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Setting up experimental Bell test with reinforcement learning
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Finding optical setups producing measurement results with a targeted probability distribution is
hard as a priori the number of possible experimental implementations grows exponentially with the
number of modes and the number of devices. To tackle this complexity, we introduce a method
combining reinforcement learning and simulated annealing enabling the automated design of optical
experiments producing results with the desired probability distributions. We illustrate the relevance
of our method by applying it to a probability distribution favouring high violations of the Bell-
CHSH inequality. As a result, we propose new unintuitive experiments leading to higher Bell-CHSH
inequality violations than the best currently known setups. Our method might positively impact
the usefulness of photonic experiments for device-independent quantum information processing.

Introduction— Bell nonlocality is a remarkable fea-
ture that allows to prove the incompatibility of an ex-
periment with a classical description by only assuming
no-signaling and some form of independence between the
experiment’s devices [1]. First appreciated for its foun-
dational implications, it was recently realized that Bell
nonlocality is also a valuable resource to perform some
quantum information tasks in a device-independent way,
i.e without ever assuming a detailed quantum model of
the setup. This led to trustworthy protocols for quantum
key distribution with device-independent security guar-
antees [2] and random number generation with device-
independent randomness certifications [3]. In the same
vein, self-testing [4] is the only technique, that allows to
certify the functioning of quantum devices without as-
suming anything particular about their physical model.

In device-independent protocols, the quantity of in-
terest, be it the rate of quantum key distribution, the
randomness of outcomes or the deviation from the ideal
device in self-testing, is expressed as a scalar function of
the probability distribution of measurement outcomes.
In most cases, the targeted probability distribution is
the one leading the highest Bell inequality violation. For
example, the simplest and most studied Bell test is the
Clauser, Horne, Shimony and Holt (CHSH) test [5] which
can be used for all aforementioned tasks. From a prac-
tical perspective one of the main goals for performing
device-independent quantum information tasks is thus to
design an experiment with measurement outcomes opti-
mizing the violation of the CHSH inequality.

With their high repetition rates and routinely con-
trolled devices, optical experiments are appealing to per-
form a CHSH test as demonstrated in many experi-
ments [6–11]. The CHSH inequality violations reported
in these experiments are very small which prevent one
to use them for most applications of device-independent
quantum information processing. It is thus natural to
wonder if the same optical devices can be re-arranged
to increase the CHSH inequality violations. Finding the
setup leading to the highest CHSH score, that is the high-
est CHSH inequality violation, is however not straight-

forward, as too many possibilities must be considered.
It is the case that automation is becoming necessary to
improve photonic implementations of device-independent
protocols.

Inspired by recent developments in machine learn-
ing [12–15] which is becoming more and more useful
in automation of problem-solving in quantum physics
research [16–19], we introduce a technique based on
the interplay between reinforcement learning [20] and
simulated annealing [21] to design photonic setups
maximizing a given function of probability distributions
of measurement results. We illustrate the relevance of
this method by applying it to probability distributions
yielding high violations of the CHSH inequality with
controlled resources. In essence, our algorithm not only
re-discovered two known setups, but also discovered
new, unexpected experimental settings leading to higher
CHSH scores, and, to our knowledge, are not analogous
to any known settings.

CHSH test— The way to realize the CHSH test is
depicted in Fig. 1(a). A bipartite quantum state is pre-
pared and shared between Alice and Bob. They then
perform measurement on their system by randomly and
independently choosing one out of two measurement set-
tings: Ax with x = 1, 0 for Alice and By with y = 0, 1
for Bob. Each measurement has two possible outcomes
±1 labeled a and b for Alice and Bob, respectively. The
CHSH score is then computed from the distribution of
measurement outcomes as

β =

1∑

x,y=0

(−1)xy
(
p(a = b|AxBy)− p(a 6= b|AxBy)

)
(1)

where p(a = b|AxBy) is the probability that the results
are the same given the setting choices Ax and By. Note
that the CHSH score is upper bounded by 2 whenever
there exists a locally causal model reproducing the
measurement outcomes. The range of possible scores is
enlarged to |β| ≤ 2

√
2 with quantum models [22].

ar
X

iv
:2

00
5.

01
69

7v
1 

 [
qu

an
t-

ph
] 

 4
 M

ay
 2

02
0



2

State preparation

Add an additional
optical element 

Simulation of 
an optical setup 

Current setup 
after simplificationReinforcement

learning

CHSH value,  

Simulated 
annealing

                        : new parameters for the setup
If it lasts for too many iterations — reset the setup

                 : the setup is reset

Reward

Measurement settings

Alice

Bob

Measurement settings

1/-1+

1/-1+

FIG. 1. (a) Schematic representation of a Bell test with two parties – Alice and Bob. In each round, Alice and Bob independently
perform a measurement (chosen randomly among a two settings choice) on the state that they share. The measurement outcomes
that Alice and Bob observe by repeating the measurements are used to test a Bell inequality. (b) Schematic representation of
the proposed learning protocol to design photonic experiments leading to a probability distribution of measurement outcomes
favouring a large CHSH inequality violation. Reinforcement learning (gray-green arrows) and simulated annealing (blue arrows)
approaches are used together. Index k corresponds to the agent-environment interaction step, whereas the variable t – to the
trial. Once the setup is reset, and the new trial starts, only the agent’s memory is preserved.

The physics of designed experiments— We consider
an experiment involving n bosonic modes initialized in
the vacuum state. Their state is then manipulated by ap-
plying single-mode operations – phase-shifters, displace-
ment operations, and single-mode squeezers, and two-
mode operations – beam-splitters and two-mode squeez-
ers, on any mode or pair of modes in any order, or mea-
suring out some of the modes with non photon-number
resolving detectors, see Supplemental Material (SM), sec-
tion A and B for a detailed description of these elements.
The state preparation is complete if the desired combi-
nation of outcomes click or no click is observed on n−m
detectors. The remaining m modes are shared between
Alice and Bob, who locally apply a combination of oper-
ations from the same alphabet depending on their mea-
surement settings. Finally, all the modes are measured
out with non-photon number resolving detectors, yield-
ing one of the 2m possible outcomes. In our examples,
we will consider the cases {m,n} = {2, 2} and {2, 3}.

The alphabet of possible unitary operations we
described is a fair representation of devices that are
routinely used in optical experiments1. It is worth
mentioning that degrees of freedom, such as polarization
or frequency are described by associating several bosonic
modes to one photon. The use of single photon detector
is motivated by the fact that the results of Gaussian
operations alone can be reproduced by locally causal
models.

1 The implementation of higher order interaction is way more de-
manding and inefficient.

Complexity— To motivate an automated approach
to our problem, let us discuss the complexity of finding
the desired setup. A priori, the number of possible
arrangements of elements grows exponentially with the
number of modes and the total number of elements.
However, the operations we consider belong to the class
of Gaussian transformations, except the detectors. In
consequence, any combination of such elements defines
a Bogolyubov transformation on the n modes. Recipro-
cally, any state prepared by the action of a Bogolyubov
transformation on the vacuum can be prepared with
O(n2) elements only, see SM section B for the details.
Yet, an automated approach is very relevant for the
design of such experiments for three reasons. First, the
total number of parameters must also account for the
measurement settings and a brute-force approach would
have to optimize the parameters of 23 elements for find-
ing the highest CHSH score for the case {m,n} = {2, 3}.
Second, if the elements include imperfections, the set
of transformations which is accessible by combining
individual elements is in general unknown, making a
brute-force method unfeasible. Finally, a brute-force
search is unsuitable when one is interested in keeping
the number of elements low.

Learning to violate the CHSH inequality— We
now formalize the problem of an automated design of
an optical setup leading to a high CHSH score as a
reinforcement learning [20, 23] task. The description of
a setup we outlined before, possesses two levels. The
top level specifies the order in which different elements
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FIG. 2. (a) Setup used to test the reliability of the simulated annealing based optimization. Two modes initially empty, are
coupled by a two-mode squeezing (TMS) operation. One mode is sent to each party which he/she measures using photon
detection preceded by displacement operations (D). (b) Learning curves reflecting the parameter optimization process perfor-
mance for the fixed sequence shown in (a). The results are an average over 1000 independent runs, shaded areas are mean
squared deviations. β ≈ 2.4547 (dashed line) is the optimal CHSH value found by using an analytical expression. (c) CHSH
score and experiment length reflecting the reinforcement learning process of improving the CHSH value using a restricted set
of elements. The results are an average over 10 independent runs, shaded areas are mean squared deviations. The maximal
value of β ≈ 2.7075 found by the learning agent is shown as a dashed line. (d) Setup combining simplicity and a relatively high
CHSH score β ≈ 2.6401 (the heralding probability is pclick ≈ 2.2 × 10−3). The diamond shape element above the heralding
detector is a beam splitter.

are applied on different modes. As each element is
parametrized by one or more parameters, a second level
specifies the value of these parameters. The automated
design we propose treats the two levels on a very different
footing – a learning agent focuses on the first level and
an optimization algorithm based on simulated annealing
treats the second level. As seen in Fig. 1(b), the learning
agent (shown as a robot) is interacting with a simulated
optical experiment (shown as an optical table) in rounds,
or interaction steps. A sequence of interaction steps
that leads to a feedback signal (reward) is called a
trial. One interaction step is visualized in Fig. 1(b).
At the beginning of each trial t the agent perceives
an input s1(t) (percept), which is a representation of
an initial (empty) optical setup at the interaction step
k = 1. After a deliberation process, the agent chooses an
optical element a1(t) (action) out of the set of available
elements. The chosen element is incorporated into
the setup s1(t) and this combination makes up a new
setup s2(t). The latter is then analyzed with the help
of an optimization technique in order to understand
the quality of the prepared setup. The optimization
technique based on simulated annealing [21, 24, 25],
tries to find the best parameters of all the chosen optical
elements in the setup such that the measurement results
lead to the highest possible CHSH score. The search
for parameters runs until the maximum number of
optimization iterations is reached, or once the CHSH
score at step k is higher than the previous best one

β(t− 1) = maxk′,t′ βk′(t
′|t′ ≤ t− 1). If βk(t) > β(t− 1),

a reward of r(t) = 1 is given and the trial is fin-
ished: the agent starts the next trial from the initial
configuration s1(t+1) with an updated CHSH score β(t).

Optimizing a fixed setup— The parameter optimiza-
tion process is embedded into our reinforcement learning
task. In particular, rewards – the signals that the learn-
ing agent uses to improve its own performance in the
design of experiments – are the outputs of the parameter
optimization procedure. The decision making relies on
a good optimization process that provides near-optimal
CHSH values for each setup proposed by the agent. We
thus test the reliability of the simulated annealing based
optimization by first separating the optimization process
from the reinforcement learning process. This is imple-
mented by considering a setup where Alice and Bob di-
rectly measure the state produced by vacuum two-mode
squeezing using photon detection preceded by displace-
ment operations in phase space, see Fig. 2(a). The learn-
ing scenario is equivalent to having a “lucky” agent that
always chooses a setup known to produce a high CHSH
score [26–28], or to an agent that already learned this
configuration.

Fig. 2(b) shows the results of the parameter optimiza-
tion in this scenario. In our protocol the computation
time allocated to the annealer increases with each
subsequent trial. As a consequence, the CHSH score
grows with the number of trials towards its maximum
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theoretical value (dashed line), which confirms that
the optimization based on simulated annealing found
near-optimal parameters. The maximum CHSH score
found by the simulated annealing based optimization is
β ≈ 2.4546, which has only a 10−4 difference with the
known optimal solution. Apart from the optimization
procedure, it is important that a correct reward signal
is paired with the dynamics of the CHSH score β.
In Fig. 2(b) one can see that reward r is growing
with time in parallel with β. However, the reward
goes down towards zero with time, meaning that the
agent receives nearly no feedback after 20 trials. This
unusual phenomenon, opposite to a standard scenario in
reinforcement learning, where an agent is expected to
keep maximizing the reward per trial, is explained by
that fact that it becomes harder and harder to surpass
the CHSH values of previous rounds once the CHSH
score has nearly reached its maximum theoretical value.
For the observed reason, we expect our learning agent
to converge to an average reward of zero in the learning
tasks that we consider next.

Reinforcement learning with a limited set of devices—
We first start by considering a task in which the agent
is given n = 3 bosonic modes and a restricted toolbox
composed of beam splitters, two-mode squeezers and dis-
placement operations. Given that 2 modes will finally be
distributed to Alice and Bob and the last one is detected,
the agent is asked to find the setup leading to the high-
est CHSH score by getting feedback from the simulated
annealing based optimizer.

As a reinforcement learning agent, we are using the
projective simulation agent, which was first introduced
in Ref. [29] and since then was shown to be attractive
both theoretically [30–33] and for practical use [23, 34–
37]. The details of the agent’s internal structure and
meta-parameters are omitted here, see SM section A for
more information on the implementation. The code of
the basic projective simulation agent is publicly available
in Ref. [38].

Fig. 2(c) shows the evolution of the CHSH score and
the length of the experiment l(t), i.e. the evolution of
the number of elements used by the agent per trial.
One can see that the setup length first decreases before
increasing. Similar to the behavior of the reward r(t)
observed in Fig. 2(b), it is hard to improve over nearly
optimal solutions, hence the agent gets no reward and
by gradually forgetting its previous experience, explores
the most complex possibilities of the maximum allowed
length lmax = 15. This maximum length is the same
throughout our work, and is lower than the number
of l = 23 independent elements required for a general
Bogolyubov transformation on the 3 modes, see SM
section B for the details. As for the CHSH values, a
setup is found leading to a maximum value of ∼ 2.7075
using eleven elements. Although, the agent gets rewards

more frequently when the CHSH score tends to increase
which may favor long lengths, he effectively gets a
similar reward per action in shorter experiments with
lower CHSH values. This trade-off can be controlled by
the agent’s meta-parameters. When short length setup
are favored, the agent finds frequently a simple setup
leading to a CHSH score of ∼ 2.6401 in which the modes
2 and 3 are first coupled with a two mode squeezer
and the modes 1 and 2 are then coupled through a
beam splitter, see Fig. 2(d). This corresponds to a
physical implementation of a setup proposed in 1999
[39] where a CHSH inequality violation is observed by
first sending a single photon into a beam splitter and
measuring the output modes with photon detection
preceded by displacement operations. Note that the
agent is using displacements with real and imaginary
parts, however, does not use them symmetrically in the
measurement choices. Each element with a complex
parameter is indeed divided into two elements, one
with a real parameter and one with a purely imaginary
parameter and the agent found a way to reduce the
number of elements in the displacements from 8 to 4.
This represents the internal feature of reinforcement
learning agents – reducing the number of actions per
reward, which corresponds to reducing the number of
elements in setups.

Proposal of new experiments with reinforcement
learning— Next, we allow the agent to choose between
more elements by adding single-mode squeezing with
a complex squeezing parameter to the previous set
of elements. Benefiting from the extended space of
possibilities, the agent gives us new setups, two of
them producing CHSH scores above 2.74, see Fig. 3(a)
and Fig. 3(b). We were not able to find known setups
producing similar states. In order to witness the rel-
evance of these new setups, we computed their CHSH
score for non-unit detection efficiencies and re-optimized
systematically the parameters of each element when
the detection efficiency is changed. For comparison,
we also reported in Fig. 3(c) the CHSH score of setups
shown in Fig. 2(a) and Fig. 2(d) which are known to
be resistant to detector inefficiency and to produce
high CHSH scores for close to unit efficiency detection
respectively [40]. We conclude that the new setups
provide higher CHSH scores for any detection efficiency.
This can be partially understood by noting that the
new setups have more elements and the possibility to
control their parameters allows one to reduce them to
setups close to the ones of Figs. 2 (a) and (d). Although
more detailed analysis are needed to conclude about the
usefulness of these new setups in practice, they might
provide additional motivations to develop programmable
photonic integrated circuits.
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FIG. 3. Two photonic setups designed by the projective sim-
ulation agent after learning from simpler examples. SMS ele-
ments correspond to single-mode squeezing operations. (a)
A Bell test with CHSH score β ≈ 2.7242 and a herald-
ing probability pclick ≈ 2.9 × 10−4, or β ≈ 2.7424 with
pclick ≈ 2.6 × 10−5. (b) A Bell test with β ≈ 2.7454 and
pclick ≈ 1.1 × 10−9. Parameters of the elements for both se-
tups are in SM section A. (c) Dependence of the CHSH scores
of setups which are considered in this work, on detection ef-
ficiency. The setups designed by the agent provide higher
CHSH values than known setups for any detection efficiency.

Conclusion and outlook— We have introduced a new
approach to design photonic quantum experiments max-
imizing a desired function of the probability distribution
of measurement outcomes. Our approach combines the
reinforcement learning technique of projective simulation
and the optimization algorithm of simulated annealing
which makes it possible to simultaneously explore and
optimize the discrete space of optical elements and the
continuous space of their parameters. The relevance
of this machine learning technique has been shown by
focusing on the design of experiments favoring high
CHSH scores. We observed that the agent is able to
learn the experimental designs by trial-and-error. The
agent was designing setups with increasing CHSH value
and decreasing experiment length whenever it was
possible. As a result, new setups have been discovered
with unprecedented CHSH values for any detection
efficiency, which might positively impact the usefulness
of photonic experiments for device-independent quantum
information processing.
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Mod. Phys. 91, 045002 (2019).

[18] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).

[19] V. Dunjko and P. Wittek, Quantum Views 4, 32 (2020).
[20] R. S. Sutton and A. G. Barto,

Reinforcement Learning: An Introduction, 2nd ed.

http://dx.doi.org/ 10.1103/RevModPhys.86.419
http://dx.doi.org/10.1038/nature13132
http://dx.doi.org/ 10.1103/RevModPhys.89.015004
http://dx.doi.org/ 10.1103/RevModPhys.89.015004
https://arxiv.org/abs/1904.10042
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1038/nature12012
http://dx.doi.org/ 10.1103/PhysRevLett.111.130406
http://dx.doi.org/ 10.1103/PhysRevLett.111.130406
http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://dx.doi.org/10.1103/PhysRevLett.121.150402
http://dx.doi.org/ 10.1038/s41586-018-0559-3
http://dx.doi.org/ 10.1038/s41586-018-0559-3
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1088/1361-6633/aab406
http://dx.doi.org/10.1088/1361-6633/aab406
http://dx.doi.org/ 10.1103/RevModPhys.91.045002
http://dx.doi.org/ 10.1103/RevModPhys.91.045002
http://dx.doi.org/ 10.1038/nature23474
http://dx.doi.org/10.22331/qv-2020-03-17-32
https://mitpress.mit.edu/books/reinforcement-learning-second-edition


6

(MIT press, Cambridge, MA, USA, 2018).
[21] P. J. Van Laarhoven and E. H. Aarts, in

Simulated annealing: Theory and applications
(Springer, 1987) pp. 7–15.

[22] B. Cirel’son, Lett. Math. Phys. 4, 93 (1980).
[23] A. A. Melnikov, H. Poulsen Nautrup, M. Krenn, V. Dun-

jko, M. Tiersch, A. Zeilinger, and H. J. Briegel, Proc.
Natl. Acad. Sci. U.S.A. 115, 1221 (2018).

[24] A. G. Nikolaev and S. H. Jacobson, in
Handbook of metaheuristics (Springer, 2010) pp.
1–39.

[25] D. Pham and D. Karaboga,
Intelligent optimisation techniques (Springer Science &
Business Media, 2012).

[26] A. Kuzmich, I. A. Walmsley, and L. Mandel, Phys. Rev.
Lett. 85, 1349 (2000).

[27] S.-W. Lee, H. Jeong, and D. Jaksch, Phys. Rev. A 80,
022104 (2009).

[28] J. B. Brask and R. Chaves, Phys. Rev. A 86, 010103
(2012).

[29] H. J. Briegel and G. De las Cuevas, Sci. Rep. 2, 400
(2012).

[30] J. Mautner, A. Makmal, D. Manzano, M. Tiersch, and
H. J. Briegel, New Gener. Comput. 33, 69 (2015).

[31] A. Makmal, A. A. Melnikov, V. Dunjko, and H. J.
Briegel, IEEE Access 4, 2110 (2016).

[32] A. A. Melnikov, A. Makmal, V. Dunjko, and H. J.
Briegel, Sci. Rep. 7, 14430 (2017).

[33] J. Clausen, W. L. Boyajian, L. M. Trenkwalder, V. Dun-
jko, and H. J. Briegel, arXiv:1910.11914 (2019).

[34] S. Hangl, E. Ugur, S. Szedmak, and J. Pi-
ater, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(2016) pp. 2799–2804.

[35] A. A. Melnikov, A. Makmal, and H. J. Briegel, IEEE
Access 6, 64639 (2018).
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SUPPLEMENTAL MATERIAL

A-Details on the learning algorithm

This part of the Supplemental Material is divided
into 4 paragraphs. The first one gives the details on the
optical setups simulation, the second one focuses on the
simulated annealing algorithm, the third one is dedi-
cated to the projective simulation model. The values of
parameters that were obtained for the setups presented
in the main text are given in the last paragraph.

Optical setups simulation— In this section we give
details on the way the simulation of optical setups is per-
formed. This part of our work is schematically shown
as an optical table in Fig. 1(b) and involves all arrows
going in and out of this table. The gray-green arrows in
Fig. 1(b) correspond to the interaction of the reinforce-
ment learning agent with the simulation. This interac-
tion at step k involves giving an optical element ak to
the simulator, and getting a setup sk, which is a simpli-
fied sequence of previously set elements. All the actions
a that are in the agent’s toolbox A are shown in Fig. 4.
There are in total of |A| = 20 actions, which correspond
to specific optical elements shown in the right column.
These optical elements also represent unitary operations,
written in the third column. Each of the unitary oper-
ations has a single parameter: g, θ, or α, and can take
any real value. Practically, the values of the parameters
are bounded by the number of the simulated annealing
based optimization steps: at each step, a parameter can
be changed by maximal value of 0.25. Unitary operations
act on the state of photonic modes that are modeled as
vectors in the d-dimensional Hilbert space, which means
we consider up to d − 1 photons per mode. d is set to
4 in all our simulations, however, in the event of non-
zero reward, we redo the simulations automatically with
d = 11.

The described actions are arranged in a se-
quence {a1(t), a2(t), . . . , ak(t)}, forming a photonic
setup sk(t). From this sequence we delete all
the duplicates of the following displacement elements:
DRe
A0
,DRe

A1
,DRe

B0
,DRe

B1
,DIm

A0
,DIm

A1
,DIm

B0
, and DIm

B1
. This du-

plicates deletion operation simplifies the percept repre-
sentation sk(t), and does not introduce any change to the
setup as all possible unique experiments can be achieved
by one copy of the mentioned displacement operations.
Sometimes, however, the agent decides to add more dis-
placements of the same type in order to improve the pre-
cision of the optimization. Placing the same element
twice does not change the percept, but makes another
optimization run which gives a higher chance to find a
better CHSH value. We have observed that this effect
appears once the learning agent learns a near-optimal
setup.
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Action Elements name Elements description Elements notation

1− 2 Two-mode squeezing:

TMS12, TMS23

UTMS = exp
(
g(a†1a

†
2 − a1a2)

)

3− 4 Two-mode squeezing,
small squeezing:

TMS′12, TMS′23

UTMS′ = exp
(
10−4g(a†1a

†
2 − a1a2)

)

5− 6 Beam splitters:

BS12, BS23

UBS = exp
(
iθ(a†1a2 + a†2a1)

)

7− 9 Single-mode squeezing,
real value part:

SMSRe
1 , SMSRe

2 , SMSRe
3

USMSRe = exp
(g
2

(
a2 − (a†)2

))
Re

SMS
Re

SMS
Re

SMS

10−12 Single-mode squeezing,
imaginary value part:

SMSIm1 , SMSIm2 , SMSIm3

USMSIm = exp
(
−ig

2

(
a2 + (a†)2

))
Im

SMS
Im

SMS
Im

SMS

13−16 Displacements,
real value part:

DRe
A0
,DRe

A1
,DRe

B0
,DRe

B1

UDRe = exp
(
α(a† − a)

)

Re
D

Re
D

Re
D

Re
D

17−20 Displacements,
imaginary value part:

DIm
A0
,DIm

A1
,DIm

B0
,DIm

B1

UDIm = exp
(
iα(a† + a)

)

Im
D

Im
D

Im
D

Im
D

FIG. 4. Optical elements that are used by the projective simulation agent as 20 different actions. All parameters in the unitary
operations are set by the simulated annealing algorithm.

To avoid computational complexity in simulations, and
to avoid over-complicated photonic setups that are diffi-
cult to realize experimentally, we set the maximum length
of a setup to lmax = 15 and the maximum number of in-
teraction steps within a trial to kmax = 20. If, after cre-
ating a setup with 15 elements, the learning agent does
not get a positive reward, the constructed setup is reset.
The same happens if the agent applies 20 actions in one

trial.

In all the experiments that the learning agent de-
signs, the third optical mode is measured with a non-
discriminating photon detector at the state preparation
stage. This heralding detector is the same as the detec-
tors on Alice and Bob sides: the outcome is click in case
one or more photons are detected, or no click otherwise,
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with POVM elements

Pclick =

∞∑

k=1

|k〉〈k| (2)

Pno click = |0〉〈0|. (3)

For two measurement outcomes of the heralding detector
both quantum states are considered and two CHSH val-
ues are computed. A measurement outcome correspond-
ing to a quantum state with the highest CHSH value is
kept, together with the corresponding probability pclick,
or pno click. It is worth noting that discarding the out-
come of the heralding detector – or simply removing it –
can only be detrimental for the CHSH value, as follows
from linearity of quantum mechanics. It is the case, espe-
cially when single-photon experiments are involved, that
the detector “clicks” with a very small probability below
10−10. The agent actively exploits this regime by learn-
ing to find setups where computational noise perturbs
detection probabilities, leading to nonphysical quantum
states which give high CHSH score. In order to avoid
negative side effects with numerical precision, and with-
out increasing the memory size for quantum states rep-
resentation, we set a limit on the detection probability:
pmin
click = 10−4 in all the cases, except the one in Fig. 3

where pmin
click = 10−9.

In all the learning settings the agent designs photonic
setups for unit detector efficiencies and zero photon loss.
In Fig. 3(c) we, however, additionally study the effec-
tiveness of the designed setups for detection efficiency as
modeled by POVM elements

Pclick = 1− Pno click (4)

Pno click = (1− η)a
†a. (5)

In the latter case, each photon arrives at a detector
with probability η, which corresponds to the detector
efficiency in Fig. 3(c).

Simulated annealing algorithm— In this section we
give details on the way the simulated annealing algorithm
is implemented in our work. The purpose of this algo-
rithm is to set the parameters for a given photonic setup
such that the CHSH score β is maximized. Optimiza-
tion algorithms are known to be useful not only for setup
parameter optimization, but also for full quantum exper-
iment design [41–45]. In our learning approach, different
to previous works, optimization takes a role of a tool for
the reinforcement learning agent to design better exper-
imental setups.

Simulated annealing algorithm part of our work is
schematically shown as a cost function landscape in
Fig. 1(b) and involves all arrows going in and out of this
function landscape. At a given interaction step k of a trial
t, the simulated annealing based algorithm is optimizing
β over the parameters of the setup sk(t). The photonic

setup is simplified, therefore the length of the setup sk(t)
is lk(t) ≤ k. Hence, simulated annealing is optimizing pa-
rameters Φ(k, t) = {φ1(k, t), φ2(k, t), . . . , φl(k, t)} of the
setup sk(t) in an l-dimensional parameter space.

FIG. 5. (a) Simulated annealing algorithm visualization
for two-parameter optimization. Height corresponds to the
CHSH value β. (b) A scheme that summarizes additional de-
tails of the machine learning approach that is used throughout
the paper. In this scheme the emphasis is made on the parts
which are controlled by the SA algorithm. Index i corresponds
to the optimization step (SA arrows), index k – to the agent-
environment interaction step (RL arrows), and variable t – to
the trial. Once the setup is reset, and the new trial starts,
only the RL agent’s memory is preserved.

The optimization starts at the point where all param-
eters are equal to zero, and continues in iterations. Iter-
ation i is implemented in the following way. First, one
of the parameters φm(i)(k, t) is chosen uniformly from
the parameter set Φ(k, t), and φm(i)(k, t) is changed to
φm(i)(k, t) + ξi; ξi ∈ R is sampled from the interval of

[−0.25, 0.25]. Next, β
(i)
k value is calculated by the opti-

cal setups simulator. If β
(i)
k (t) is larger than the high-

est CHSH score βk(t) during the step k, then the it-
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eration ends and βk(t) = β
(i)
k (t) is updated2. In case

β
(i)
k (t) < βk(t), the change in the parameter φm(i)(k, t)

is reverted with probability

p
(i)
k (t) = 1− exp

(
−βk(t)− β(i)

k (t)

Ti(t)

)
, (6)

where

Ti(t) =
N(t)

i
Tmin (7)

is the effective temperature of simulated annealing with
Tmin = 0.001 being the minimal temperature. N(t) =
95 + 5t is the total maximal number of optimization it-
erations done at trial t. After this probabilistic reversion
of the parameter, the iteration i ends.

All iterations are continued up to a total number of it-
erations N(t), or until the CHSH score is larger than
the previous best value βk(t) > β(t − 1). In case
βk(t) > β(t − 1), the trial t ends, the setup is reset to
s0(t + 1), and a reward r(t) is given to the agent. If
the optimization stops after N(t) iterations, and without
achieving a better β, than the agent-environment inter-
action step k finishes. But the trial t continues by ask-
ing the agent to add one more element with an action
ak+1(t). However, in case it was already the last interac-
tion step (i.e. k = kmax) or the length of the setup was
already maximal (i.e lk(t) = lmax), the trial t finishes
with no reward and the setup is reset.

A visualization of a 2-dimensional parameter space, as
an example, is shown in Fig. 5(a). The particle (red)
starts close to the local minimum of the CHSH value,
followed be a jump along the φ1(k, t) axis. This jump
corresponds to the first parameter change. Then, the
jumps are further performed along the axes until N = 5
optimization steps. A summary of all the learning steps
that the simulated annealing optimization algorithm in-
fluences is shown in Fig. 5(b).

Note that the parameters are changed by a value of
ξi ∈ [−0.25, 0.25], which makes it practically difficult to
explore the region of φm(i)(k, t) � 1, or φm(i)(k, t) � 1.
This difficulty is naturally avoided by adding actions
for different parameter scale. The actions TMS12 and
TMS′12, TMS23 and TMS′23 (see table in Fig. 7 for the
meaning of these acronyms) differ only in the scale of
the squeezing parameter: in the case of TMS′ squeezing
parameter is on average 104 times smaller.

Projective simulation model— In this section we give
details on the way our reinforcement learning algorithm
is implemented. Reinforcement learning was shown to be
able to design quantum experiments in Ref. [23], where

2 Initially, at the first iteration, βk(t) is set to zero.

an agent was choosing from a discrete set of optical ele-
ments, but did not use any additional optimization tech-
nique to deal with continuous space of optical elements
parameters.

Reinforcement learning part of our work is schemati-
cally shown as a robot in Fig. 1(b) and Fig. 5(b). From
the mathematical point of view, the learning agent can
be viewed as a policy function πk(s, a, t) that maps input
states sk(t) to output actions ak(t). Here we discuss the
specific form of this policy functions, and it’s updating.

photonic setups
(percepts)

optical elements
(actions)

policy πk(si, aj, t)

s1 s2 s3 s4 s5 s6 s7 s8 s9 ... sk

a1 ... a4 ... a8 ... a12 ... a16 ... a20

FIG. 6. The PS network that is used in the paper. The
network consists of two layers of clips and edges connecting
these layers.

As a reinforcement learning agent, we use the pro-
jective simulation agent [29–35] which is schematically
represented in Fig. 6. The agent is a two-layered pro-
jective simulation network, similar to the one used in
Refs. [23, 36] for designing quantum experiments and
quantum communication networks. The network consists
of a layer of clips that represent states sk(t), and a layer
of clips that represent actions ak(t). Clips are connected
by directed edges with time-dependent weights hk(s, a, t).
The weights fully define the policy function. The map-
ping from the weights h to the policy π can be done in
various ways within the projective simulation model. In
this work, it is done in the following way:

πk(s, a, t) =
ehk(s,a,t)

∑
a′ ehk(s,a′,t)

. (8)

The policy is updated after each agent-environment in-
teraction step k by performing a change of weights
hk(s, a, t):

hk+1(s, a, t) = hk(s, a, t)− γPS(hk(s, a, t)− 1)

+gk+1(s, a, t)r(t), (9)

where initial weights are set to h1(s, a, 1) = 1 for all
(s, a) pairs. Reward r(t) has a binary value: r(t) = 1 in
case the agent found a setup observing a better β value
during trial t, and zero otherwise. The values gk(s, a, t),
which are used in the update of the weights, are called
glow values. The glow value is set to gk+1(s, a, t) = 1
in case the state s and action a appeared in the step k.
For all the other state-action pairs, the glow values are
set to gk+1(s, a, t) = (1 − ηPS)gk(s, a, t) with ηPS = 0.3.
Initially all glow values are equal to zero as there is no
history of state-action pairs.
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Setup Setup description β pclick Setup parameters

Fig. 2(a) {TMS12, D
Re
A0

, DRe
A1

, DRe
B0

, DRe
B1
} 2.4546 deterministic {0.7350, -0.1636, 0.5240, 0.1562,

-0.5276}

Fig. 2(d) {TMS23, BS12, D
Re
A0

, DRe
A1

, DRe
B1

,

DIm
B1
}

2.6401 2.2× 10−3 {0.0472, -0.7609, 0.2855, -0.4733,
-0.0087, -0.6572}

Fig. 3(a) {TMS12, BS23, SMSRe
1 , SMSRe

2 ,
TMS12, BS23, DRe

A0
, DIm

A0
, DRe

A1
,

DIm
A1

, DRe
B0

, DRe
B1

, DIm
B1
}

2.7242 2.9× 10−4 {-0.0855, -0.1279, -0.1247, -0.1572,
0.1047, 0.0746, -0.1896, -0.0437, 0.5477,
0.0153, -0.1704, 0.6167, 0.0157}

the same the same 2.7424 2.6× 10−5 {-0.2465, -0.0131, -0.1212, -0.1341,
0.2585, 0.0265, -0.1608, 0.0396, 0.6276,
-0.0137, -0.2018, 0.5886, -0.0315}

Fig. 3(b) {TMS′23, BS12, TMS12, SMSRe
1 ,

SMSRe
2 , TMS′23, D

Im
A0

, DRe
A1

, DIm
A1

,

DRe
B0

, DRe
B1
}

2.7454 1.1× 10−9 {0.3483, 0.7059, 0.0025, 0.1221,
-0.1717, -0.0306, -0.1822, -0.0192,
0.6047, -0.1967, 0.6131}

FIG. 7. Four photonic setups that are discussed in the paper. One of the setups has two different parameter sets, which were
obtained by setting a different constraint on the minimum detection probability pclick.

The second term on the right-hand side of Eq. 9 is a
weight damping term that is responsible for forgetting.
In our reinforcement learning scheme agent’s forget-
ting helps to avoid locally (in the space of photonic
setups) optimal CHSH values. Small level of forgetting
γPS = 10−3, which is the same in all our simulations,
allows the agent to switch to completely new strategies
in designing experiments within one learning run. Both
γPS and ηPS are the meta-parameters of the projective
simulation model. Meta-parameters are set to constant
values in this work, but can also take trial-dependent
values and be set by the agent autonomously [31].

Details on learned setup parameters— The values of
the parameters that were obtained for the setups that are
presented in the main text are detailed in the table given
in Fig. 7.

B-Details on the problem complexity

Take our n bosonic modes with associated creation
operators a1 to an, satisfying the canonical commu-
tation relations [ak, a

†
`] = δkl. For compactness, we

combine the operators in a column vector denoted
a = (a1, a2, . . . an). Pure states of the n modes are
elements of the Hilbert space H = F⊗n – the tensor
product of n Fock spaces. Let us first look at different
unitary operations from agent’s alphabet in Heisenberg’s
picture through their action on a. We start by linear
optical transformations and then consider displacement

and squeezing operations. We conclude on the elements
that are required for implementing a general Bogolyubov
transformation and end up with a precise count of
the total number of parameters needed to describe
all inequivalent experiments with a fixed number of
measurement settings. In particular, this gives the total
number of parameters that needs to be optimized in a
brute-force search of the setup leading to the highest
CHSH score.

Decomposition of an arbitrary linear transformation—
Let us start with phase shifters. A phase shifter –

denoted PS – is a single-mode single parameter (ϕ) op-
eration mapping a bosonic operator a into

PSϕ[a] = eiϕa. (10)

A beam splitter – labelled BS – is a two-mode single
parameter (θ) operation mapping bosonic modes a1 and
a2 into

BSθ

[(
a1
a2

)]
=

(
cos(θ)a1 − sin(θ)a2
sin(θ)a1 + cos(θ)a2

)
. (11)

Beam splitters and phase shifters belong to the class
of linear optical transformations – those preserving the
total number of bosons a†a. A general linear optics trans-
formation U is represented by

U[ak] = Uk` a`. (12)

One easily verifies that the canonical commutation
relations given before impose unitarity UU† = U†U = 1,
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which is this parametrized by n2 real parameters. The
decomposition of any transformation U in beamsplitter
and phase shifter can be obtained from the following
observation.

Observation 1 Any linear optical transformation U

on n modes can be decomposed in n(n−1)
2 beam splitters

and n(n+1)
2 phase-shifters, as depicted in Fig. 8. The

proof can be deduced from Refs. [46, 47].

Displacements and squeezing operations— A dis-
placement – D – is a single mode transformation that
maps the bosonic operator a into

Dα[a] = a+ α, (13)

where α = α′ + iα′′ is a complex number. Trivially, we
have

Dα = DRe
α′ ◦DIm

α′′ = DIm
α′′ ◦DRe

α′ . (14)

The most general combination of displacements on n
modes is thus parametrized by 2n parameters. It is also
easy to see that any displacement can be decomposed as

Dα = PS−ϕ ◦DRe
|α| ◦ PSϕ (15)

for α = |α|eiϕ. For compactness we denote a displace-
ment operating on n modes as

Dα =

n⊗

i=1

Dαi (16)

FIG. 8. The decomposition of any nmode linear optical trans-
formation U in single-parameter beam splitters and phase
shifter. The illustration depicts the case for n = 4, but one
can easily guess the general structure. The mirror symmetric
arrangement is also a possible decomposition of any U.

Finally, we consider single-mode and two-mode squeez-
ers, the last two kinds of Bogolyubov transformations.
A single-mode squeezing operation – SMS – maps the
bosonic operator a onto

SMSg[a] = cosh(g) a+ sinh(g)a†. (17)

For compactness, we introduce the following notation for
single mode squeezers operating on n modes

SMSg =

n⊗

i=1

SMSgi (18)

Two-mode squeezing operation – TMS – acts on two
bosonic modes a1 and a2 as

TMSg

[(
a1
a2

)]
= cosh(g)

(
a1
a2

)
+ sinh(g)

(
a†2
a†1

)
. (19)

Note that displacement and squeezing operations are
not energy preserving, i.e. do not preserve the total
number of bosons and do not leave the vacuum state
invariant.

General Bogolyubov transformation— It is easy to see
that applying previously described elementary operations
repeatedly can only map the bosonic operator a` associ-
ated to mode ` to a linear combination of annihilation
operators ak, creation operators a†k and a complex num-
ber. The most general transformation G on n modes that
has such a form is called a Bogolyubov transformation
and can be written as

G[ak] =
∑

`

(Fk` a` +Hk` a
†
`) + αk. (20)

Unitariry of G ensures that it preserves the commutation
relations. It is easy to see that canonical commutation
relation enforce

(i) [ak, a
†
`] = δd` : FF † −HH† = 1

(ii) [ak, a`] = 0 : FHT −HFT = 0.
(21)

These two constraints leave us with 2n2+3n parameters.
The following observation provides the decomposition of
G in terms of basic elements.

Observation 2 The general Bogolyubov transforma-
tion G on n bosonic modes described in Eq. (20) and
satisfying the constraints (21) can be decomposed as

G = V ◦ SMSg ◦U ◦Dα, (22)

where U and V are linear optics transformations as given
in Eq. (12), SMSg are parallel single-mode squeezers
(see Eq. (18)), and Dα are parallel displacements (see
Eq. (16)).

Obsevation 2 is at the core of the representation of the
covariance matrix representation of Gaussian states and
transformations, and relies on the canonical decomposi-
tion of symplectic matrices given by Williamsons theo-
rem, see e.g. [48, 49] for reviews along this line.

A few remark can be made on the decomposition pre-
sented in Eq. (22). First, we note that any transfor-
mation achieved by displacements Dα followed by linear
optics U, can be equivalently represented as U followed
by another displacement Dβ

U ◦Dα = Dβ ◦U.
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Similarly, displacements Dα followed by single mode
squeezers SMSg are equivalent to the same squeezers
followed by other displacements Dβ

SMSg ◦Dα = Dβ ◦ SMSg.

Both equivalences follow straightforwardly from trans-
formation of the creation operators a.

FIG. 9. (a) Illustration of the most general setup that is
needed to reproduce the Bell inequality violation of any setup
in the bipartite case. (b) Illustration of the most general
setup able to reproduce any CHSH test in which two parties
received one mode each from a preparation stage involving
three modes. This shows that even in this fairly simple case,
it would take a brute-force optimization over 23 parameters
to deduce the setup leading to the highest CHSH score.

We deduce a Corollary of observation 2: Any Bo-
golyubov transformation G can also be decomposed as

G = Dβ ◦V ◦ SMSg ◦U. (23)

This decomposition is particularly handy when the trans-
formation G acts on the vaccum |0〉, given that linear
optics leave the vacuum invariant. We have

G |0〉 = Dβ ◦V ◦ SMSg |0〉 . (24)

Any state created by a Bogolyubov transformation from
the vacuum can be prepared from single mode squeezed

states on which a linear optics transformation and
displacement are applied.

Complexity of the brute-force search— Let us start
by considering a setup with fixed measurement settings.
From a global perspective, such a setup consists of a state
G |0〉 prepared by Bogolyubov transformation G acting
on vacuum and measured with non-photon number re-
solving detectors. Before counting the number of param-
eters that we would need for a brute-force search of the
setup leading the highest CHSH score, let us note that
the amplitude of the final displacements in the decompo-
sition given in Eq. (24) can be taken to be real.

To see this, note that Dβ = PS−ϕ◦DRe
|β|◦PSϕ, the first

raw of phase shifter can be absorbed in V while the last
raw does not affect the measurement statistics. Hence,
the most general setup for fixed settings is described by
the state

DRe
|β| ◦V ◦ SMSg |0〉 , (25)

which is specified by n2 + 2n parameters.

Any additional setting x gives each party ` (Alice and
Bob in the bipartite case), the possibility to apply an-

other local Bogolyubov transformation G
(`)
x on the k`

received modes. As before this transformation can be
decomposed as

G(`)
x = DRe

|β| ◦V ◦ SMSg ◦U, (26)

which counts 2k2` + 2k` parameters. The total number of
parameters required to fully describe an arbitrary setup
is thus given by

#parameters = n2 + 2n+
∑

`

(N` − 1)(2k2` + 2k`), (27)

where N` is the number of settings of the party ` and
k` the number of modes it receives. For the case of the
CHSH test, one gets

#CHSH = n2 + 2n+ 2(k2A + kA) + 2(k2B + kB). (28)

The general setup in the CHSH case is illustrated in
Fig 9(a). Fig 9(b) shows in particular the setup that
would be needed to reproduce any possible implemen-
tation of the CHSH test in the 3 mode case with 2
modes sent to Alice and Bob. This corresponds to one of
the examples considered in the main text ((n, kA, kB) =
(3, 1, 1)). In this case, a brute-force search of the setup
leading to the highest CHSH test would require an opti-
mization over 23 real parameters.
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