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ABSTRACT

Context. High-precision cosmology requires the analysis of large-scale surveys in 3D spherical coordinates, i.e. spherical
Fourier-Bessel decomposition. Current methods are insufficient for future data-sets from wide-field cosmology surveys.
Aims. The aim of this paper is to present a public code for fast spherical Fourier-Bessel decomposition that can be
applied to cosmological data or 3D data in spherical coordinates in other scientific fields.
Methods. We present an equivalent formulation of the spherical Fourier-Bessel decomposition that separates radial and
tangential calculations. We propose the use of the existing pixelisation scheme HEALPix for a rapid calculation of the
tangential modes.
Results. 3DEX (3D EXpansions) is a public code for fast spherical Fourier-Bessel decomposition of 3D all-sky surveys
that takes advantage of HEALPix for the calculation of tangential modes. We perform tests on very large simulations
and we compare the precision and computation time of our method with an optimised implementation of the spherical
Fourier-Bessel original formulation. For surveys with millions of galaxies, computation time is reduced by a factor 4-12
depending on the desired scales and accuracy. The formulation is also suitable for pre-calculations and external storage
of the spherical harmonics, which allows for additional speed improvements. The 3DEX code can accommodate data
with masked regions of missing data. 3DEX can also be used in other disciplines, where 3D data are to be analysed in
spherical coordinates. The code and documentation can be downloaded at http://ixkael.com/blog/3dex.
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1. Introduction

In the last few decades, cosmology has become a data-
driven field, where high-precision measurements of the cos-
mic microwave background (CMB, e.g., Larson et al. 2011),
weak lensing (e.g., Schrabback et al. 2010) and galaxy sur-
veys (e.g., Percival et al. 2007 b) have permitted the es-
tablishment of a standard cosmological model in which the
Universe is composed of 4% baryons, 22% dark matter and
74% dark energy. Some major questions remain, the nature
of dark matter and dark energy in particular is still not un-
derstood. Similarly, the initial conditions of the Universe
are yet to be established and alternative models of gravity
are still to be tested in comparison with Einstein’s general
relativity.

New surveys are underway with these science objec-
tives, e.g. Planck for the CMB (The Planck Collaboration
2006), DES (Dark Energy Survey, Annis et al. 2005), BOSS
(Baryon Oscillation Spectroscopic Survey, Schlegel et al.
2007), LSST (Large Synoptic Survey Telescope, Tyson &
LSST 2004) and Euclid (Laureijs et al. 2011; Refregier et al.
2010) for weak lensing and the study of large-scale structure
with galaxy surveys. In order to be beneficial, cosmological
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studies of these surveys need to use high-precision statisti-
cal methods, such as a full 3D analysis on the sky where
all-sky 3D surveys are available.

Several tools have been developed to analyse data on
the sphere, which is required for a 2D spherical harmonic
CMB analysis (Crittenden & Turok 1998; Crittenden 2000;
Górski et al. 2002, 2005; Doroshkevich et al. 2008). Weak
lensing and galaxy survey data can also be analysed tomo-
graphically (i.e. in 2D slices), but unlike for the CMB, a
full 3D spherical Fourier-Bessel analysis can also be sought
(Fisher et al. 1995; Heavens & Taylor 1995; Heavens 2003;
Castro et al. 2005; Rassat & Refregier 2011). Previous 3D
data analyses were on relatively small data sets (Fisher
et al. 1995; Heavens & Taylor 1995; Erdoğdu (b) et al. 2006;
Erdoğdu (a) et al. 2006), but future surveys like Euclid and
LSST will provide surveys with billions of galaxies, making
previous methods for calculating the 3D spectra unfeasibly
time-consuming.

In Section 2.1, we present the theory behind the 3D
Fourier-Bessel decomposition for infinite and finite contin-
uous fields as well as the usual method for a discrete sur-
vey (e.g. galaxy survey). In section 2.2, we present two ad-
ditional equivalent formulations of the spherical Fourier-
Bessel decomposition, one of which is central to the 3DEX
code. In Section 3, we compare the accuracy and calcula-

ar
X

iv
:1

11
1.

35
91

v3
  [

as
tr

o-
ph

.C
O

] 
 2

1 
Fe

b 
20

12

http://ixkael.com/blog/3dex


2 B. Leistedt et al.: 3DEX: a code for fast spherical Fourier-Bessel decomposition of 3D surveys

tion time for the usual method used for calculating Fourier-
Bessel coefficients and methods with the 3DEX code pre-
sented in this paper. In Section 4, we describe the 3DEX
library and give examples of how to use it. In Section 5
we present our conclusions. We also include an appendix,
where we discuss the subtleties of the Fourier-Bessel nor-
malisation.

2. Theory

2.1. The spherical Fourier-Bessel decomposition

In observational cosmology, spherical coordinates (where
the observer is at the origin) are a natural choice for the
analysis of cosmological fields. In this system of coordi-
nates, eigenfunctions of the Laplacian operator are prod-
ucts of spherical Bessel functions and spherical harmonics,
i.e. functions j`(kr)Y`m with eigenvalues −k2. For an ho-
mogeneous three-dimensional field f(r) = f(r, θ, φ) in a
flat geometry, the spherical Fourier-Bessel decomposition
(Fisher et al. 1995; Heavens 2003; Castro et al. 2005) is

f(r, θ, φ) =

√
2

π

∫
dk
∑
`m

f`m(k)kj`(kr)Y`m(θ, φ), (1)

with the inverse relation

f`m(k) =

√
2

π

∫
d3r f(r, θ, φ)kj`(kr)Y

∗
`m(θ, φ). (2)

Note that this decomposition uses the same notation as
Rassat & Refregier (2011) and Castro et al. (2005), which
is slightly different from the one used in Lanusse, Rassat,
& Starck (2011). The coefficients may be used to calculate
the 3D power spectrum C(`, k), defined by

〈f`m(k)f∗`′m′(k′)〉 = C(l, k)δD(k − k′)δ``′δmm′ , (3)

a näıve estimator of which is

C`(k) =
1

2l + 1

∑
m

|f`m(k)|2. (4)

This can be seen as an extension of the usual 2D power
spectrum 〈f`mf∗`′m′〉 = Clδ``′δmm′ . The latter arises from
the spherical harmonic transform of a 2D field given on the
sphere f(θ, φ) =

∑
`m f`mY`m(θ, φ).

In practice, surveys will only cover a finite amount
of volume, limiting the analysis to a sphere of radius R.
These boundary conditions lead to a discrete spectrum
{k`n}, which is detailed in the appendices. In this paper,
we assumed as a boundary condition that f vanishes at
r = R. The spherical Fourier-Bessel decomposition becomes
(Erdoğdu (b) et al. 2006; Fisher et al. 1995)

f(r, θ, φ) =
∑
`mn

κ`nf`m(k`n)k`nj`(k`nr)Y`m(θ, φ), (5)

which is exact if the ranges of `,m and n are infinite. The
Fourier-Bessel coefficients are denoted by f`mn = f`m(k`n),
and κ`n is the normalisation constant (see appendices for
more details).

In various applications, though, the continuous field f
cannot be directly observed. This is notably the case in
cosmology where galaxy surveys give indirect information

about the underlying matter density field through their spa-
cial positions. Note that these tracers are subject to various
distortions and non-linearities, but these are not the pur-
pose of this work. In this work we only consider linear or
quasi-linear scales (` < 50, k < 0.2hMpc−1).

If the only information about the field f is a list of
coordinates rp = (rp, θp, φp) with p = 1, . . . , N (where N is
the number of galaxies in the latter example), the survey
may be considered as a superposition of 3D Dirac deltas
and each coefficient f`mn can simply be estimated with a
sum (Heavens & Taylor 1995; Fisher et al. 1995; Erdoğdu
(b) et al. 2006; Abramo et al. 2010)

f̃(r) =

N∑
p=1

δ(3)(r− rp), (6)

f̃`mn =

N∑
p=1

k`nj`(k`nrp)Y ∗`m(θp, φp). (7)

This formulation has been used for the analysis of shal-
low galaxy surveys such as the IRAS 1.2mJ survey (∼ 6k
galaxies, Strauss et al. 1992; Fisher et al. 1995; Heavens
& Taylor 1995), and the 2MRS survey (2MASS Redshift
Survey, ∼ 45k galaxies, Huchra et al. 2011; Erdoğdu (b)
et al. 2006; Erdoğdu (a) et al. 2006). Since the time to cal-
culate equation 7 is proportional to Nnmax(`max + 1)2/2,
Equation 7 will become highly time-consuming when ap-
plied to larger surveys or when precise decomposition is
required (large nmax and `max).

2.2. Three equivalent formulations

In spherical coordinates, since 3D space can be viewed
as an infinite series of closed shells Ω(r), the spherical
Fourier-Bessel decomposition may also arise from repeated
2D spherical harmonic transforms to which spherical Bessel
transforms are applied (Abramo et al. 2010). Formally, the
field f given on each shell Ω(r) is first expanded into spher-
ical harmonics

f(r, θ, φ) =
∑
`m

f`m(r)Y`m(θ, φ), (8)

for which the inversion formula gives harmonics coefficients
f`m(r) depending on the radius r

f`m(r) =

∫
Ω(r)

dΩ f(r, θ, φ)Y ∗`m(θ, φ). (9)

It is then possible to perform a spherical Bessel transform

f`m(r) =

√
2

π

∫
dk f`m(k)kj`(kr), (10)

leading to the final Fourier-Bessel coefficients f`m(k)

f`m(k) =

√
2

π

∫
dr r2f`m(r)kj`(kr). (11)

This formulation hence extends the notion of 2D spherical
harmonics to three-dimensional fields.

It is also possible to conceive the reverse approach, i.e.
to perform the spherical Bessel transform first and subse-
quently expand the resulting coefficients into spherical har-
monics. Formally, the `-th order spherical Bessel transform
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of f (similar to its Hankel transform) is

f(r, θ, φ) =

√
2

π

∫
dk f`(k, θ, φ)kj`(kr), (12)

for which the inversion formula gives

f`(k, θ, φ) =

√
2

π

∫
dr r2f(r, θ, φ)kj`(kr). (13)

The result is then expanded into spherical harmonics but
with an unusual formulation since f`(k, θ, φ) and Y`m(θ, φ)
(as well as the basis functions j`(kr) and Y`m(θ, φ)) have
now the ` parameter in common:

f`(k, θ, φ) =
∑
m

f`m(k)Y`m(θ, φ). (14)

Again, using the inversion formula, we obtain the Fourier-
Bessel coefficients

f`m(k) =

∫
Ω

dΩ f`(k, θ, φ)Y ∗`m(θ, φ). (15)

Due to the closed domains of shells Ω(r) and thus the rel-
ative independence of angular and radial dimensions, the
raw (equations 1 and 2), the forward (denoted by SHB
for spherical-Harmonic-Bessel, equations 8 to 11) and the
reverse (denoted by SBH for spherical-Bessel-Harmonic,
equations 12 to 15) methods are equivalent formulations
of the spherical Fourier-Bessel decomposition of any three-
dimensional field f(r, θ, φ). This is summarised in the fol-
lowing schematic description of each method:

RAW : f(r)
three-dimensional integration−−−−−−−−−−−−−−−−−−→ f`m(k)

SHB : f(r)
SHT−−−→ f`m(r)

SBT−−−→ f`m(k) (16)

SBH : f(r)
SBT−−−→ f`(k, θ, φ)

SHT−−−→ f`m(k).

Note that this section is related to the ideal case R =
∞, but all equations can be straightforwardly rewritten for
a finite R by replacing k by kln, bounding each integral
and adapting normalisation. The formulas arising from this
adaptation are used in the next sections.

2.3. Estimating Fourier-Bessel coefficients from a real survey

Although the three approaches described in 2.2 are theoret-
ically equivalent, their estimates and numerical implemen-
tations take different forms.

2.3.1. Forward approach (SHB)

Estimating the f`mn coefficients using the forward method
naturally requires the radial dimension to be discretised.
Indeed, the first step is to compute the spherical har-
monic transform on a set of shells located at radial values
r1, . . . , rNlayers

. In each layer, the coefficients f`m(ri) are
estimated. Although it is possible to perform a raw esti-
mate for the later harmonics transform, it is often advis-
able to use a robust 2D discretisation scheme (of Npix(i)
pixels for the i-th shell) and to take advantage of the re-
lated high-performance algorithms. Angular space is hence
discretised into nodes (ri, θp, φp) = (ri,γq) and the field is

approximated on each node, giving f̃(ri,γp). The spherical
harmonic decomposition in the i-th shell becomes

f̃`m(ri) =

Npix(i)∑
p=1

f̃(ri,γp)Y ∗`m(γp), (17)

and the final coefficients are obtained by performing the
following spherical Bessel decomposition:

f̃`mn =

Nlayers∑
i=1

f̃`m(ri)k`nj`(k`nri). (18)

With this method, radial and angular spaces are discretised
and both transforms are approximated.

2.3.2. Reverse approach (SBH)

For the reverse approach, a 2D scheme on the sphere was
required as well. As previously, this scheme defines a set
of Npix zones (pixels) related to angular nodes γq. If Gq

denotes the points of the survey located in the solid angle
corresponding to the q-th zone of the scheme, we perform
the spherical Bessel Transform (raw estimate) in each zone

f̃`n(γq) = f̃`(k`n,γq) =
∑
p∈Gq

k`nj`(k`nrp), (19)

and each of these intermediate maps is decomposed into
spherical harmonic (spherical Harmonics Transform) which
gives the Fourier-Bessel coefficients

f̃`mn =

Npix∑
q=1

f̃`n(γq)Y ∗`m(γq). (20)

With the reverse method, one can avoid to discretise ra-
dial space. Moreover, this one-shell pixelisation of the sky
(thus based on physical solid angles) allows for a natural
treatment of radial distortions (redshift, relativistic) and
masking effects. Using multiple resolutions at different ra-
dial values, as would be possible with the forward method,
is much more questionable. The SHB method also proves
to be a powerful tool for weighting the data prior to esti-
mating the power spectrum. For instance, in Tadros et al.
(1999) used a fiducial power spectrum to derive an optimal
weighting operation. This operation is quite complex when
using the raw Fourier-Bessel approach, whereas the SHB
formulation naturally handles the dependence on k of the
weighting function.

The three methods to estimate the spherical Fourier-
Bessel decomposition can therefore also be expressed for a
discrete 3D survey, summarised schematically below:

RAW : {rp}
Raw sum, best estimate of FB coefficients−−−−−−−−−−−−−−−−−−−−−−−−−−→ f̃`mn

SHB : {rp}
Approx SHT−−−−−−−−→ f̃`m(ri)

Approx SBT−−−−−−−−→ f̃`mn

SBH : {rp}
Exact SBT−−−−−−−→ f̃`n(γp)

Approx SHT−−−−−−−−→ f̃`mn.

Note that in practice, the range of (l,m, n) is finite,
which introduces an additional approximation. Here, ` and
n are restricted to [0, `max] and [1, nmax] respectively. Given
`, m goes from −` to `.
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3. Method comparison

3.1. Complexity, accuracy and discretisation grids

For a survey that probes a field by N discrete points, the
raw method is the natural estimate of the Fourier-Bessel
coefficients. However, since each point contributes to the
calculation of every coefficient f̃`mn (∀ l,m, n), computa-
tion time is proportional to N · nmax(`max + 1)2/2, which
can be highly problematic for large surveys.

In the forward method, the repeated spherical har-
monic transforms take advantage of tesselation schemes
and high-performance algorithms such as those provided
by HEALPix [Górski et al. (2005)], IGLOO [Crittenden
& Turok (1998)] or GLESP [Doroshkevich et al. (2008)].
Roughly speaking, the number of nodes to be considered is
reduced from N to Npix, and the use of fast spherical har-
monic transforms on these schemes significantly decreases
computation time.

However, this approach requires the three-dimensional
space to be divided into shells Ω(ri). Both radial and an-
gular dimensions are discretised, and the survey is approxi-
mated on an actual 3D grid. In practice, this approximation
deteriorates the accuracy of the estimated Fourier-Bessel
coefficients. Furthermore, designing a meaningful radial dis-
cretisation is a difficult task. For equal-area pixelisations,
the area of each pixel on the i-th shell is 4πr2

i /Npix(i).
With HEALPix, the nside angular parameter may only be
increased by a factor 2, which changes the number of pixels
by a factor of 4 (since Npix(i) = 12nside(i)

2). This means
that pixel areas cannot be stabilised for subsequent shells
as r increases. Consequently, it is not possible to adapt a
resolution to obtain a 3D scheme with equal-volume vox-
els. Extending 2D schemes to 3D is difficult and may even
require a novel formalism for an equal-voxel 3D grid.

In the reverse approach, though, the use of angular 2D
schemes is possible, but radial space does not need to be
discretised. The points of the survey are grouped according
to angular zones instead of being approximated on a 3D
grid. An estimate of the spherical Bessel transform is com-
puted in every solid angle, and the result is then expanded
in spherical harmonics on the 2D spherical grid. In the fi-
nal account, this method naturally leads to more accurate
coefficients than the forward method and also takes advan-
tage of high-performance 2D schemes. For these reasons,
we focus on the reverse approach and its implementation,
using HEALPix for the angular transform.

Finally, for both forward and reverse methods the spher-
ical harmonics discretised basis (coefficients Y`m(γp)) may
be fully pre-computed and stored in external files. This is a
particularly useful feature (incompatible with the original
formulation of spherical Fourier-Bessel), which significantly
eases and speeds up the use of these methods.

3.2. Speed and accuracy of the Reverse Method

To test the accuracy and speed of the reverse method com-
pared to the raw method, we considered the high-resolution
full-sky Horizon simulation (Teyssier et al. 2009). Horizon
is a N-body simulation covering a 2h−1Gpc periodic box
using 70 billion dark matter particles using a WMAP3 cos-
mology (Spergel et al. 2007). A derived halo catalogue is
available, which we used to calculate f`mn and C`(k`n) val-
ues using both methods (raw and reverse). Since we are

interested only in comparing the speed of each method, we
simply considered each halo to have equal weight.

We performed the raw and the reverse estimates on
three ‘surveys’ of N = 4.2 × 105, 3.1 × 106 and 1 × 107

halos, which correspond to three different depths (zmax =
0.1, 0.2 and 0.3 respectively) in the Horizon simulation. The
HEALPix angular parameter is given by nside.

The results of the accuracy and speed tests are given
in Table 1. The third (fourth) column gives the percent-
age f coefficients for which the relative accuracy ε(f`mn)
(ε(C`n)) is lower than 0.3% for given values of nside and
N . We considered the intervals (l, n) ∈ ([0, 20], [1, 20]) and
(l, n) ∈ ([21, 50], [21, 50]) separately, since the estimation of
higher coefficients depends more on the value of nside. We
also compared computation times of the two methods by
observing the ratio T = treverse/traw. Given a survey and a
method, computation time denotes the CPU time required
to compute the kln’s (from the Bessel functions) and the
final coefficients f`mn without using pre-computed quan-
tities. Note that we performed this analysis by distribut-
ing the calculations on five machines and simply adding
the individual contributions to computation time since our
method is linear with survey size. With the reverse method,
though, the roots of the Bessel functions as well as the
spherical harmonics may be pre-computed and stored in
external files, which decreases computation time and com-
plexity when working with 3DEX.

N nside εr(f`mn) < 0.3% εr(C`n) < 0.3% T
[0,20] / [21,50] [0,20] / [21,50]

4.2e5 512 87% / 42% 99% / 96% 8
1024 95% / 65% 99% / 98% 4
2048 99% / 84% 99% / 99% 2

3.1e6 512 92% / 50% 99% / 95% 10
1024 98% / 74% 100% / 100% 5
2048 99% / 90% 100% / 100% 2

9.7e6 512 92% / 50% 100% / 97% 12
1024 97% / 74% 100% / 100% 6
2048 99% / 90% 100% / 100% 3

Table 1. Estimation of Fourier-Bessel coefficients: compar-
ison of the new method, the reverse formulation (equations
19 and 20 using HEALPix discretisation) with the original,
raw formulation (equation 7). The third (fourth) column
gives the percentage f coefficients for which the relative ac-
curacy ε(f`mn) (ε(C`n)) is lower than 0.3% for given values
of nside and N . T is the ratio of elapsed times of the two
methods.

The reverse method is about an order of magnitude
faster than the raw method, but this depends on the choice
of nside. For nside = 1024 almost all f`mn coefficients in
the range [0, 20] (for ` and n) have relative error below 1%,
and 90% have it below 0.3%, whereas over 99% of C(`, kn)
coefficients are accurate to < 0.3%. In the range [20, 50],
the accuracy is somewhat degraded due to the extension
of the HEALPix formalism to 3D surveys. Indeed, for data
distributed on the sphere, 3D space is very sparse even for
large surveys. Increasing nside to 1024 or 2048 strongly im-
proves the accuracy for higher orders `. Note that compar-
isons for ` > 50 are limited by the amount of time the raw
method takes.
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Fig. 1. Speed results (raw and reverse methods) for in-
creasing summation limits `max = nmax, for a survey
of N = 9.7×106 halos. Dashed lines are the fitted com-
plexity curves. The reverse formulation is suitable for
pre-calculations and external storage of the spherical
harmonics, which was not performed here but enables
for additional speed improvements.

Figures 1 and 2 show the time taken for calculations
as a function of `max and nmax (Figure 1), and as a func-
tion of number of halos (Figure 2). The boxes correspond
to the raw method, the circles and diamonds to the reverse
method with nside = 512, 1024 respectively. The dashed
line corresponds to the general rule that the raw method
scales as Nnmax (`max + 1)

2
/2, whereas the points are all

estimated from calculations. With `max = nmax = 100 and
N = 9.7e6, the raw decomposition took a few days of cal-
culations, whereas the reverse method only took 12 hours.
In our formalism, kmax is determined by the choice of R
for the boundary condition and by the band-limit nmax

for spherical Bessel coefficients. For each multipole ` we
have kmax = k`nmax

= q`nmax
/R where q`nmax

is the nmax-
the root of the `-th spherical Bessel function. Because R
is usually imposed by the problem or the data, one must
increase nmax to probe smaller radial scales. In fact, a rea-
sonable approximation (or even a simple plot) shows that
q`n ≈ (` + 3n). This observation enabled to predict which
radial scales are probed and how computation time scales
with kmax, given that we provide the complexity for `max

and nmax.

One of the main advantages of the reverse method is
that it is naturally suited to parallel computing because
it uses HEALPix fast spherical Harmonics Transform rou-
tines. All previous tests were performed on a recent com-
puter (i7 processor, 8Go RAM) and take advantage of
OpenMP (with four threads). More advanced computing
means (larger RAM and more processors) significantly de-
crease calculation time. For example, `max = nmax = 128
with nside = 2048 took about an hour with 128 cores
and 512Go RAM, whereas computation time for the raw
method was estimated to several days on the same machine.
Note that the raw method is also suited to parallelisation:
galaxies may be treated separately by different threads. In
all experiments, we took advantage of this property and

Fig. 2. Speed results (raw and reverse methods) for
increasing survey size, for `max = nmax = 30. Dashed
lines are the fitted complexity curves.

performed both raw and reverse decompositions with four
threads to perform relevant comparisons between the two.

In terms of the power spectrum, figures 3 and 4 show
the relative error between the raw and the reverse methods
both in mode-mode space (`− n) and in mode-scale space
(` − k`n). For this comparison we decomposed a survey of
N = 4.2×105 halos with zmax = 0.1. Figures in mode-mode
space naturally differ according to the choice of the bound-
ary R because the latter determines the discrete radial scale
spectrum {k`n}, and hence mode n computed with two dif-
ferent R’s corresponds to different k-scales. When compar-
ing the results from R = 1000 and R = 2000 in mode-scale
space, we observe that the boundary condition fixes the ex-
plored scales. The left column is thus complementary to the
right column to explore higher values of k. Although figure
3 gives information about the final coefficients, figure 4 is
hence more appropriate to see which scales are probed and
with what accuracy.

In view of the `− k`n space, we see that no fluctuations
are observed along the k axis up to k = 0.03hMpc−1. In this
range, fluctuations occur in ` space, which are accurately
probed with nside = 512 until ` = 25 but naturally require
a more precise scheme for ` > 25, k > 0.03hMpc−1 (smaller
scales in physical space). In conclusion, parameter nside (as
well as R) must be chosen depending on the scales one
wishes to probe. Figures 3 and 4 provide accuracy results
that are complementary to Table 1.

4. The 3DEX library

The 3DEX library requires the HEALPix package (v2.12
or later) and the CFITSIO library. 3DEX may either by
installed with an HEALPix-like procedure (configure and
make commands) or using CMake. The Fortran modules,
the 3DEX dynamic library and the related executables will
be created in the relevant directories (see README file for
more information).

In addition to the numerical procedures required to
compute Fourier-Bessel coefficients, various other routines
are provided in the library, such as those converting redshift
to comoving distance, computing spherical Bessel functions



6 B. Leistedt et al.: 3DEX: a code for fast spherical Fourier-Bessel decomposition of 3D surveys

Fig. 3. Relative error on the power spectrum in mode-mode space C(l, n). We compare the original
formulation of spherical Fourier-Bessel decomposition with the reverse formulation, testing nside =
512, 1024 (rows) and R = 1000, 2000 (columns). Only a few zones (white spots) are outside the
range [−0.3%,+0.3%].

Fig. 4. Relative error on the power spectrum in mode-scale space C(l, k) (k is in hMpc−1). We
compare the original formulation of spherical Fourier-Bessel decomposition with the reverse for-
mulation, testing nside = 512, 1024 (rows) and R = 1000, 2000 (columns). Only a few zones (white
spots) are outside the range [−0.3%,+0.3%].
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and their zeros, reading and writing 3D structures (flmn

and Cln), or reconstructing radial maps from Fourier-Bessel
coefficients.

Three executable programmes are generated:

– survey2almn performs the spherical Fourier-Bessel de-
composition (reverse method) of a discrete survey with
input parameters lmax, nmax, r and nside. Outputs are
the flmn coefficients and the power spectrum.

– survey2almn interactive is very similar to the previous
programme, but converts redshift values into comoving
distance before performing the spherical Fourier-Bessel
decomposition. In particular, the routine takes a .txt
file as input, taking into account parameters on the cos-
mology and on the decomposition.

– almn2rmap extracts the flmn coefficients from a FITS
file and reconstructs the field (HEALPix map) at a given
radius. Inputs are the resolution, the radius and sum-
mation limits lmax and nmax, which allows one to recon-
struct several maps at different scales and resolutions.

The corresponding calls are given by the examples below.

> survey2almn survey thetaphir.dat almn.fits
cln.fits 20 20 256 2000.0,

where survey thetaphir.dat is a survey with columns
representing θ, φ, r, and the keywords correspond to
values of `, n, nside, R. The output is both the coefficient
values (almn.fis) and the Fourier-Bessel spectrum (cln.fits).

> survey2almn interactive parameters.txt,

where parameters.txt is an external file containing
input parameters for the survey and the cosmology (which
allows for more flexible use). Finally, for the map recon-
struction, we can use:

> almn2rmap almn.fits map.fits 400.0 256 10
10 2000.0,

where the keywords correspond to rmax, nside, `, n, R.

5. Conclusion

High-precision cosmology from galaxy and weak lensing
surveys will require the analysis of 3D data in spherical co-
ordinates, a situation for which spherical Fourier-Bessel de-
composition is most suited. Current methods will be inad-
equate for future planned cosmological surveys, which will
provide for example galaxy surveys with billions of galaxies,
compared to millions today.

We have reviewed the forward or SHB (spherical
Harmonic-Bessel) formalism of the spherical Fourier-Bessel
decomposition which first calculates the tangential, then
the radial decomposition. We also introduced the reverse
or SBH (spherical Bessel Harmonic) formalism that inverses
this order. Only the latter approach can take advantage of
existing fast codes for the calculation of tangential modes.
(To do the same, the former would require a a new voxeli-
sation scheme.)

We presented a public code 3DEX (3D EXpansions) for
the fast calculation of Fourier-Bessel coefficients and spec-
tra, which uses the HEALPix pixelisation scheme for cal-
culating the tangential modes. The 3DEX code is based on

the reverse/SBH formulation of the Fourier-Bessel decom-
position.

We tested the 3DEX code on linear and quasi-linear
scales (` < 50 and k`n < 0.2hMpc−1) using the Horizon
halo simulation for redshifts z < 0.3. For nside = 1024 the
3DEX method for calculating the power spectrum C(`, k)
is accurate to 0.3% on these scales.

For surveys with < 10 million galaxies, computation
time is reduced by a factor 4-12 depending on the desired
scales and accuracy. For larger surveys the gain in time will
be even greater. Finally, the use of the 3DEX code is not
restricted to cosmological calculations, and can be used in
any other discipline that requires a spherical Fourier-Bessel
analysis of 3D data.
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Appendix A: Normalisation and discrete radial
spectrum

The basis functions kjl(kr)Ylm(θ, φ) form a set of eigenfunc-
tions of the Laplacian operator in spherical coordinates. In
particular, these functions are orthonormalised in the con-
tinuous case, thanks to the orthogonality relation∫

dΩdr r2jl(kr)jl′(k
′r)Ylm(θ, φ)Y ∗l′m′(θ, φ)

=
π

2kk′
δD(k − k′)δKll′δKmm′ , (A.1)

(Baddour 2010) where δK is Kronecker’s delta notation and
δD Dirac’s function.

A common approach to simplify the problem is to as-
sume some boundary conditions for the field f . Different
conditions have been explored in the literature (Fisher et al.
1995; Heavens & Taylor 1995), including potential or gra-
dient continuity. In this paper, we used a condition that
derives from the classical formulation of the discrete spher-
ical Bessel transform: space is assumed to be finite and
limited to a sphere of radius R. In this case, the spherical
Bessel functions are not normalised and the boundary ef-
fect leads to a discrete spectrum {kln}. The Fourier-Bessel
coefficients become a set flmn = flm(kln), and the complete
description of the field in the so-called Fourier-Bessel basis
(Binney & Quinn 1991) is summarised in equation 5.

As a consequence, a natural choice for the boundary
condition is to impose the field to vanish at r = R (Abramo
et al. 2010), which constrains the Bessel functions and gen-
erates the radial spectrum {kln} such that, for all l and
n,

jl(klnR) = 0. (A.2)

If qln denotes the n-th root of jl(z), the closure relation of
the Bessel basis is∫ 1

0

dz z2jl(qlnz)jl′(ql′n′z)

=
1

2
[jl+1(qln)]2δll′δnn′ , (A.3)
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which gives with kln = qln/R,∫ R

0

dr r2klnkl′n′jl(klnr)jl′(kl′n′r)

=
k2
ln[jl+1(qln)]2

2R−3
δll′δnn′ . (A.4)

The discrete spectrum is thus fixed by the zeros of the
spherical Bessel functions. We obtain the normalisation co-
efficients κln (Fisher et al. 1995)

κ−1
ln =

R3

2
[klnjl+1(klnR)]2, (A.5)

which are used for field reconstruction (equation 5).
Other approaches are possible to tackle boundary con-

ditions in radial space, notably those imposing potential
continuity at r = R (Fisher et al. 1995). Then, the discrete
spectrum k′ln is such that

jl−1(k′lnR) = 0, (A.6)

and normalisation constraint becomes

κ′
−1
ln =

R3

2
[klnjl(klnR)]2. (A.7)

Appendix B: Angular masks

3DEX takes into account optional angular masks under the
form of either an equatorial cut or an input all-sky FITS
map.

In the first case, supplying θcut defines the latitude (in
degrees) of a straight symmetric cut around the equator.
Pixels located within that cut (l = cos(θcut)) are ignored.

In the second case, the supplied mask must be an
HEALPix map (ring ordering) of Npix pixels at resolution
nside (which must be identical to Fourier-Bessel resolution
parameter){
w(γq)

}
q=1,...,Npix

. (B.1)

In the forward method, the first step is to apply the
mask to each discrete shell before performing the spherical
Harmonics Transform. Hence for the ith shell, field f is
weighted by the mask at each pixel

f ′(ri,γq) = w(γq)f(ri,γq). (B.2)

The Fourier-Bessel coefficients are obtained after perform-
ing SH and SB transforms.

In the reverse method, the first step is still the spherical
Bessel Transform, which gives a set of nmax HEALPix maps
f(kln,γq). The mask is then applied to each of these maps

f ′(kln,γq) = w(γq)f(kln,γq). (B.3)

and the modified spherical Harmonics Transform gives the
final flmn coefficients.
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