered stochastic fluctuations in this model and explored cycle-
to-cycle correlations between the polar field at minima and toroidal field at cycle maxima.
Results. Solar dynamo memory is always limited to only one cycle in diffusion-dominated dynamo regimes while in advection-
dominated regimes the memory is distributed over a few solar cycles. However, the addition of a mean-field α effect reduces the
memory of the solar dynamo to within one cycle in the advection-dominated dynamo regime when there are no fluctuations in the
mean-field α effect. When fluctuations are introduced in the mean-field poloidal source a more complex scenario is evident, with very
weak but significant correlations emerging across a few cycles.
Conclusions. Our results imply that inclusion of a mean-field α effect in the framework of a flux transport Babcock–Leighton dynamo
model leads to additional complexities that may impact memory and predictability of predictive dynamo models of the solar cycle.
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1. Introduction

The magnetic field of the Sun is responsible for most of the
dynamical features in the solar atmosphere. The solar cycle is
the most prominent signature of solar magnetic activity in which
the number of sunspots, which are strongly magnetized regions
on the solar surface, varies cyclically with a periodicity of 11
years. When the Sun reaches the peak of its activity cycle, there
are a large number of flares and coronal mass ejections, which
can affect vulnerable infrastructures of our modern society
(Schrijver et al. 2015). These important issues highlight the need
for solar activity predictions, which will enable us to mitigate the
impact of our star’s active behaviour (Hathaway 2009; Petrovay
2010). In recent years, many theoretical and observational stud-
ies have been performed to predict solar activity, but the results
are diverging (Pesnell 2008).

Our current understanding of the solar cycle suggests that
sunspots originate from the buoyant emergence of toroidal flux
tubes which are generated via the dynamo mechanism inside the
solar interior. The dynamo mechanism involves the joint gener-
ation and recycling of the toroidal and the poloidal components

of the solar magnetic field (Parker 1955). Pre-existing poloidal
magnetic field components are stretched along the φ-direction
due to strong differential rotation, generating the toroidal mag-
netic field. It is thought that toroidal field generation takes place
throughout the solar convection zone, but is amplified near the
base of the convection zone. Tachocline, a region of strong radial
gradient in rotation and low diffusivity, offers an ideal loca-
tion for storage and amplification of the toroidal magnetic field.
Sufficiently strong toroidal flux tubes become magnetically
buoyant and emerge at the solar surface in the form of sunspots.
However, two different proposals exist in the literature for the
poloidal field generation–one involves the decay and disper-
sal of bipolar magnetic regions at the solar surface, termed
as the Babcock–Leighton mechanism (Babcock 1961; Leighton
1969) and the other evokes strong helical turbulence inside
the solar convection zone, known as the mean-field α effect
(Parker 1955; Steenbeck et al. 1966). In recent years, dynamo
models based on the Babcock–Leighton mechanism have
been successful in explaining different observational aspects
regarding solar activity (Dikpati & Charbonneau 1999; Nandy
& Choudhuri 2002; Choudhuri et al. 2004; Jouve & Brun 2007;
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Nandy et al. 2011; Choudhuri & Karak 2012; Bhowmik &
Nandy 2018; Hazra & Nandy 2019; Bhowmik 2019). Recently,
data-driven 2.5D kinematic dynamo models and 3D kinematic
solar dynamo models have also been developed to study different
observational aspects regarding solar activity (Brun 2007; Jouve
et al. 2011; Yeates & Muñoz-Jaramillo 2013; Hung et al. 2017;
Hazra et al. 2017; Karak & Miesch 2017; Hazra & Miesch 2018;
Kumar et al. 2019). For reviews of the solar and stellar dynamo
model, see Charbonneau (2005), Brun et al. (2015), and Brun &
Browning (2017).

As there is a spatial separation between the source layers
of the toroidal and poloidal field, there must be some effective
communication mechanism between these layers. While mag-
netic buoyancy plays a primary role in transporting the toroidal
flux from the base of the convection zone to the solar surface,
alternative flux transport mechanisms, namely diffusion, merid-
ional flow, and turbulent pumping, share the role of transporting
the poloidal flux from the surface to the base of the convection
zone. It has been shown that there is a finite time required for the
magnetic flux transport which impacts the predictability of the
solar cycle (Yeates et al. 2008; Jouve et al. 2010). Dikpati et al.
(2006) used an advection-dominated dynamo model (where the
meridional flow is the primary flux transport mechanism) to pre-
dict solar cycle 24 and found that cycle 24 should have been
a strong one. We note that Dikpati et al. (2006) used a weak
tachocline α effect in their model. However, Choudhuri et al.
(2007) used a diffusion-dominated dynamo model (diffusion is
the primary flux transport mechanism) to predict solar cycle 24,
which led to a prediction that cycle 24 will be a weaker one.
Yeates et al. (2008) showed that the memory of the solar cycle
in the diffusion-dominated dynamo is shorter (only one cycle)
while the memory of the solar cycle in advection-dominated
dynamo lasts over a few solar cycles. These latter authors sug-
gest that the difference in the memory of the solar cycle in the
two regimes results in different predictions of the solar cycle.
Multi-Cycle memory in the advection-dominated dynamo indi-
cates that poloidal fields of the cycle n−1, n−2 and n−3 combine
to generate the toroidal field of cycle n. On the other hand, one
cycle memory in the diffusion-dominated dynamo suggests that
only poloidal field of cycle n − 1 is responsible for the genera-
tion of the toroidal field of cycle n. Later, Karak & Nandy (2012)
showed that the introduction of turbulent pumping reduces the
memory of the solar cycle to one cycle in both advection and
diffusion-dominated dynamo models, which impacts the capa-
bility of these kinds of models for prediction. Turbulent pump-
ing transports the magnetic field vertically downwards; however,
there is also a significant latitudinal component in the strong
rotation regime (Ossendrijver et al. 2002; Käpylä et al. 2006a,b;
Mason et al. 2008; Do Cao & Brun 2011; Hazra & Nandy 2016).

Most of the dynamo-based prediction models completely
ignore the contribution of distributed mean-field α effect; they
consider the Babcock–Leighton mechanism as the only poloidal-
field-generation mechanism for their prediction models. How-
ever, some studies indicate that the mean-field α effect plays
an important role in solar dynamo models and is necessary to
recover the solar cycle from grand-minima-like episodes (Pipin
& Kosovichev 2011; Pipin et al. 2013; Passos et al. 2014; Hazra
et al. 2014a; Inceoglu et al. 2019). Recently, Bhowmik & Nandy
(2018) considered both the Babcock–Leighton mechanism and
mean-field α effect as poloidal-field-generation mechanisms in
their model to predict the strength of solar cycle 25. Here, we
want to explore the importance of the mean-field α effect in the
context of solar cycle memory and predictability. We find that

the presence of mean-field α reduces the memory to one cycle
for both advection- and diffusion-dominated regimes. We pro-
vide details about our solar dynamo model in Sect. 2 followed by
a discussion of our results in Sect. 3. Finally, in the last section,
we present our conclusions.

2. Model

Our (α − Ω) kinematic solar dynamo model solves the evolu-
tion equations for the toroidal and poloidal components of solar
magnetic fields (Moffatt 1978; Charbonneau 2005):
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where, s = r sin(θ) and vp is the meridional flow. We specify
the differential rotation and turbulent magnetic diffusivity by Ω
and η, respectively. Here, B represents the toroidal magnetic field
components and A represents the vector potential of the poloidal
magnetic field component. In the poloidal field evolution equa-
tion, S p is the source term for the poloidal field; while the second
term in the RHS of the toroidal field evolution is the source term
for the toroidal field due to differential rotation.

We do not consider small-scale convective flows in this
model. However, we consider an effective turbulent diffusiv-
ity in our model to capture the mixing effects due to convec-
tive flows. We do not have a reliable estimate of the diffusivity
value inside the convection zone at this moment. However, the
diffusivity value near the surface is well constrained by sur-
face flux transport dynamo models; as well as by observations
(Komm et al. 1995; Muñoz-Jaramillo et al. 2011; Lemerle et al.
2015). Diffusivity values near the surface have been found to be
a few times 1012 cm2 s−1. It is still unclear how these surface val-
ues change as a function of depth in the solar convection zone.
We assume a profile that keeps a value that close to value at
the surface, except in the tachocline where it drops by several
orders of magnitude due to the reduced level of turbulence there.
Recent theoretical studies also suggest a diffusivity value of the
order of 1012 cm2 s−1 inside the convection zone (Parker 1979;
Miesch et al. 2012; Cameron & Schüssler 2016). We use a two-
step radial diffusivity profile that has the following form:

η(r) = ηbcd +
ηcz − ηbcd

2

(
1 + erf

(
r − rcz

dcz

))
+
ηsg − ηcz − ηbcd

2

(
1 + erf

(
r − rsg

dsg

))
, (3)

where ηbcd = 108 cm2 s−1 is the diffusivity at the bottom of the
computational domain, ηcz = 1012 cm2 s s−1 is the diffusivity in
the convection zone, and ηsg = 2 × 1012 cm2 s s−1 is the near
surface supergranular diffusivity. Other parameters, which char-
acterize the transition from one value of diffusivity to another,
are taken as rcz = 0.73 R�, dcz = 0.015 R�, rsg = 0.95 R�, and
dsg = 0.015 R�.

We use an analytic fit to the observed helioseismic rotation
data as our differential rotation profile (see Nandy et al. 2011;
Muñoz-Jaramillo et al. 2009):
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Ω(r, θ) = 2πΩc + π

(
1 − erf

(
r − rtc

dtc

))
(
Ωe −Ωc + (Ωp −Ωe)ΩS (θ)

)
,

ΩS (θ) = a cos2(θ) + (1 − a) cos4(θ), (4)

where Ωc, Ωe, and Ωp represent the rotation frequencies of the
core, equator, and the pole, respectively. We take Ωc = 432 nHz,
Ωe = 470 nHz, Ωp = 330 nHz, rtc = 0.7 R�, dtc = 0.025 R� (half
of the tachocline thickness), and a = 0.483.

Recent helioseismic results have not yet converged to pro-
vide an accurate picture of the structure of the meridional flow
(Rajaguru & Antia 2015; Jackiewicz et al. 2015; Zhao & Chen
2016). As information about the meridional flow structure is
absent at present moment, we use a single-cell meridional cir-
culation (vp) profile which transports the field poleward at the
surface and equatorward at the base of the convection zone; see
Jouve & Brun (2007), Hazra et al. (2014b), and Hazra & Nandy
(2016) for a discussion on the role of multicellular or shallow
meridional flow profiles. We obtained the profile for the merid-
ional circulation (vp) for a compressible flow inside the convec-
tion zone using the following equation:

∇.(ρvp) = 0. (5)

So,

ρvp = ∇ × (ψêφ), (6)

where ψ is prescribed as:

ψr sin θ = ψ0(r − Rp) sin
[
π(r − Rp)
(R� − Rp)

]
{1 − e−β1rθε }

× {1 − eβ2r(θ−π/2)}e−((r−r0)/Γ)2
, (7)

where ψ0 controls the maximum speed of the flow. We take the
following parameter values to obtain the profile for meridional
circulation: β1 = 1.5, β2 = 1.8, ε = 2.0000001, r0 = (R� −
Rb)/4,Γ = 3.47 × 108, γ = 0.95,m = 3/2. Here, Rp = 0.65 R�
corresponds to the penetration depth of the meridional flow, and
Rb = 0.55 R� is the bottom boundary of our computational
domain. Both observation of small-scale features on the solar
surface and helioseismic inversions indicate that the surface flow
from the equator to the pole has an average speed of 10–25 m s−1

(Komm et al. 1993; Snodgrass & Dailey 1996; Hathaway et al.
1996). In our model, the meridional flow speed at the surface
lies within the range of 10–25 m s−1 and reduces to 1 m s−1 at the
base of the convection zone.

To explore the importance of the mean-field α effect, we
consider two distinct scenarios. In the first, poloidal field gen-
eration takes place only due to the Babcock–Leighton mech-
anism; while in the second scenario poloidal field α genera-
tion takes place due to the combined effect of the Babcock–
Leighton mechanism and mean-field α effect. In the first sce-
nario, S p = S BL, where S BL is the source term for the poloidal
field due to the Babcock–Leighton mechanism. We model the
poloidal field source term due to the Babcock–Leighton mech-
anism by the methods of a double ring first proposed by
Durney (1997). Subsequently, other groups used the double-ring
algorithm to model the Babcock–Leighton mechanism in their
dynamo models (Nandy & Choudhuri 2001; Muñoz-Jaramillo
et al. 2010; Nandy et al. 2011; Hazra & Nandy 2013, 2016).
It has been shown that the double-ring algorithm captures the
essence of the Babcock–Leighton mechanism in a better way
compared to other formalisms (Muñoz-Jaramillo et al. 2010). We

provide details of our double-ring algorithm in the Appendix A.
Please note that when we model the Babcock–Leighton mech-
anism via the double-ring algorithm, we fix the Babcock–
Leighton source term in the Eq. (1) to zero, and we modify
the poloidal field by the poloidal fields associated with the dou-
ble ring (i.e. A(i, j) is modified by A(i, j) + Adoublering) at regular
time intervals. As the double-ring algorithm works above a cer-
tain threshold, a recovery mechanism is necessary to recover an
activity level of the Sun from grand-minima-like phases. How-
ever, some previous studies indicate that even if there are no
sunspots during grand minima, there are still many ephemeral
regions at the solar surface which obey the Hale’s polarity law.
These ephemeral regions may contribute to the poloidal-field-
generation mechanism during this time (Priest 2014; Švanda
et al. 2016; Karak & Miesch 2018). Therefore, we also added an
extra Babcock–Leighton source term due to ephemeral regions
which acts on the weak magnetic field regime; see Appendix A
for details of the Babcock–Leighton source terms. In this way,
we ensure the effectiveness of the Babcock–Leighton mecha-
nism throughout our simulation.

In the second Scenario, S p = S BL + S MF, where S MF
is the poloidal field source term due to mean-field α effect.
This implies that the poloidal field is generated due to both
the Babcock–Leighton mechanism and mean-field α effect. We
model the mean-field α effect following this equation:

S MF = S �
cos θ

4

[
1 + erf

(
r − r1

d1

)] [
1 − erf

(
r − r2

d2

)]
×

1

1 +

(
Bφ
Bup

)2 , (8)

where r1 = 0.71 R0, r2 = R0, d1 = d2 = 0.25 R0, and
Bup = 104 G, which is the upper threshold. Here, S � controls the

amplitude of the mean-field α effect.The function 1/
(
1 +

(
Bφ
Bup

)2
)

ensures that this additional α effect is only effective on weak
magnetic field strength (below the upper threshold Bup) and
the values of r1 and r2 ensure that this additional mechanism
takes place inside the bulk of the convection zone (see top
panel of Fig. 1 for radial profile of the mean-field α-coefficient).
We set the critical value of S � such that our model generates
periodic cycles if we consider the mean-field α effect as the
only poloidal-field-generation mechanism. The critical value of
S � is 0.14 m s−1 for our model. Please see the right-hand side
of the upper panel for the radial profile of the mean-field α
coefficient.

We perform all of our dynamo simulations within the merid-
ional slab 0.55 R� < r < R� and 0 < θ < π with a resolu-
tion of 300 × 300 (i.e. Nr = Nθ = 300). We set A = 0 and
B ∝ sin(2θ) sin(π((r − 0.55 R�)/(R� − 0.55 R�))) as dipolar ini-
tial conditions for our simulations. Finally, we solve the dynamo
equations with proper boundary conditions suitable for the Sun.
As our model is axisymmetric, we set both poloidal and tori-
dal fields at zero (A = 0 and B = 0) at the pole (θ = 0 and
θ = π) to avoid any kind of singularity. The inner boundary con-
dition at the bottom of the computational domain (r = 0.55 R�)
is of a perfect conductor. Therefore, at r = 0.55 R�, both the
toroidal and poloidal field components vanish (i.e. A = 0 and
B = 0). We assume that there is only the radial component of the
solar magnetic field at the surface, which is necessary for stress
balance between the subsurface and coronal magnetic fields
(van Ballegooijen & Mackay 2007). We set B = 0 and
∂(rA)/∂r = 0 as a top boundary condition at the surface (r = R�).
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Fig. 1. Top panel, left: radial profile of mean-field α-coefficient and the Babcock–Leighton source term due to ephemeral regions. Right: poloidal
field line contours obtained from the double-ring algorithm in the northern and southern hemispheres, respectively. Middle panel: butterfly diagram
generated from our simulation in the diffusion-dominated region. Bottom panel: typical variation of B2

φ at the base of the solar convection zone
with time.

3. Results

In order to constrain the impact of the mean-field α effect
on the memory of the solar cycle, we perform kinematic
solar dynamo simulations in two different regimes: advection

dominated (ηcz = 1 × 1012 cm2 s−1, v0 = 25 m s−1) and dif-
fusion dominated (ηcz = 1 × 1012 cm2 s−1, v0 = 15 m s−1).
Advection-dominated regimes are characterised by the domi-
nance of meridional circulation as a major poloidal flux trans-
port mechanism from the surface to the base of the convection
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Fig. 2. Cross-correlation between the radial flux (Φr) of cycle n and the toroidal flux (Φtor) of cycle n, n + 1, n + 2, n + 3 in the advection-dominated
dynamo. The poloidal field is generated only due to the Babcock–Leighton mechanism. Spearman correlation coefficients with significance level
are given inside the plots. Here, we consider 60% fluctuations in the Babcock–Leighton mechanism.

zone, while diffusion-dominated regimes are characterised by
the dominance of diffusion (Yeates et al. 2008; Karak & Nandy
2012). We define the advective flux transport timescale following
the suggestions of Yeates et al. (2008). The advective flux trans-
port timescale is the time taken for the meridional circulation to
transport poloidal fields from r = 0.95 R�, θ = 45◦ to the loca-
tion at the tachocline where the strongest toroidal field is formed
(θ = 60◦). The meridional flow speed of the order of 25 m s−1 at
the surface yields an advection flux transport timescale of about
9–10 years (with a flow speed of 15 m s−1 this becomes 16 years).
While turbulent diffusion of the order of 1×1012 cm2 s−1 gives us
the diffusion flux transport timescale (L2/η where L is the depth
of the convection zone) of 14 years. In the diffusion-dominated
regime, the diffusion timescale is shorter than the advection
timescale, and vice versa in the advection-dominated regime.

In the first scenario, we consider the Babcock–Leighton
mechanism as the only poloidal field generation mechanism.
We first perform the simulation without any fluctuation. We
are able to reproduce a solar-like cycle with an 11-year peri-
odicity. We also confirm that the periodicity of the solar cycle
decreases with the speed of the meridional flow (Dikpati &
Charbonneau 1999). Periodicity lies within the range of 7 to 18
years depending on the speed of the meridional flow at the sur-
face, which varies from 25 m s−1 to 10 m s−1. However, in real-
ity, the Babcock–Leighton mechanism is a random process. The
stochastic nature of the Babcock–Leighton mechanism arises
from the random buffeting of flux tubes during their rise through
the turbulent convection zone, yielding a significant scatter in
tilt angles of the active region (Longcope & Choudhuri 2002;
McClintock & Norton 2016). Motivated by these facts, we intro-

duce stochastic fluctuation in the poloidal field generation source
term by setting up K1 = Kbase + Kflucσ(t, τcor) with Kbase =
100 in the double-ring algorithm. Here σ, the uniform random
number, lies between −1 and +1. We run all our following sim-
ulations with a 60% fluctuation in the Babcock–Leighton mech-
anism, and therefore in our simulation Kfluc = 0.6Kbase (see
Appendix A). Our choice of fluctuation level is inspired by
observations as well as the eddy velocity distributions present in
3D turbulent convection simulations (Miesch et al. 2008; Racine
et al. 2011; Passos et al. 2012).

The middle panel of Fig. 1 shows the butterfly diagram at the
base of the convection zone from a simulation in the diffusion-
dominated regime and the bottom panel shows the variation of
B2
φ (a proxy of sunspot number) with time at the base of the con-

vection zone. We note that the sensitivity of the peak amplitude
of the B2

φ is due to the choice of fluctuation level. We calcu-
late the polar radial flux Φr and toroidal flux Φtor using the pre-
scription suggested by Karak & Nandy (2012) and Yeates et al.
(2008). The toroidal flux Φtor is calculated by integrating Bφ(r, θ)
within a layer of r = 0.677 R� − 0.726 R� and within the lati-
tude 10◦−45◦; while the radial flux Φr is calculated by integrat-
ing Br(R�, θ) at the solar surface within the latitude 70◦−89◦.
We note that there is a 90◦ phase difference between the radial
flux and the toroidal flux. Radial flux is maximum at the minima
of the solar cycle. We find the peak value of Φr and Φtor for
each cycle and study the cross-correlation between the surface
radial flux Φr of cycle n and the toroidal flux of cycle n, n + 1,
n + 2, and n + 3. We perform the same study for both advection-
dominated and diffusion-dominated dynamo simulations. Cycle-
to-cycle correlation gives us the extent of correlation between

A51, page 5 of 10

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937287&pdf_id=2


A&A 642, A51 (2020)

Fig. 3. Cross-correlation between the radial flux (Φr) of cycle n and the toroidal flux (Φtor) of cycle n, n + 1, n + 2, n + 3 in the diffusion-dominated
dynamo. The poloidal field is generated only due to the Babcock–Leighton mechanism. Spearman correlation coefficients with significance level
are given inside the plots. Here, we consider 60% fluctuations in the Babcock–Leighton mechanism.

the radial and toroidal flux. As per suggestions by Yeates et al.
(2008) and Karak & Nandy (2012), the extent of the correla-
tion is an indicator of the memory of the solar cycle. We run
our stochastically forced dynamo model for a total of 250 solar
cycles to generate the correlation statistics.

Figure 2 shows that in the advection-dominated dynamo, sur-
face radial flux Φr correlates with the toroidal flux Φtor of cycles
(n + 1) and (n + 2) with Spearman correlation coefficients 0.90
and 0.49, respectively. On the other hand, Fig. 3 indicates that
in the diffusion-dominated dynamo, surface radial flux Φr only
correlates with the toroidal flux Φtor of the subsequent cycle
(correlation coefficient 0.95). Yeates et al. (2008) studied the
memory of the solar cycle and found that in the diffusion-
dominated dynamo surface radial flux Φr only correlates with
the subsequent cycle toroidal flux Φtor. While, in the advection-
dominated dynamo, surface radial flux Φr correlates with the
toroidal flux Φtor of subsequent few cycles (n + 1), (n + 2),
and (n + 3). Yeates et al. (2008) and Karak & Nandy (2012)
found higher correlation coefficients in the advection-dominated
regimes than those that we present here. This is probably due
to our choice of modelling magnetic buoyancy by the double-
ring algorithm. In summary, our results agree with the results
of Yeates et al. (2008) when we consider the Babcock–Leighton
mechanism as the only poloidal-field-generation process.

In the second scenario, we consider both the Babcock–
Leighton mechanism and mean-field α effect as poloidal-field-
generation mechanisms. However, the mean-field α effect is
also a random process, not a deterministic one. As the mean-
field α effect arises due to helical turbulence inside the turbu-

lent convection zone, the mean-field α effect is also a stochastic
process. Motivated by these factors, we introduce randomness
into the mean-field α by setting S � = S base + S flucσ(t, τcorr).
Here, σ is a uniform random number lying between −1 and
+1. We set the correlation time τcorr in such a way that at
least ten fluctuations are there within a single solar cycle. We
run our simulations with a 60% fluctuation in the Babcock–
Leighton mechanism and a different level of fluctuation in the
mean-field α effect. Figures 4 and 5 show that in the case
of both advection- and diffusion-dominated dynamos, surface
radial flux Φr only correlates with the toroidal flux of the sub-
sequent cycle with Spearman correlation coefficients of 0.85
and 0.89, respectively. Please note that we use the results
of the model with 60% fluctuation in the Babcock–Leighton
mechanism and 50% fluctuation in the mean-field α effect to
generate Figs. 4 and 5. Tables 1 and 2 summarise results from
parameter space studies with variations in the amplitude and
fluctuation levels of the mean-field α effect. In our model, the
presence of the mean-field α effect reduces the memory of
the solar cycle to only one cycle if there is no fluctuation in
the mean-field α. However, when fluctuations are introduced in
the mean-field α effect, very weak but significant correlations
emerge between the radial flux at the nth cycle minima and the
toroidal flux at the (n + 2)th cycle maxima for the advection-
dominated dynamo (see Table 2). Table 1 shows that the corre-
lation strength between the radial and toroidal flux of various
cycles are also dependent on the assumed amplitude of the
mean-field α effect (which is restricted to a value of 0.20 m s−1

for reasons of stability). The important conclusion from this
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Fig. 4. Cross-correlation between the radial flux (Φr) of cycle n and the toroidal flux (Φtor) of cycle n, n + 1, n + 2, n + 3 in the advection-dominated
dynamo. The poloidal field is generated due to both the Babcock–Leighton mechanism and mean-field α effect. Spearman correlation coefficients
with significance level are given inside the plots. Here, we consider 60% fluctuations in the Babcock–Leighton mechanism and 50% fluctuation in
the mean field α. The value of the mean-field α constant factor S � is 0.14.

study is that we get only one cycle memory even in the case
of the advection-dominated convection zone for steady mean-
field α (no fluctuations) and that variation in the amplitude or
fluctuation levels of mean-field α effect has a small but measur-
able impact on the memory of the advection-dominated dynamo
mechanism.

4. Conclusions

In summary, we demonstrate that inclusion of the mean-field α
effect has a measurable impact on the memory of the solar cycle.
We find that solar-cycle memory is only limited to one cycle
when a basal steady mean-field α effect is included in a flux-
transport-type dynamo model and acts in conjunction with the
Babcock–Leighton mechanism. This result supports earlier sug-
gestions regarding the precursor value of the poloidal field at the
end of a cycle for the amplitude of the subsequent cycle alone
(Schatten et al. 1978; Solanki et al. 2002; Yeates et al. 2008;
Karak & Nandy 2012; Muñoz-Jaramillo et al. 2013; Sanchez
et al. 2014). Our detailed analysis shows that the presence of a
mean-field α effect in the dynamo model adds more complex-
ity to the interpretation of differences in the memory of the solar
dynamo in the context of advection- versus diffusion-dominated
solar convection zones. Specifically, we find that variations in
the amplitude or fluctuation levels of the mean-field α can have
a weak but measurable impact on the emergence of multi-cycle
memory in the advection-dominated solar dynamo.

We do not consider turbulent pumping in our simulations.
Karak & Nandy (2012) show that turbulent pumping can impact
the memory of the solar cycle. These latter authors found that

in the case of both advection- and diffusion-dominated regimes,
surface radial flux Φr only correlates with the subsequent cycle
toroidal flux if turbulent pumping is added to their model. How-
ever, Karak & Nandy (2012) did not include the mean-field α
effect in their dynamo simulations. We also find that surface
radial flux Φr correlates only with the toroidal flux Φtor of the
subsequent cycle when we include turbulent pumping in our sim-
ulations with mean-field α effect which extends the validity of
the earlier results. It has been argued that the relative efficiency
between different flux transport mechanisms governs the mem-
ory of the solar cycle. In the model that considers the Babcock–
Leighton mechanism as the sole poloidal field generation mech-
anism, the timescale for transport of the poloidal flux from the
surface to the base of the convection zone governs the mem-
ory of the solar cycle. Even for a modest radial turbulent pump-
ing speed of 2 m s−1, the timescale for transport of the poloidal
flux from surface to the base of the convection zone is only 3.4
years. The introduction of turbulent pumping in the flux transport
dynamo model makes the dynamo model completely dominated
by turbulent pumping, eventually impacting the memory of the
solar cycle. In the situation where turbulent pumping dominates
the vertical flux transport mechanism, the relative efficiency of
other flux transport mechanisms, namely meridional circulation
and turbulent diffusion, is less significant.

In our model, the poloidal field generation takes place
due to the combined effect of both the Babcock–Leighton
mechanism and the mean-field α effect. As poloidal field
generation takes place throughout the convection zone due to
the mean-field α effect, the poloidal flux becomes immediately
available for being inducted to the toroidal component by the
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Fig. 5. Cross-correlation between the radial flux (Φr) of cycle n and the toroidal flux (Φtor) of cycle n, n + 1, n + 2, n + 3 in the diffusion-dominated
dynamo. Poloidal field is generated due to both the Babcock–Leighton mechanism and mean-field α effect. Spearman correlation coefficients with
significance level are given inside the plots. Here, we consider 60% fluctuations in the Babcock–Leighton mechanism and 50% fluctuation in the
mean field α. The value of the mean-field α constant factor S � is 0.14.

Table 1. Correlation coefficients (rs) and percentage significance levels (p) for peak surface radial flux Φr of cycle n versus peak toroidal flux Φtor
of different cycles from data for 200 solar cycles.

Dif. dom. Adv. dom.
Mean field α (S �) Parameters rs (p) rs (p)

0.14

Φr(n) & Φtor(n) 0.04 (45.0) −0.29 (99.9)
Φr(n) & Φtor(n + 1) 0.91 (99.9) 0.82 (99.9)
Φr(n) & Φtor(n + 2) −0.07 (70.0) 0.08 (76.0)
Φr(n) & Φtor(n + 3) −0.04 (42.0) 0.09 (75.9)

0.20

Φr(n) & Φtor(n) 0.05 (50.0) 0.41 (99.9)
Φr(n) & Φtor(n + 1) 0.85 (99.9) 0.75 (99.9)
Φr(n) & Φtor(n + 2) −0.08 (68.9) 0.29 (99.9)
Φr(n) & Φtor(n + 3) −0.02 (42.0) −0.01 (18.9)

Notes. Here, we consider a 60% fluctuation in the Babcock–Leighton mechanism but no fluctuation in the mean-field α.

differential rotation. In the absence of any additional complexi-
ties, this would normally result in a reduction of the cycle mem-
ory to only one cycle – as seen in our case with no fluctuation in
mean-field α. However, introduction of fluctuations in the mean-
field α effect and variations in the relative strengths of the com-
peting mean-field and Babcock–Leighton poloidal sources may
result in a redistribution of the memory across cycles in the
advection-dominated regime; we speculate that this is at the ori-
gin of the emergence of weak multi-cycle correlations and their
variations with increasing levels of fluctuation in the mean-field
α effect.

Taken together, we argue that additional consideration of a
mean-field α effect within the framework of a flux transport
dynamo model – driven by a Babcock–Leighton mechanism –

introduces subtleties in the dynamics that may be weak, but
may still be important to capture from the perspective of pre-
dictive dynamo models. Predictive mode coupled surface flux
transport and dynamo simulations support this argument in the
context of the successful reconstruction of past solar activity
cycles (Bhowmik & Nandy 2018). Completely independent con-
siderations of cycle recovery following a grand minimum in
activity also support the importance of a mean-field α effect
in the bulk of the solar convection zone – even if it is weak
in strength (Hazra et al. 2014a; Passos et al. 2014). We there-
fore conclude that it may be necessary to include the physics of
the mean-field α effect in predictive dynamo models of the solar
cycle, even if the Babcock–Leighton mechanism are the domi-
nant source for poloidal field generation.
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Table 2. Correlation coefficients (rs) and percentage significance levels (p) for peak surface radial flux Φr of cycle n versus peak toroidal flux Φtor
of different cycles from data for 200 solar cycles.

Dif. dom. Adv. dom.
Percentage fluctuation Parameters rs (p) rs (p)
in mean field α

0

Φr(n) & Φtor(n) 0.04 (45.0) −0.29 (99.9)
Φr(n) & Φtor(n + 1) 0.91 (99.9) 0.82 (99.9)
Φr(n) & Φtor(n + 2) −0.07 (70.0) 0.08 (76.0)
Φr(n) & Φtor(n + 3) −0.04 (42.0) 0.09 (76.0)

10

Φr(n) & Φtor(n) 0.11 (79.0) −0.08 (86.1)
Φr(n) & Φtor(n + 1) 0.91 (99.9) 0.76 (99.9)
Φr(n) & Φtor(n + 2) 0.04 (33.0) 0.29 (97.9)
Φr(n) & Φtor(n + 3) 0.15 (75.0) 0.10 (80.0)

20

Φr(n) & Φtor(n) 0.11 (61.0) −0.11 (91.9)
Φr(n) & Φtor(n + 1) 0.89 (99.9) 0.78 (99.9)
Φr(n) & Φtor(n + 2) 0.12 (67.0) 0.20 (98.0)
Φr(n) & Φtor(n + 3) 0.22 (94.0) 0.04 (43.0)

30

Φr(n) & Φtor(n) 0.02 (23.08) 0.16 (97.9)
Φr(n) & Φtor(n + 1) 0.89 (99.9) 0.81 (99.9)
Φr(n) & Φtor(n + 2) −0.08 (79.2) 0.37 (99.9)
Φr(n) & Φtor(n + 3) −0.02 (21.3) 0.16 (96.4)

40

Φr(n) & Φtor(n) 0.13 (73.0) 0.11 (91.9)
Φr(n) & Φtor(n + 1) 0.88 (99.9) 0.74 (99.9)
Φr(n) & Φtor(n + 2) −0.03 (19.0) 0.33 (97.9)
Φr(n) & Φtor(n + 3) −0.01 (8.0) 0.21 (98.0)

50

Φr(n) & Φtor(n) −0.03 (36.0) 0.11 (92.0)
Φr(n) & Φtor(n + 1) 0.89 (99.9) 0.85 (99.9)
Φr(n) & Φtor(n + 2) −0.04 (46.0) 0.21 (99.0)
Φr(n) & Φtor(n + 3) −0.02 (27.0) 0.01 (10.0)

60

Φr(n) & Φtor(n) 0.22 (93.0) 0.05 (38.9)
Φr(n) & Φtor(n + 1) 0.84 (99.9) 0.61 (99.9)
Φr(n) & Φtor(n + 2) −0.02 (16.0) 0.18 (93.0)
Φr(n) & Φtor(n + 3) 0.15 (77.0) 0.09 (60.0)

Notes. In all cases, we run our simulations with a 60% fluctuation in the Babcock–Leighton mechanism. The value of the mean-field α constant
S � is 0.14 m s−1 in all cases.
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Appendix A: Modelling the Babcock–Leighton
mechanism

Poloidal field generation at the surface takes place due to the
decay and dispersal of the bipolar sunspot regions as well
as ephemeral regions. We model the poloidal field generation
mechanism at the surface due to ephemeral regions following an
equation similar to Eq. (8):

S EPR = S 1
cos θ

4

[
1 + erf

(
r − r1

d1

)] [
1 − erf

(
r − r2

d2

)]
×

1

1 +

(
Bφ
Bup

)2 , (A.1)

where we take r1 = 0.95 R0, r2 = R0, d1 = d2 = 0.15 R0, and
Bup = 104 G. Here, S 1 controls the amplitude of the poloidal
field generation mechanism due to ephemeral regions. We take
S 1 = 0.13 in our model.

In our model, we follow the prescription of the double-ring
algorithm proposed by Durney (1997) to model the active region.
In this algorithm, we define the φ component of potential vector

A associated with the active region as:

Aar(r, θ) = K1A(Φ)F(r)G(θ), (A.2)

where constant K1 ensures the super-critical dynamo solution
and A(Φ) defines the strength of the ring doublet. F(r) is defined
as:

F(r) =

{
0 r < R� − Rar

1
r sin2

[
π

2Rar
(r − (R� − Rar))

]
r ≥ R� − Rar

, (A.3)

where R� is the solar radius and the penetration depth of the
active region is Rar = 0.85 R�. G(θ) in the integral form is
defined as:

G(θ) =
1

sin θ

∫ θ

0
[B−(θ′) + B+(θ′)] sin(θ′)dθ′, (A.4)

where B+ (B−) represents the strength of positive (negative)
ring:

B±(θ) =


0 θ < θar ∓

χ
2 −

Λ
2

± 1
sin(θ)

[
1 + cos
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Λ

(θ − θar ±
χ
2 )

)]
θar ∓

χ
2 −

Λ
2 ≤ θ < θar ∓

χ
2 + Λ

2
0 θ ≥ θar ∓

χ
2 + Λ

2 ,

(A.5)

where θar is the colatitude of the double ring emergence and
the diameter of each polarity of the double ring is Λ. We take
the latitudinal distance between the centres of the double ring
as χ = arcsin[sin(β) sin(∆ar)], where ∆ar is the angular distance
between polarity centres and β is the active region tilt angle. We
take Λ and ∆ar as 6◦ for our model.

Regenerating the poloidal field. To recreate the poloidal
field at the solar surface, we first randomly choose a latitude from
both the hemispheres where the toroidal field exceeds the buoy-
ancy threshold at the bottom of the convection zone. We then
use a non-uniform probability distribution function to ensure that
randomly chosen latitude always remains within the observed
active region belt. Next, we calculate the tilt of the correspond-
ing active region following the expression prescribed in Fan et al.
(1994):

β ∝ Φ
1/4
0 B−5/4

0 sin(λ), (A.6)

where, Φ0 is the toroidal ring associated flux, B0 is the local field
strength, and λ is the chosen latitude for the ring emergence. The
constant that appears in Eq. (A.6) is fixed in a way such that the
tilt angle lies between 3◦ and 12◦. Next, we remove a part of the
magnetic field with the same angular size of the emerging active
region from this toroidal ring. We reduced the magnetic field
strength of the toroidal ring from which the active region erupts.
We set the toroidal field strength in such a way that the energy
of the full toroidal ring with the new magnetic field is equal to
the energy of the partial toroidal ring with the old magnetic field
(after removing a chunk of the magnetic field). Finally, we place
the ring doublets with these calculated properties at the near-
surface layer at the chosen erupted latitude. Figure 1 (right side-
top panel) shows the poloidal field line contours associated with
the double ring in both hemispheres for one particular time-step.
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