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ABSTRACT
The next generation of galaxy surveys will observe millions of galaxies over large
volumes of the universe. These surveys are expensive both in time and cost, raising
questions regarding the optimal investment of this time and money. In this work we in-
vestigate criteria for selecting amongst observing strategies for constraining the galaxy
power spectrum and a set of cosmological parameters. Depending on the parameters of
interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky
instead of a smaller contiguous area. In this work, by making use of the principles of
Bayesian Experimental Design, we will investigate the advantages and disadvantages
of the sparse sampling of the sky and discuss the circumstances in which a sparse
survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we
find that by sparsely observing the same area in a smaller amount of time, we only
increase the errors on the parameters by a maximum of 0.45%. Conversely, investing
the same amount of time as the original DES to observe a sparser but larger area of
sky we can in fact constrain the parameters with errors reduced by 28%.

Key words: cosmology

1 INTRODUCTION

The measurements of the cosmological parameters heav-
ily rely on accurate measurements of power spectra. Power
spectra describe the spatial distribution of an isotropic ran-
dom field, defined as the Fourier transform of the spatial
correlation function. The perturbations in the universe can
be described statistically using the correlation function ξ(r)
between two points, which depends only on their separation
r (when isotropy is assumed)1;

ξ(r) ≡ 〈δ(x)δ(x + r)〉 , (1)

where δ(x) = (ρ(x)− ρ̄) /ρ̄ measures the continuous over-
density, where ρ(x) is the density at position x and ρ̄ is
the average density. The power spectrum P (k), which is
the Fourier transform of the correlation function, is enough
to define the perturbations completely when the perturba-
tions are assumed uncorrelated Gaussian random fields in
the Fourier space. Power spectra (or correlation functions)
are what the surveys actually measure, from which cosmo-
logical parameters are inferred. These spectra are normally
a convolution of the primordial power spectrum (which mea-
sures the statistical distribution of perturbations in the early

⋆ E-mail: paniez.paykari@cea.fr; a.jaffe@ic.ac.uk
1 Note that we use underlined symbols to denote vectors and
bold symbols for matrices.

universe) and a transfer function which depends on the cos-
mological parameters. Hence accurate measurements of the
power spectra from surveys are very important for accurate
measurements of the cosmological parameters.

The most important observed spatial power spectrum
for cosmology is the galaxy power spectrum; the Fourier
transform of the galaxy correlation function, which was first
formulated by Peebles (1973). A galaxy survey lists the mea-
sured positions of the observed galaxies. As proposed by
Peebles, these positions are modelled as a random Poisso-
nian point source, where the galaxy density is modulated by
the fluctuations in the underlying matter distribution and
the selection effects. The selection function of the survey is
described by n̄(x), which is the expected galaxy density at
position x in the absence of clustering. The fluctuations in
the underlying matter density are given by δ(x), as described
previously. The the galaxy number over-density n(x), which
is the observed quantity, is related to the matter over-density
via the bias b (Kaiser 1984) — galaxies trace dark matter
up to this b factor. We define the galaxy power spectrum
Pg(k) as

Pg(k) = 2π2 · b2(k) · k · T 2(k) · Pp(k) , (2)

where Pp(k) is the primordial power spectrum Pp(k) =
Ask

ns−1. The transfer function T (k) further depends upon
the cosmological parameters (e.g., the matter density Ωm,
the scalar spectral index, ns, etc.) responsible for the evo-
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lution of the universe. The bias b relates the galaxy power
spectrum to the matter power spectrum, as explained above.

This power spectrum is very rich in terms of constrain-
ing a large range of cosmological parameters. On large scales
this spectrum probes structure which is less affected by clus-
tering and evolution. Hence these scales are still in the lin-
ear regime and have a “memory” of the initial state. The
information from these regimes are, therefore, the cleanest
since the Big Bang and any knowledge on these large scales
would shed light on the physics of early universe and hence
the primordial power spectrum. On intermediate scales the
spectrum provides us with information about the evolution
of the universe since the Big Bang; for example the matter-
radiation equality which is responsible for the peak of the
galaxy spectrum. The matter-radiation equality is a unique
point in the history of the evolution, giving information
about the amount of matter and radiation in the universe.
On relatively small scales there is a great deal of information
about galaxy clustering via the Baryonic Acoustic Oscilla-
tions (BAO) which encode a characteristic scale; the sound
horizon at the time of recombination. Therefore, measuring
the galaxy power spectrum on a large range of scales can
help us constrain the cosmological parameters responsible
for the evolution of the universe as well as the ones of its
initial state.

Accurate measurements of the galaxy power spectrum
depend on two main factors; the Poisson noise and the
cosmic variance. To overcome the Poisson noise, surveys
aim to maximise the number of galaxies observed. The im-
pressive constraints on cosmological parameters from pre-
vious and current surveys, such as the 2dF (Croom et al.
2004) and SDSS (Adelman-McCarthy et al. 2008), has mo-
tivated even more ambitious future surveys such as DES
(The Dark Energy Survey Collaboration 2005) and Euclid
(Laureijs 2009), aiming to observe millions of galaxies over
large volumes of the universe. Considering the large invest-
ments in time and money for these surveys, one wants to ask
what is really the optimal survey strategy! In this work we
want to investigate this exact questions and find the optimal
strategy for galaxy surveys such as DES and Euclid.

In this era of cosmology where the statistical errors have
reduced greatly and are now comparable with systematics,
observing, for example, a greater number of galaxies may
not necessarily improve our results. We need to devise more
strategic ways to make our observations and take control of
our systematics. For example, to investigate larger scales,
it may be more efficient to observe a larger, but sparsely
sampled, area of sky instead of a smaller contiguous area.
In this case we would gather a larger density of states in
Fourier space, but at the expense of an increased correlation
between different scales — aliasing. This would smooth out
features on these scales and decrease its significance if any
observed. Here, by making use of Bayesian Experimental
Design we will investigate the advantages and disadvantages
of the sparse sampling and verify if a complete contiguous
survey is indeed the most efficient way of observing the sky
for our purposes. The parameter of interest here is the galaxy
power spectrum itself and a set of cosmological parameters
that depend on this spectrum.

Some previous work on sparse sampling includes Kaiser
(1986) and Blake et al. (2006); Kaiser (1986) shows that
measuring the large scale correlation function from a com-

plete magnitude-limited redshift survey is actually not the
most efficient approach. Instead, sampling a fraction of
galaxies randomly, but to a fainter magnitude limit, will
improve the constraints of the correlation function mea-
surements significantly, for the same amount of observing
time. Blake et al. (2006) have shown that a sparse-sampling
(achieved by a non-contiguous telescope pointings or, for a
wide-field multi-object spectrograph, by having the fibres
distributed randomly across the field-of-view) is preferred
when the angular size of the sparse observed patches is much
smaller than angular scale of the features in the power spec-
trum (the acoustic features).

2 BAYESIAN EXPERIMENTAL DESIGN AND
FIGURE-OF-MERIT

Bayesian methods have recently been used in cosmology
for model comparison and for deriving posterior probability
distributions for parameters of different models. However,
Bayesian statistics can do even more by handling questions
about the performance of future experiments, based on our
current knowledge (Liddle et al. 2006; Trotta 2007a,b). For
example, Parkinson et al. (2007) use a Bayesian approach
to constrain the dark energy parameters by optimising the
Baryon Acoustic Oscillations (BAO) surveys. By searching
through a survey parameter space (which includes param-
eters such as redshift range, number of redshift bins, sur-
vey area, observing time, etc.) they find the optimal survey
with respect to the dark energy equation-of-state param-
eters. Here we will use this strength of Bayesian statistics
for optimising the strategy to observe the sky for galaxy sur-
veys. There are three requirements for such an optimisation;
1. specify the parameters that define the experiment which
need to be optimised for an optimal survey; 2. specify the
parameters to constrain, with respect to which the survey is
optimised; 3. specify a quantity of interest, generally called
the figure of merit (FoM), associated with the proposed ex-
periment. The choice of the FoM depends on the questions
being asked, as will be explained later in the text. We then
want to extrimise the FoM subject to constraints imposed
by the experiment or by our knowledge about the nature of
the universe. Below, we will explain the procedure.

Assume e denotes the different experimental designs
that we can implement and M i are the different models
under consideration with their parameters θi. Assume that
experiment o has been performed, so that this experiment’s
posterior P (θ|o) forms our prior probability function for the
new experiment. The FoM will depend on the set of param-
eters under investigation, the performed experiment (data)
and the characteristics of the future experiment; U(θ, e, o).
From the utility we can build the expected utility E [U ] as

E[U |e, o] =
∑

i

P (M i|o)
ˆ

dθ̂i U(θ̂i, e, o)P (θ̂i|o,M i) , (3)

where θ̂i represent the fiducial parameters for model M i.
This says: If a set of fiducial parameters, θ̂, correctly describe
the universe and we perform an experiment e, then we can
compute the utility function for that experiment, U(θ̂, e, o).
However, our knowledge of the universe is described by the
current posterior distribution P (θ̂|o). Averaging the utility
over the posterior accounts for the present uncertainty in the
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parameters and summing over all the available models would
account for the uncertainty in the underlying true model.
The aim is to select an experiment that extremises the utility
function (or its expectation). The utility function takes into
account the current models and the uncertainties in their
parameters and, therefore, extremising it takes into account
the lack of knowledge of the true model of the universe.

One of the common choices for the FoM is some form of
function of the Fisher matrix, which is the expectation of the
inverse covariance of the parameters in the Gaussian limits
(We will explain in the next section how a Fisher matrix is
obtained in more detail.). One can refer to the Dark Energy
Task Force (DETF) FoM, that use Fisher-matrix techniques
to investigate how well each model experiment would be able
to restrict the dark energy parameters w0, wa, ΩDE for their
purposes. Three common FoMs, which we will be using as
well, are

• A-optimality = log(trace(F))
trace of the Fisher matrix (or its log) and is proportional to
sum of the variances. This prefers a spherical error region,
but may not necessarily select the smallest volume.

• D-optimality = log (|F|)
determinant of the Fisher matrix (or its log), which measures
the inverse of the square of the parameter volume enclosed
by the posterior. This is a good indicator of the overall size
of the error over all parameter space, but is not sensitive to
any degeneracies amongst the parameters.

• Entropy (also called the Kullback-Leibler divergence)

E =

ˆ

dθ P (θ|θ̂, e, o) log P (θ|θ̂, e, o)
P (θ|o)

=
1

2

[

log |F| − log |Π| − trace(I−ΠF
−1)

]

, (4)

where P (θ|θ̂, e, o) is the posterior distribution with Fisher
matrix F and P (θ|o) is the prior distribution with Fisher
matrix Π. The entropy forms a nice compromise between
the A-optimality and D-optimality. Note that these are the
utility functions, not the ‘expected’ utility functions. In our
current models of the universe, we do not expect a signifi-
cant difference between the parameters of the same model.
However, this will be investigated in a future work, where
we will explicitly use expected utility functions. In the next
section we will explain how a Fisher matrix is formulated.

3 FISHER MATRIX ANALYSIS

The Fisher matrix is generally used to determine the sensi-
tivity of a particular survey to a set of parameters and has
been largely used for optimisation (and forecasting). Con-
sider the likelihood function for a future experiment with ex-
perimental parameters e, L(θ|e) ≡ P (Dθ̂|θ, e), where Dθ̂ are
simulated data from the future experiment assuming that
θ̂ are the true parameters in the given model. We Taylor
expand the log-likelihood around its maximum value:

lnL(θ|e) = lnL(θML)+
1

2

∑

ij

(θi − θML
i )

∂2 lnL
∂θi∂θj

(θj − θML
j ) ,

(5)
where the first term is a constant and only affects the height
of the function, the second term describes how fast the likeli-

hood function falls around the maximum. The Fisher matrix
is defined as the ensemble average of the curvature of the
likelihood function L (i.e., it is the average of the curvature
over many realisations of signal and noise);

Fij = 〈F〉 =
〈

−∂
2 lnL
∂θi∂θj

〉

(6)

=
1

2
trace[C,iC

−1C,jC
−1] , (7)

where the second line is appropriate for a Gaussian distri-
bution with correlation matrix C determined by the param-
eters θi, and L is the likelihood function. The inverse of the
Fisher matrix is an approximation of the covariance matrix
of the parameters, by analogy with a Gaussian distribution
in the θi, for which this would be exact. The Cramer-Rao in-
equality2 states that the smallest frequentist error measured,
for θi, by any unbiased estimator (such as the maximum like-
lihood) is 1/

√
Fii and

√

(F−1)ii, for non-marginalised and
marginalised3 one-sigma errors respectively. The derivatives
in Equation 6 generally depend on where in the parame-
ter space they are calculated and hence it is clear that the
Fisher matrix is function of the fiducial parameters.

The Fisher matrix allows us to estimate the errors on
parameters without having to cover the whole parameter
space (but of course will only be appropriate so long as the
derivatives are roughly constant throughout the space). So,
a Fisher matrix analysis is equivalent to the assumption of a
Gaussian distribution about the peak of the likelihood (e.g.
Bond et al. 1998). It also makes the calculations easier. For
example, if we are only interested in a subset of parame-
ters, then marginalising over unwanted parameters is just
the same as inverting the Fisher matrix, taking only the
rows and columns of the wanted parameters and inverting
the smaller matrix back. It is also very straightforward to
combine constraints from different independent parameters:
we just sum over the Fisher matrices of the experiments (re-
member Fisher matrix is the log of the likelihood function).

We further note, as in all uses of the Fisher matrix, that
any results thus obtained must be taken with the caveat
that these relations only map onto realistic error bars in the
case of a Gaussian distribution, usually most appropriate
in the limit of high signal-to-noise ratio and/or relatively
small scales, so that the conditions of the central limit theo-
rem obtain. As long as we do not find extremely degenerate
parameter directions, we expect that our results will cer-
tainly be indicative of a full analysis, using simulations and
techniques such as Bayesian Experimental Design (Trotta
2007c).

3.1 Fisher Matrix for Galaxy Surveys

We follow the approach of Tegmark (1997) to define the
pixelisation for galaxy surveys. First we define the data in
pixel i as

∆i ≡
ˆ

d3xψi (x)

[

n (x)− n̄

n̄

]

, (8)

2 It should be noted that the Cramer-Rao inequality is a state-
ment about the so-called “Frequentist” confidence intervals and is
not strictly applicable to “Bayesian” errors.
3 Integration of the joint probability over other parameters.
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where n(x) is the galaxy density at position x and n̄ is the
expected number of galaxies at that position. The weighting
function, ψi(x), which determines the pixelisation (and is
sensitive to the shape of the survey as you will see later), is
defined as a set of Fourier pixels

ψi(x) =
eιki.x

V
×

{

1 ~x inside survey volume

0 otherwise
, (9)

where V is the volume of the survey. Here we have divided
the volume into sub-volumes, each being much smaller than
the total volume of the survey, but being large enough to
contain many galaxies. This means ∆i is the fractional over-
density in pixel i. Using this pixelisation we can define a
covariance matrix as

〈

∆i∆
∗

j

〉

= C = (CS)ij + (CN)ij , (10)

where CS and CN are the signal and noise covariance matri-
ces respectively and are assumed independent of each other.
The signal covariance matrix can be defined as

(CS)ij =
〈

∆i∆
∗

j

〉

=

ˆ

d3xd3x′ ψi(x)ψ
∗

j (x
′)

〈

n(x)− n̄

n̄
· n(x

′)− n̄

n̄

〉

. (11)

By equating the number over-density (n(x)− n̄) /n̄ to the
continuous over-density δ(x) = (ρ(x)− ρ̄) /ρ̄ we obtain

(CS)ij =

ˆ

d3k

(2π)3
P (k)ψ̃i(k)ψ̃

∗

j (k)

=

ˆ

dk

(2π)3
k2P (k)

ˆ

dΩk ψ̃i(k)ψ̃
∗

j (k)

=

ˆ

dk

(2π)3
k2P (k)Wij(k) , (12)

where ψ̃i(k) is the Fourier transform of ψi(x) and the win-
dow function Wij(k) is defined as the angular average of
the square of the Fourier transform of the weighting func-
tion. With the same approach, the noise covariance matrix
— which is due to Poisson shot noise — is given by

(CN)ij =
〈

NiN
∗

j

〉

Noise

=

ˆ

d3xd3x′ψi (x)ψ
∗

j

(

x′
) 1

n
δD

(

x − x′
)

=

ˆ

d3k

(2π)3
1

n
ψ̃i(k)ψ̃

∗

j (k)

=

ˆ

dk

(2π)3
k2

1

n

ˆ

dΩkψ̃i(k)ψ̃
∗

j (k)

=
1

n

ˆ

dk

(2π)3
k2Wij(k) . (13)

The design of the survey will shape the form of the weighting
function in Equation 9, which will be discussed in the next
section.

This prescription gives us a data covariance matrix for
a galaxy survey. What we actually need is a Fisher matrix
for the parameters we are interested in. For this we will
use Equation 6 above, which defines the Fisher matrix of
parameters in terms of the inverse of the data covariance
matrix and its differentiation with respect to the parameters
of interest. We are interested in the galaxy power spectrum

and hence the differentiation of the covariance matrix in
Equation 6 is taken with respect to the bins of this power
spectrum. As the noise covariance matrix does not depend
on the power spectrum, we only need to differentiate the
signal covariance matrix in Equation 12. Taking the galaxy
power spectrum as a series of top-hat bins

P (k) =
∑

B

wB(k)PB

{

wB = 1 k ∈ B

0 otherwise
, (14)

where PB is the power in each bin, the differentiation takes
the form

∂(CS)ij
∂P (k)

=

ˆ kmax
B

kmin
B

dk

(2π)3
k2Wij(k) . (15)

We insert this and the inverse of the data covariance
matrix into Equation 6 to get a Fisher matrix for the galaxy
power spectrum bins. To get a Fisher matrix for the cosmo-
logical parameters one can use the parameters Jacobian

Fαβ =
∑

ab

Fab
∂Pa

∂λα

∂Pb

∂λβ
. (16)

where Fab is the galaxy spectrum Fisher matrix and Fαβ is
the Fisher matrix for the cosmological parameters λα and
λβ.

4 SURVEY DESIGN

We will investigate the FoM of a sparse design to that of
a contiguous survey, which we have chosen to be similar to
that of the Dark Energy Survey (DES).

4.1 Dark Energy Survey (DES)

The Dark Energy Survey (DES)4

(The Dark Energy Survey Collaboration 2005) is de-
signed to probe the origin of the accelerating universe and
help uncover the nature of dark energy. Its digital camera,
DECam, is mounted on the Blanco 4-meter telescope at
Cerro Tololo Inter-American Observatory in the Chilean
Andes. Starting in December 2012 and continuing for
five years, DES will catalogue 300 million galaxies in the
southern sky over an area of 5000 square degrees and a
redshift range of 0.2 < z < 1.3. In the next section we will
explain how we ‘sparsify’ the DES survey for our purposes.

Here, we use a flat-sky approximation. Euclid, with a
survey area of 20, 000 square degrees should be treated on
the full sky and is not investigated here. Nonetheless we
expect qualitatively similar results to DES.

4.2 Sparse Design

For simplicity, we will design the sparsely sampled area of
the sky as a regular grid of np × np square patches of size
M ×M — Figure 1. We therefore define the structure on

4 http://www.darkenergysurvey.org/
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Figure 1. Design of the mask on the sky to sparsely sample the
sky. A regular grid with n patches of size M (note that we are
observing through these patches — white squares in the Figure),
placed at constant distances from one another at xi and yj . The
total observed area is the sum of the areas of all the patches,
n × M2, and total sampled area is the total area which bounds
both the masked and the unmasked areas, V . Hence the fraction
of sky observed is f = (n × M2)/Atot. Also, note that we are
assuming a flat-sky approximation.

the sky as a top-hat in both x and y directions

∑

n

Π(x− xn) =

{

1 0 < |x− xn| < M/2

0 otherwise
, (17)

∑

m

Π(y − ym) =

{

1 0 < |y − ym| < M/2

0 otherwise
, (18)

where xi and yj mark the centres of the patches in our co-
ordinate system. In the z direction we use the step function,
which is defined as:

Θ(z) =

{

1 z > 0

0 otherwise
. (19)

With this design the weight function in equation 9 takes the
form:

ψ̃i(k) =

ˆ

d3x eı(ki−k).x ×
∑

n

Π(x− xn)
∑

m

Π(y − ym) ×

Θ

(

z +
L

2

)

Θ

(

L

2
− z

)

× 1

V

=

ˆ

dxeıqxx
∑

n

Π(x− xn) ×
ˆ

dyeıqyy
∑

m

Π(y − ym) ×
ˆ

dzeıqzzΘ

(

z +
L

2

)

Θ

(

L

2
− z

)

× 1

V

= sinc

(

qx
M

2

)

∑

n

2 cos (qxxn) ×

sinc

(

qy
M

2

)

∑

m

2 cos (qyym) ×

sinc

(

qz
L

2

)

× M2L

V
, (20)

where q = ki − k, qx = q sin θ cos φ, qy = q sin θ sinφ, qz =
q cosφ and dµ = d cos θ. The volume V is the total sparsely
sampled volume, M is the size of the observed patch on the
surface of the sky and L is the observed depth. The last
equality in the above equation uses the Dirichlet Kernel

Dn(x) =
n
∑

k=−n

eikx = 1 + 2
n
∑

k=1

cos(kx) , (21)

which can be used due to the symmetry of the design. The
window function, defined in Equation 12, now takes the form

Wij(k) =

ˆ 1

−1

dµ

2

ˆ 2π

0

dφ

2π
ψ̃(ki − k)ψ̃∗(kj − k)

=

ˆ 1

−1

dµ

2

ˆ 2π

0

dφ

2π
×

(

M2L

V

)2

×

sinc

(

qx
M

2

)

∑

n

2 cos(qxxn)×

sinc

(

q′x
M

2

)

∑

n′

2 cos(q′xxn′)×

sinc

(

qy
M

2

)

∑

m

2 cos(qym)×

sinc

(

q′y
M

2

)

∑

m′

2 cos(q′yym′)×

sinc

(

qz
L

2

)

sinc

(

q′z
L

2

)

. (22)

Note that there are two scales that control the behaviour
of the window function; one is the size of the patches, M ,
and the other is their distance from one another, xi. We will
investigate the influence of both of these scales on the FoM
by trying two different configurations, discussed in the next
section. In case of the contiguous sampling of the sky where
we are observing through a contiguous square, the window
function takes the form of one single big patch, as shown

c© 2002 RAS, MNRAS 000, 1–12



6 P. Paykari and A. H. Jaffe

below

Wij(k) =

ˆ 1

−1

dµ

2

ˆ 2π

0

dφ

2π
×

sinc

(

qx
M

2

)

sinc

(

q′x
M

2

)

×

sinc

(

qy
M

2

)

sinc

(

q′y
M

2

)

×

sinc

(

qz
L

2

)

sinc

(

q′z
L

2

)

. (23)

which is a square cylinder.

4.3 Sparsifying DES

We divide the total area of DES into small square patches,
as explained in the design of the mask previously. There are
two ways to sparsify this area;

• Constant Total Area (full sampled area stays constant)
In this setting we keep the patches at a constant position and
gradually decrease their size. Therefore, the total sampled 5

area is kept constant, while the total observed area decreases
as the patch sizes decrease. The patches are placed at 60Mpc
from one another; this scale is about half of the scale of the
BAO Scales, which is ∼ 120Mpc. The patches are placed
at half this scale to capture the BAO features at best. This
restricts the maximum size of the patches to be 60Mpc for
f = 1. We then shrink them from 60Mpc to 10Mpc. The
minimum size of 10Mpc was chosen to avoid entering the
non-linear physics at < 10Mpc. This configuration is shown
in Figure 2. In this case, as we make our observations more
sparse, the total observing time decreases as well; we could
instead choose to observe more deeply in the same amount
of time and gain volume in the redshift direction.

• Constant Observed Area (footprint of the survey stays
constant)
In this setting the size of the patches are kept fixed at
60Mpc, and the area is sparsified by placing the patches fur-
ther and further from one another. Here the total observed
area is constant, while the total sampled area increases as
the patches are put further and further. This configuration
is shown in Figure 3. Now, the length of time for the survey
remains the same, but is spread out over a larger area of sky.

Note that the areas we consider here are small enough
that the flat sky approximation is valid. Also note that in all
the above setting we keep the number of bins of the galaxy
power spectrum constant at nbin = 60. In reality we should
let the total volume of the survey choose the binning of the
power spectrum via kmin = (2π/V )1/3 = dk, and hence
the number of the bins nbin. However, if nbin changes from
case to case it will be unfair to compare D-optimality and
Entropy as they will have different units as nbin changes.
To have a fair comparison between the cases we keep nbin

constant.

5 This is the total area including both the masked and unmasked
areas.

5 RESULTS

We have chosen a geometrically flat ΛCDM model with
adiabatic perturbations. We have a five-parameter model
with the following values for the parameters: Ωm = 0.214,
Ωb = 0.044, ΩΛ = 0.742, τ = 0.087 and h = 0.719, where
H0 = 100hkm−1Mpc−1. The FoM used are

Entropy =
[

ln |F| − ln |Π| − trace(I−ΠF
−1)

]

× 0.5 , (24)

A-optimality = ln(trace(F)) , (25)

D-optimality = ln(|F|) , (26)

where Π is the prior Fisher matrix, which we have chosen
to be that for a SDSS-LRG-like survey. The posterior Fisher
matrix is F = L+Π, where L is the likelihood Fisher matrix,
which is the current sparse survey we have designed. The
utility functions above are defined so that they need to be
maximised for an optimal design.

5.1 Constant Total Area

Figures 4 shows the FoM for both the galaxy power spec-
trum bins on the left and the cosmological parameters on
the right. In both cases, the Entropy, A-optimality and D-
optimality all increase with f . This is as expected as a con-
tiguous sampling of the sky captures all the information and
should be the best to constrain cosmology. The top panels
in the Figure show A-optimality for the bins on the left and
the cosmological parameters on the right. In both cases, A
increases with f and reaches its maximum at f = 1 for DES.
Note that A-optimality is a measure of the errors of the pa-
rameters only — it is a measure of the trace of the Fisher
matrix. Therefore, it is does not account for the correlations
between parameters. Although A increases with f for both
the bins and the parameters, note that this increase is very
small. To see the amount of change in each of the elements
of the power spectrum Fisher matrix as f increases, look at
the top panel of Figure 5. This shows the diagonal elements
of the Fisher matrix F for galaxy power spectrum bins for
the different f . The elements are all on top of each other
and indeed the gain obtained by increasing f is very small.

The middle panels of Figure 4 show D-optimality, which
again increases with f for both the bins and the parameters.
Note that, D-optimality is a measure of the determinant of
the Fisher matrix and therefore takes the correlation be-
tween the parameters into account. The correlation between
the parameters is indeed very important; one disadvantage
of the sparse sampling is the correlation it induces between
the parameters due to aliasing. To see this effect, look at the
bottom panel of Figure 5, where the row of the Fisher matrix
that corresponds to the middle bin of the power spectrum
is shown. Going away from the peak in both direction, the
elements show the correlation between the different bins and
the middle one. As f decreases and we get more and more
sparse, the power in the off-diagonal elements of the Fisher
matrix increases, meaning there is more aliasing. The DES
survey, as a full contiguous survey, has the least aliasing,
while the sparsest survey has the most. The rise towards
the small k (large scales) is due to sample variance.

Looking at the correlations and the errors in the Fisher
matrix of the spectrum one notes that the decrease in D-
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Figure 2. Survey geometry for the ‘constant total area’ scenario — section 5.1. In this setting we keep the patches at a constant position
and gradually decrease their size. Therefore, the total sampled area (i.e., the total extent of the survey) is kept constant, while the total
observed area (and hence the survey observing time) decreases as the patch sizes decrease.

optimality for sparser surveys is mostly due to the increased
correlation between the bins rather than the the increased
errors; as we saw in the top panel of this Figure the decrease
in the errors are negligible. In general we conclude that to-
tal aliasing induced by sparsity is small and the loss in the
constraining power of the survey due to this aliasing is neg-
ligible. Hence, overall, little is gained by observing the sky
more contiguously.

The bottom panels in Figure 4 show the Entropy for
the bins and the parameters. Again, E increases with f and
reaches its maximum for DES. The Entropy measures the
total size of the errors of the parameters in the Fisher matrix
as well as their correlation. Hence it is a good compromise of
A- and D-optimality. It measures the total information gain
of the survey relative to a prior survey. Having an SDSS-like-
survey as our prior, and taking into account both the errors
and the correlation between the parameters, the contiguous
DES survey has the largest gain compared to the sparse
surveys. However, note that this gain is again very small.

Figure 6 shows the relative loss in the marginalised er-
rors of each of the cosmological parameters with respect to

DES. The largest loss for a sparse observation of the sky is on
the spectral index with δΩΛ/ΩΛ ∼ 0.45% and the smallest is
for Ωc with a loss of δΩc/Ωc ∼ 0.15%. The non-marginalised
errors show a qualitatively different behaviour, where ns has
the largest and ΩΛ has the smallest loss.

5.2 Constant Observed Area

Figure 7 shows the FoM for the power spectrum bins and
the cosmological parameters. In this case the Entropy, A-
optimality and D-optimality all decrease with f . And the
overall changes in all the FoM are much larger than the
ones seen in the previous scenario for both the bins and the
parameters.

The top panel of Figure 8 shows the diagonal elements
of the Fisher matrix of the bins. As we sparsify the sur-
vey these elements increase, and hence better constrain the
spectrum. The bottom panel in the Figure shows the row of
the Fisher matrix that corresponds to the middle bin of the
spectrum. Going away from the peak, the elements show the
correlation between the different bins and the middle one.

c© 2002 RAS, MNRAS 000, 1–12
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Figure 3. Survey geometry for the ‘constant observed area’ scenario — section 5.2. In this setting the size of the patches are kept fixed
at 60Mpc, and the area is sparsified by placing the patches further and further from one another. Here the total observed area (and
hence the survey observing time) is constant, while the total sampled area (i.e., the total extent of the survey) increases as the patches
are put further and further.

Figure 4. ‘Constant total area’ — Figure of Merit for galaxy power spectrum bins on the left and cosmological parameters on the right.
In both cases, the Entropy, A-optimality and D-optimality all increase with f . This is as expected as a contiguous sampling of the sky
captures all the information and should be the best to constrain cosmology. However, note that the increase is indeed very small. In
general we conclude that the loss in the constraining power of the survey due to sparsity is negligible and, overall, little is gained by
observing the sky more contiguously. Therefore, the sparse surveys seem like a good substitute for the contiguous surveys, with less
observing time and less cost.

For DES the middle bin has a correlation with the close
neighbouring bins. However, the correlation decreases as we
go away from the peak. Towards small k (large scales) it
starts to increase again due to sample variance. As f de-
creases and we get more and more sparse, the middle bin
has a sharper drop (due to the larger total size of the sur-

vey) i.e., less correlation with neighbouring bins. However,
there is more aliasing between distant bins. Also, there are
peaks (i.e., larger correlations) at certain scales which are
related to the distances between the patches, which changes
case by case. The DES survey, as a full contiguous survey,
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Figure 5. ‘Constant total area’ — Top panel shows the diagonal elements of the Fisher matrix for different f for the power spectrum
bins. The increase in these elements (which translates into a decrease in the variance) is indeed very negligible as sparsity increases.
Bottom panel shows the row of the Fisher matrix that corresponds to the middle bin of the power spectrum. Going away from the peak
in both direction, these elements show the correlation between the different bins and the middle one. As f decreases and we get more
and more sparse, the power in the off-diagonal elements of the Fisher matrix increases, meaning there is more aliasing between the bins.
The DES survey, as a full contiguous survey, has the least aliasing, while the sparsest survey has the most aliasing. The uniform increase
at low k, large scales, is due to sample variance.

has indeed the least aliasing, while the sparsest survey has
the most.

Note that in this case the sparsity is obtained by plac-
ing the observed patches further and further away from each
other. As the sparsity increases as the patches are placed fur-
ther, the total size of the survey is greatly increased, which
seems to make up for the aliasing that the sparse design has
induced. Overall we gain a great deal by spending the same
amount of time on larger but sparsely sampled area.

Figure 9 shows the relative gain in the marginalised
errors of each of the cosmological parameters with respect
to DES. The largest gain for a sparse observation of the sky
is on ΩΛ with δΩΛ/ΩΛ ∼ 27% and the smallest is for Ωc

with a gain of δΩc/Ωc ∼ 7%. Again, a qualitatively different
scenario is seen for the non-marginalised errors; Ωb has the
largest gain due to sparsity, and h has the smallest.

6 CONCLUSION

In this work we have investigated the advantages and dis-
advantages of sparsely sampling the sky as opposed to a
contiguous observation. By making use of Bayesian Experi-
mental Design, we have defined our Figure of Merit as dif-
ferent functions of the Fisher matrix. These FoM capture
different aspects of the parameters of interest such as their
overall variance, the correlation between them or a measure
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Figure 7. ‘Constant observed area’ — Figure of Merit for galaxy power spectrum bins on the left and cosmological parameters on the
right. In this case the Entropy, A-optimality and D-optimality all decrease with f . And the overall changes in all the FoM are much
larger than the ones seen in the previous scenario. It seems that the increase in the total size of the survey due to sparsity can make up
for the aliasing that the sparse design induces. Overall we gain a great deal by spending the same amount of time on larger but sparsely
sampled area. Note that the f = 0.07 case is only for illustration purposes as it covers an area larger than the area of the sky.

Figure 6. ‘Constant total area’ — Relative change in the errors
of the cosmological parameters. The largest loss is about 4.5%
due to sparsifying the survey.

of both as in Entropy. By optimising these functions we in-
vestigate an optimal survey design for estimating the galaxy
power spectrum and a set of cosmological parameters. We

have compared a series of sparse designs to a contiguous de-
sign of DES. We split the area of the DES survey into small
square patches and sparsify the survey in two ways:

(i) by shrinking the size of the patches while they are
kept at a constant position. In this case the total sampled
area of the survey is constant while the observed area (and
the survey observing time) shrinks. This means the total in-
formation gained from the survey reduces in each case. In
this scenario all the three FoM (A-optimality, D-optimality
and Entropy) increase with f , both for the power spectrum
bins and the cosmological parameters. This is expected as a
contiguous sampling should capture all the information and
constrain cosmology the best. However, we note that this
increase with decreasing sparsity is very small for both the
bins and the cosmological parameters. Looking at the vari-
ance and the covariance of the parameters, we note that the
slight degrading of the surveys due to sparsity is mostly be-
cause of the increased correlation between the bins — alias-
ing — rather than the the increased errors. In general we
conclude that total aliasing induced by sparsity is small and
the loss in the constraining power of the survey because of
it is negligible. Hence, overall, little is gained by observing
the sky more contiguously. Indeed the largest loss in terms
of the errors of the cosmological parameters is of the order
of ∼ 4.5% in the sparsest case.

(ii) by keeping the size of the patches constant, but plac-
ing them further and further from one another. In this sce-
nario the observed area (and observing time) is kept con-
stant, while sparsifying means larger and larger total sam-
pled area. This means the total information gained from the
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Figure 8. ‘Constant observed area’ — Top panel shows the diagonal elements of the Fisher matrix for different f for the power spectrum
bins. As we sparsify the survey these elements increase, hence better constrain the spectrum. The bottom panel shows the row of the
Fisher matrix that corresponds to the middle bin of the spectrum. Going away from the peak, the elements show the correlation between
the different bins and the middle one. For DES the middle bins has a correlation with the close neighbouring bins. But the correlation
decreases as we go away from the peak. Towards small k, large scales, it starts to increase again due to the sample variance. As f decreases
and we get more and more sparse, the middle bin has a sharper drop (due to the larger total size of the survey) i.e., less correlation with
neighbouring bins. However, there is more aliasing between distant bins. Also, there are peaks (i.e., larger correlations) at certain scales
which are related to the distances between the patches, which changes case by case. The DES survey, as a full contiguous survey, has
indeed the least aliasing, while the sparsest survey has the most aliasing. Note that the f = 0.07 case is only for illustration purposes as
it covers an area larger than the area of the sky.

survey in each case is the same. Therefore, there are the
two competing factors; one is the increase in the total sam-
pled area as the survey is sparsified and the other is aliasing
induced due to the larger and larger sparse mask on the sky.

In this case all FoM decrease with f , and the change in
the FoM is much larger than the ones seen in the previous
scenario. As we sparsify the survey the decrease in errors
makes up for the increased aliasing induced and hence cause
a general improvement in constraining power of the survey.
Overall we gain a great deal by spending the same amount of
time on larger but sparsely sampled area. Indeed we gain as

much as ∼ 27% on the sparsest survey, which is a significant
improvement.

We conclude that sparse sampling could be a good substitute
for the contiguous observations and indeed the way forward
for future surveys. At least for small areas of the sky, such
as that of DES, sparse sampling of the sky can have less cost
and less observing time, while obtaining the same amount
of constraints on the cosmological parameters. On the other
hand we can spend the same amount of time but sparsely
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Figure 9. ‘Constant observed area’ — Relative change in the
errors of the cosmological parameters. The largest gain is about
27% by sparsifying the survey. Note that the f = 0.07 case is only
for illustration purposes as it covers an area larger than the area
of the sky.

observe a larger area of the sky. This greatly improves the
constraining power of the survey.

In this work we have chosen square observation patches,
which may be the worst shape in terms of the correlation
they induce. Yet another constraint in this design is the
fixed and determined positions of the patches which cause
a loss of information at certain scales. The advantage of
this approach has been its analytical formalism, which has
made it possible to understand the important factors in the
sparse sampling. For future work we will investigate an op-
timal shape foe the patches and have a numerical approach
where these patches are randomly distributed on the sky.
This causes an even loss of information on all scales and is
expected to improve results greatly.
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