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Device-independent quantum key distribu-
tion aims at providing security guarantees even
when using largely uncharacterised devices. In
the simplest scenario, these guarantees are de-
rived from the CHSH score, which is a sim-
ple linear combination of four correlation func-
tions. We here derive a security proof from a
generalisation of the CHSH score, which effec-
tively takes into account the individual values
of two correlation functions. We show that this
additional information, which is anyway avail-
able in practice, allows one to get higher key
rates than with the CHSH score. We discuss
the potential advantage of this technique for
realistic photonic implementations of device-
independent quantum key distribution.

1 Introduction
The aim of quantum key distribution (QKD) is to
give two parties — Alice & Bob — the possibility
to generate a secret key when they share a quantum
channel. For instance, in the implementation pro-
posed by Ekert [8], the channel consists of a source
producing entangled particles that are distributed
to Alice & Bob. At each round, each of Alice &
Bob measure one particle by choosing one out of
several measurement settings. The claim that Alice’s
measurement results are secure, i.e. unknown to any
third party – Eve – who may control the quantum
channel, is guaranteed by inferring (from Alice and
Bob’s measurement results) that the source emits
states close to pure bipartite entangled states. This
ensures at the same time that Bob’s results are
correlated to Alice’s ones if he chooses an appropriate
measurement setting, i.e. Alice and Bob’s measure-
ment results can form a secret key.

Ekert suggested that the information about the key
that may be available to an adversary can be quan-
tified by choosing settings allowing Alice & Bob to

violate a Bell inequality. This idea was later pro-
gressively formalised and led to what is now called
device-independent QKD (DIQKD). In its simplest
version, DIQKD is implemented by letting Alice
choose randomly between two measurement settings
at each round, Ax where x ∈ {0, 1}, while Bob’s mea-
surement includes three possible settings, By where
y ∈ {0, 1, 2}. For settings x, y ∈ {0, 1}, the re-
sults – which can possibly take many values – are
post-processed locally and turned into binary values
Ax,By ∈ {−1,+1}. After several iterations, Alice and
Bob communicate classically to estimate the CHSH
score

S = 〈A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1)〉 (1)

where 〈Ax⊗By〉 = p(Ax = By|x, y)− p(Ax 6= By|x, y)
quantifies the correlation between the outcomes for
measurement choices x and y, respectively. The
remaining measurement setting y = 2 is chosen
to generate an outcome B2 that minimises the
uncertainty with respect to A0. Alice then forms the
raw key from the outcomes A0 of the pairs that Bob
measured with respect to y = 2.

We consider n such rounds, over which the source
produces a tripartite state |ΨABE〉 shared between
Alice, Bob and Eve. Ref. [2] showed that Eve’s
information is the same as in the case where the
devices have no memory and behave identically and
independently in each communication round of the
protocol, up to corrections vanishing with n. In
particular, we can write |ΨABE〉 = |ψ〉⊗nABE where
|ψ〉ABE is the tripartite state of a single round and
consider the case where measurements are done
successively on the state |ψ〉ABE .

In the asymptotic limit of large n, the number of
secret bits per round obtained after one-way error cor-
rection and privacy amplification (i.e. the key rate) is
then given by [6]

r = H(A0|E)−H(A0|B2), (2)
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where H is the von Neumann entropy. Ref. [1] showed
that the conditional entropy H(A0|E) optimized over
all states ψABE and measurements Ax, By compatible
with the observed CHSH score S is lower bounded by

H(A0|E) ≥ 1− h
(

1 +
√

(S/2)2 − 1
2

)
(3)

where h denotes the binary entropy. This provides
a lower bound on the key rate, as the conditional
entropy H(A0|B2) can be estimated directly from
Alice and Bob measurement results associated to
setting choices A0 and B2. Interestingly, this bound
is obtained device-independently, i.e. without as-
sumptions on the dimension of quantum states and
the calibration of measurements. This is not the
case for standard (non-device independent) QKD
protocols which are not based on the violation of a
Bell inequality and whose security guarantees rely
on the assumption that the source and measure-
ments carry out precisely the operations foreseen
by the protocol. This assumption is hard to meet
in practice and leads to vulnerabilities, as demon-
strated by hacking experiments [10, 18, 35, 38].
The robustness of device-independent quantum key
distribution against these attacks makes it appealing,
and a race between several experimental groups
is ongoing to report the first proof-of-principle
distribution of a key with a fully device-independent
security. Measurement-DIQKD, a precursor of
DIQKD where device-independence only applies to
the measurement devices, but not to those used
for state preparation [3, 17], already admit a num-
ber of experimental implementations [5, 9, 15, 26, 32].

Let us note that the proof leading to the bound
given in Eq. (3) only uses the knowledge of the CHSH
score. This score is computed as a linear combina-
tion of the correlation functions 〈AxBy〉, but the
additional information provided by considering these
correlations individually – which is anyway available
in practice – might help to facilitate a realisation of
device-independent quantum key distribution. This
motivation is at the core of this work.

Concretely, we consider the individual values of two
terms appearing in the CHSH score, namely

X = 〈A0 ⊗ (B0 +B1)〉,
Y = 〈A1 ⊗ (B0 −B1)〉.

(4)

The use of values of X and Y proved to be useful
for device-independent state certification by improv-
ing the certified fidelity from the CHSH score [34]. It
is also expected to be useful in DIQKD, as the knowl-
edge of X and Y allows one to differentiate the contri-
butions of the key generating measurement A0 from
the ones associated with A1, from which no key is gen-
erally extracted (see [27] for a noticeable exception).

Finally, in implementations of DIQKD with non-unit
detection efficiencies where no-detection events are at-
tributed a fixed value ±1, no-detections on Bob’s side
can only contribute to one of these two correlation
functions (X or Y). The main result of this work is to
confirm the intuition that the use of individual values
of X and Y improves the bounds on Eve’s information
derived from the CHSH score, and hence the key rate
of DIQKD.

2 Formulation of the problem
Generalization of the CHSH test– We are inter-
ested in bounding Eve’s conditional entropy H(A0|E)
appearing in Eq. (2) as a direct function of observed
quantities X and Y. Formally, this can be accom-
plished by considering all possible quantum models
(ψABE , Ay, By) that satisfy Xmodel ≥ X and Ymodel ≥
Y. However, it is clear that the set of points (X,Y)
for which Eve’s conditional entropy is bounded from
below by some constant is convex: two quantum mod-
els giving some amount of information to Eve can be
joined into a new model on which Eve’s conditional
entropy is bounded by the weighted sum of entropy
bounds associated to the individual models. It is thus
equivalent to bound Eve’s conditional entropy with
linear constraints of the form

cos(Ω)
2 Xmodel + sin(Ω)

2 Ymodel ≥ β, (5)

where β is deduced from the observed quantities X
and Y from the following formula

β = 1
2 (cos (Ω) X + sin (Ω) Y) . (6)

(Further in the text, we will use a compact notation
for sine SΩ = sin(Ω) and cosine CΩ = cos(Ω).)
Obviously, Ω = π/4 reduces back to the CHSH
constraint (up to normalization). Just like the CHSH
score can be seen as the result of a test of the CHSH
inequality, we can associate β to the test of a Bell
inequality – a generalisation of the CHSH inequality
– that is characterized in Ref. [? ]. This characteri-
zation is also done below for the sake of completeness.

Reduction to qubits– The score β given in Eq. (6)
is estimated when Alice and Bob choose the mea-
surement Ax, By, x, y = 0, 1, which are observables
with eigenvalues ±1. A simple lemma – the Jordan
lemma [31] – tells us that such observables can be
jointly block diagonalised with blocks of size 2 × 2,
i.e.

Ax =
⊕
k

Ax,k By =
⊕
k′

By,k′ , (7)

where, without loss of generality, we can assume the
restriction to each qubit block to be a real Pauli opera-
tor satisfying A2

x,k = 1k and B2
y,k′ = 1k′ . This means
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that in each block labelled by k and k′ respectively,
the measurement is characterized by unit vectors akx,
bk′y such that

Ax,k = akx ·
(
σz
σx

)
By,k′ = bk

′

y ·
(
σz
σx

)
(8)

where σz and σx are Pauli operators.
The state |ψ〉ABE can be enforced to take the form

|ψ〉ABE =
⊕
k,k′

√
p(k,k′) |ψ〉

(k,k′)
ABE , (9)

where p(k,k′) is a probability distribution and
|Ψ〉(k,k

′)
ABE ∈ C2

A ⊗ C2
B ⊗ H

(4)
E , see Refs [13, 23] for

detailed discussions. Given models with such mea-
surements and state, the quantity of interest can be
expressed as

H(A0|E) =
∑
k,k′

p(k,k′)H(k,k′)(A0|E) (10)

where H(k,k′)(A0|E) is Eve’s conditional entropy for
four-qubit models (including the two qubits from
Eve’s purification) involving real Pauli measurements.
If the minimization of H(k′,k)(A0|E) over such models
satisfying cos(Ω)

2 Xmodel, k, k’ + sin(Ω)
2 Ymodel, k, k’ ≥ β

provides a convex function of β, this function can
be used directly as a lower bound on the quantity
H(A0|E) through Eq. (10). If it is not convex, it can
be convexified so as to apply to all possible mixtures
of state and measurement, and thus again apply
to Eq. (10). This convexity property allows us to
reduce the general problem of finding the minimum
of Eve’s conditional entropy over all possible models
to a minimization over four-qubit models with real
Pauli measurements. We will come back to this
convexification requirement later.

Noisy preprocessing– We consider a simple post-
processing of the raw key, known as noisy pre-
processing [14, 24, 25], which has been shown to be
beneficial to reduce the requirement on the detec-
tion efficiency in photonic implementations of device-
independent quantum key distribution [13]. Once the
raw key is obtained, Alice is instructed to generate
a new raw key Â0 by flipping each bit of the initial
raw key with a probability p. Such a pre-processing
can be accounted by the model of the key generating
measurement, by considering a new operator

Â0 = (1− p)A0 − pA0 (11)

which is not a Pauli operator anymore. Note that we
will often parametrise the amount of noise that Alice

adds with a parameter q = (1− 2p)2.

Symmetrization– In order to simplify the anal-
ysis, it is convenient to consider a symmetrization
step in which both parties, Alice and Bob, flip
the outcomes of the key generating measurements
depending on a public random bit string. This
guarantees that bits of the raw key are random,
i.e. H(A0) = H(Â0) = 1. Importantly, one can
show the equivalence of protocols with and without
symmetrization, meaning that the symmetrization
does not need to be implemented in practice, see [13]
for a complete description of the symmetrization step
in the presence of noisy preprocessing.

Reduction to Bell diagonal states– If the con-
straints appearing in the minimization problem do
not depend on the marginal probabilities p(Ax|x)
and p(By|y) of Alice and Bob respectively, the sym-
metrization step previously presented reduces the
model of the state to a Bell-diagonal structure

|ψ〉ABE =
4∑
i=1

√
Li
∣∣Φi〉

AB
|i〉E (12)

where |Φi〉 = {Φ+,Ψ−,Φ−,Ψ+}4i=1, and without loss
of generality, a partial ordering of the eigenvalues
L1 ≥ L2 and L3 ≥ L4 can be imposed [23]. Note that
the superscripts k, k′ are omitted in the tripartite
state appearing in Eq. (12), i.e. |ψ〉ABE → |ψ〉

(k,k′)
ABE .

Until the end of this section and in the next section
which is dedicated to the resolution of the optimiza-
tion presented in Eq. (19), we remove the index k, k′
for making the notation simpler and ask the reader
to keep in mind that we consider the restriction to
four qubit models with real Pauli measurements in
this two sections.

Eve’s conditional entropy– Eve’s conditional en-
tropy can be expressed as

H(Â0|E) = H(Â0)−H(ρE) +
∑
â=±1

p(â)H(ρE|â) (13)

where ρE is the reduced state of Eve and ρ̂E|â
corresponds to Eve’s state conditioned on Alice’s
noisy key bit Â0 being equal to â, which occurs with
probability p(â). The equivalence of the protocol with
the symmetrized one allows us to take H(Â0) = 1
and p(â) = 1

2 .

H(ρE) is given by the entropy H(L) of the proba-
bility vector L = (L1, . . . , L4) while the term ρ

(α,β)
E|â=+1

equals

3




L1 0 Cφ

√
L1L3q Sφ

√
L1L4q

0 L2 Sφ
√
L2L3q −Cφ

√
L2L4q

Cφ
√
L1L3q Sφ

√
L2L3q L3 0

Sφ
√
L1L4q −Cφ

√
L2L4q 0 L4

 (14)

where φ labels Alice measurement A0 =
cos(φ)σz +sin(φ)σx (we use the notation Cφ = cos(φ)
and Sφ = sin(φ)). The two states ρE|â=±1 are related
by a simple unitary transformation and therefore
have the same entropy, see App.A.2 for details. The
expressions of these entropic quantities provide an
explicit way to compute H(Â0|E) as a function of the
parameters L and φ. Let us now turn our attention
to the constraints.

Quantum correlations in the (X,Y) plane – As
mentioned earlier, we are considering quantum mod-
els with the values of correlators X and Y given by

Eq. (4). Without loss of generality, we can assume
X,Y ≥ 0, which can always be attained by rela-
belling the measurement outcomes of A1, B0 and B1
(i.e. without touching the angle φ).

In this positive quadrant of the plane, the lo-
cal strategies are delimited by the CHSH inequality
X + Y ≤ 2, i.e. the line connecting the deterministic
strategies (X,Y) = (2, 0) and (X,Y) = (0, 2). This
implies the following local bounds for the generalized
CHSH tests

1
2CΩX + 1

2SΩY ≤ BLΩ = max(CΩ,SΩ). (15)

To identify the upper limit of the quantum set, we consider the expected values of the generalized CHSH
operator

BΩ =
〈

CΩ

2 A0 ⊗ (B0 +B1) + SΩ

2 A1 ⊗ (B0 −B1)
〉
. (16)

To find its maximum value, we use the qubit parametrization of measurements Ay, By and parametrize the
measurement angles on Bob’s side as

B0 +B1 = (b0 + b1) ·
(
σz
σx

)
= 2Cθ c ·

(
σz
σx

)
B0 −B1 = (b0 − b1) ·

(
σz
σx

)
= 2Sθ c⊥ ·

(
σz
σx

) (17)

with two arbitrary perpendicular unit vectors c and
c⊥, and cos(2θ) = b0 · b1. From the diagonalization
of the operator on the right hand side of Eq. (16), one
finds the quantum bound

BQΩ = 1 (18)

attained at (X,Y) = (2 cos(Ω), 2 sin(Ω)) by a max-
imally entangled two qubit state and measurement
settings a0 · a1 = 0 and b0 · b1 = cos(2Ω). It follows
that Eve’s information is constrained by the part of
the quantum set lying between the line X+Y = 2 and
the circle X2 + Y2 = 4. At this point, we can already
conclude that any quantum model with (X,Y) lying
on the circle satisfies H(Â0|E) = 1 (except for the
two points with X+Y= 2), since the underlying
state of Alice and Bob has to be pure. This is a
straightforward improvement over the CHSH bound.

Formulation of the problem to solve– The re-
ductions introduced so far invite us to first solve the

following optimization
I(β; Ω, q) = max

L,φ,a1,b0,b1
H(L)−H(ρE|â=+1)

s.t. BΩ(L, φ,a1,b0,b1) ≥ β
(19)

and then consider directly the solution I(β; Ω, q) if
it is concave in βΩ or construct a concave function
Î(β; Ω, q) ≥ I(βΩ, q) to bound Eve’s uncertainty us-
ing

H(Â0|E) ≥ 1−min
Ω
Î

(
CΩX + SΩY

2 ; Ω, q
)
. (20)

Note that from the symmetries of the goal function
H(L) − H(ρE|â=+1) and the constraint BΩ, we can
assume φ ∈ [0, π4 ] for the key generating setting and
L1−L2 ≥ L3−L4 in addition to L1 ≥ L2 and L3 ≥ L4
for the state, see App.A.1 for the details. Further
note that we will often use a parametrisation of the
tripartite state given by the following 3 component
vector Tz

Tx
Tp

 =

 L1 − L2 + L3 − L4
L1 − L2 − L3 + L4
L1 + L2 − L3 − L4

 , (21)
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with 0 ≤ Tx ≤ Tz ≤ 1 and Tz + Tx − 1 ≤ Tp ≤
1− (Tz − Tx).

3 Bounding Eve’s information with
generalized CHSH tests
We are now ready to compute a bound on Eve’s infor-
mation as a function of the generalized CHSH score
given in Eq. (6) by solving the optimisation prob-
lem given in Eq. (19). Among the parameters of the
model in Eq. (19), the measurement setting a1,b0
and b1 only influence the constraint but not the goal
function. Furthermore, it is shown in Ref. [13] that
H(ρE|â=+1) is a monotonic function in the key gener-
ating setting φ ∈ [0, π4 ]. We can thus decompose the
maximization problem in two steps. First, for a fixed
state L, we find the lowest angle φ allowing to satisfy
the constraint

φ∗(L, β,Ω) = minφ
s.t. max

a1,b0,b1
BΩ(L, φ,a1,b0,b1) ≥ β. (22)

Second, we fix φ = φ∗(L, β,Ω) to the optimal value
for Eve, and maximize her information with respect
to the state, that is, we solve

I(β; Ω, q) = max
L

H(L)−H(ρE|â=+1;φ∗(L, β,Ω)). (23)

We solve Eq. (22) in App. A.3. The expression
of the optimal angle φ∗ depends on whether the

parameter Ω exceeds π
4 . We treat the two cases

Ω ≤ π
4 and Ω > π

4 separately.

3.1 The simple case with Ω ≤ π
4

For the Bell tests satisfying Ω ≤ π
4 , which include the

CHSH test, the observed score β does not constrain
the key generating setting φ but only the state L.
As a result, there always exists a realization with the
optimal angle φ∗ = 0 as long as the state is such that
the Bell score can be attained, i.e. if

C2
ΩT

2
z + S2

ΩT
2
x ≥ β2

Ω. (24)

The maximization of the entropy then becomes pos-
sible, as for φ = 0 the conditional state ρE|â=+1 is
block diagonal and its entropy has a simple closed-
form expression. Such a maximization has been done
for the CHSH case (Ω = π

4 ) in Ref. [13], but Ref. [37]
pointed out that the analytical bounds on conditional
entropies given in this reference assumes qubit at-
tacks. The same bounds were derived using a differ-
ent approach in [37], where it is also proved that these
bounds are convex. The convexity results of [37], to-
gether with Jordan’s lemma, imply that the obtained
qubit bounds are in fact valid for any dimensions. The
same convexity proof applies to the current situation
with Ω ≤ π/4. For the sake of completeness, we pro-
vide in App. A.5 an alternative proof of convexity,
which directly applies to the present case and to [13].
We show in particular (see App. A.4)

I(β; Ω, q) = hq(z) = h(z)− h(nq(z))

with nq(z) =
1 +

√
1− 4 (1− q) z(1− z)

2

and z = 1
2


√
β2 − C2

Ω

SΩ
+ 1

 ,

(25)

where h is the binary entropy. The concavity of I(β; Ω, q) and hence the convexity of Eve’s entropy H(Â0|E)
follows from (see App. A.5)

d2

dβ2hq
(
z(β)

)
= h′′q (z)

(
z′(β)

)2 + h′q(z)z′′(β) ≤ 0. (26)

Finally, it remains to determine the optimal inequality to use for a given point (X,Y). hq(z) being a monotonic
function of z, we derive the expression

z = 1
2


√

(CΩX+SΩY
2 )2 − C2

Ω

SΩ
+ 1

 , (27)

with respect to Ω to find its local maximum and verify that this value satisfies Ω ≤ π
4 . We find that for

4−X2

XY < 1 : zopt = 1
2

(
Y√

4−X2
+ 1
)

(28)
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associated to the generalized CHSH test with

tan(Ω) = 4−X2

XY
. (29)

For
4−X2

XY ≥ 1 : zopt = 1
2

1 +

√(
X + Y

2

)2
− 1

 , (30)

which is the formula for the CHSH case Ω = π
4 [13].

3.2 The complicated case with Ω > π
4

3.2.1 Bounding Eve’s information from a numerical optimization

For the remaining Bell tests, with Ω > π
4 , the situation is different. Here, the generalized CHSH score β does

not only constraint the state L but also the setting of the key generating measurement. In particular, we find
that there are two different regions.

First, for the states falling in the range

S(β,Ω) = {L|(C2
ΩT

2
z + S2

ΩT
2
x ) ≤ β2 ≤ (C2

ΩT
2
x + S2

ΩT
2
z )}, (31)

the constraint BΩ ≥ β can be satisfied with the measurement angle φ ≥ φ∗(L,Ω, β), where cos2(φ∗) = c2∗(L,Ω, β)
is given by

c2∗(L,Ω, β) = (β2 − S2
ΩT

2
x )(C2

ΩT
2
x + S2

ΩT
2
z − β2)

C2
Ω(T 2

z − T 2
x )(S2

ΩT
2
z + S2

ΩT
2
x − β2)

. (32)

The constraint on the angle only becomes trivial, c2∗ = 1, on the boundary of the region S, where (C2
ΩT

2
z +

S2
ΩT

2
x ) = β2.

Second, in the region where (C2
ΩT

2
z + S2

ΩT
2
x ) > β2 the Bell score β can also be attained with φ = 0. However,

there models provide less information to Eve as compared to these on the boundary (C2
ΩT

2
z + S2

ΩT
2
x ) = β2, see

the discussion at the end of App. A.4. So we can safely ignore this region.
To find the best strategy for Eve, it thus remains to solve

I(β; Ω, q) = max
L∈S(Ω,β)

H(L)−H(E|â = +1; c2∗(L,Ω, β)). (33)

This optimization only involves an analytic function of three parameters on a compact domain. It can be
easily and time-efficiently solved by standard numerical methods. We now give an ansatz on the solution of
the optimization given in Eq. (33), which allows one to speed up its numerical resolution even further.

3.2.2 Ansatz

First, we observe that the vector L saturating Eve’s information only has two non-zero coefficients L1 = 1−L3
and L2 = L4 = 0, or Tz = 1 and Tx = Tp. With this observation, the previous optimization problem becomes a
scalar optimization, that is

Ĩanz(β; Ω, q) = max
β2−S2

Ω
C2

Ω
≤T 2

x≤
β2−C2

Ω
S2
Ω

h

(
1 + Tx

2

)

− h

(
1 +

√
T 2
x + c2∗q(1− T 2

x )
2

)
.

(34)

Second, we see that the bound Ĩanz(β; Ω, q) is not concave for small β. However, we observe that its concave
roof can be obtained by drawing a line which passes through the point

β = BLΩ = sin(Ω)

IL(q) = I(BLΩ; Ω, q) = 1− h
(1 +√q

2

) (35)

6



which is tangent to the curve Ĩanz(β; Ω, q). The value of the generalized CHSH score at the tangent point can
be found by solving

β∗ = argminβ
IL(q)− Ĩanz(β; Ω, q)

β − sin(Ω) . (36)

Labeling I∗(Ω, q) = Ĩanz(β∗; Ω, q), this leads to

Îanz(β; Ω, q) =
{
I∗(Ω,q)(β−sin(Ω))−IL(q)(β−β∗)

β∗−sin(Ω) β < β∗

Ĩanz(β; Ω, q) β ≥ β∗
(37)

At this stage, we further observe that the optimal value of T 2
x for values of β ≥ β∗ coincides with its maximum

possible value T 2
x = β2−C2

Ω
S2

Ω
, which defines Ianz(β; Ω, q). In the Eqs. (36) and (37) we can now replace Ĩanz(β; Ω, q)

with Ianz(β; Ω, q), which does not involve any nolinear optimization.
While we believe this expression to be the true bound, we do not have a formal proof. Anyway, this conjectured

expression helps to solve the optimization of interest.

3.2.3 Certified numerical solution

As mentionned before, the optimization in Eq. (33)
can be easily solved by standard numerical methods.
However, to provide a strict security guarantee to an
actual implementation of DIQKD, such a numerical
optimization would need to be done in a certified
manner, with a formal proof that the obtained
numbers lower bound Eve’s conditional entropy on
the whole domain. Below we present an algorithm
which allows one to do such a certified optimisation
based on the Lipshitz continuity of the goal function.

The algorithm is rather time-costly, but it only has
to be used once the optimal experimental parameters
are fixed through an ad hoc maximization of Eq. (33),
cf. below.

Concretely, we present in this section an algorithm
that approximates the set of possible strategies of Eve,
delimited by the bound Î(β,Ω, q), from the outside.
To avoid the issue of concavity posed by Eq. (19), we
rewrite the problem in the dual form in which we look
for the tangent lines

f(t; Ω, q) = max
L,φ

H(ρE)−H(ρE |Â0) + t βmax(L,φ; Ω)

βmax(L, φ; Ω) = max
a1,b0,b1

BΩ(L, φ,a1,b0,b1),
(38)

to the curve Î(β,Ω, q) with different slopes t. In
Eq. (38) we used the fact that it is only the Bell
score that depends on the measurement setting
a1,b0,b1, so it can be maximized straightforwardly
to define βmax(L, φ; Ω), see App. A.6 for its closed
form expression.

Before giving the details on the way we solve this
dual form, let us shortly discuss on how it shall
be used. We consider an actual implementation of
DIQKD with fixed values of X∗,Y∗ and q∗ and for
which there is an optimal value Ω∗ which saturates
the minimum in Eq. (20)

H(Â0|E) ≥ 1− Î(β∗; Ω∗, q∗), (39)

with β∗ = 1
2 (CΩ∗X∗ + SΩ∗Y∗). Therefore, an opti-

mal security guarantee for this particular implemen-
tation only requires the knowledge of the function
Î(β∗,Ω∗, q∗) on a single point. The same lower bond
on Eve’s conditional entropy can be obtained from
the value of the dual bound f(t; Ω∗, q∗) in Eq. (38)
on a single point. Indeed, the concavity of Î(β; Ω, q)

ensures that there exists a value t∗ for which the in-
equality

f(t∗; Ω∗, q∗) ≥ Î(β; Ω∗, q∗) + t∗β (40)

is saturated at β = β∗ where f(t∗; Ω∗, q∗) =
Î(β; Ω∗, q∗) + t∗β∗. Using Eq. (38), we deduce that

H(Â0|E) ≥ 1− f(t∗; Ω∗, q∗) + t∗β∗

= 1− Î(β∗; Ω∗, q∗).
(41)

Hence, for a fixed experimental implementation of
the protocol, it is sufficient to certify a single value of
the function f(t∗; Ω∗, q∗) in order to provide a strict
and optimal security guarantee. Furthermore, the
value t∗ is straightforward to find from the knowledge
of Ω∗, β∗, q∗ and the function Î(β; Ω, q).

We can now comment on the algorithm to provably
upper bound the quantity in Eq. (38). While the
algorithm used recently for the derivation of key
rates in Ref. [28] could be easily adjusted to solve this
problem, we propose a branch and bound approach.
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Concretely, we first derive a parametrization of the
set (L, φ) for which the goal function in Eq. (38)
is Lipshitz continuous with a constant that we
compute. Then, we obtain an upper bound on its
value on the whole domain by computing the value
of the function on a grid of points. Finally, the
algorithm subsequently refines the grid around the
points where the value of the function is large in
order to approach, step by step, the global maximum.
Additional details are given in the next three sections.

Lipshitz continuity of the entropy with respect
to the angle – A key ingredient in the implementa-
tion of the desired certified algorithm is that the von
Neumann entropy H(ρ) has a bounded gradient with
respect to the following angle between the two states
ρ and σ (see App. B.1)

A(ρ, σ) = arccos(F (ρ, σ)), (42)

where the fidelity is defined as F (ρ, σ) = tr|√ρ
√
σ|.

This angle is a metric on the set of states [22]. More
precisely, we show that for n-dimensional quantum
states, the gradient of the entropy satisfies∣∣∣∣dHdA

∣∣∣∣ <
{

4.023 n = 4
2 log(n) n ≥ 5.

(43)

This contrasts with the trace distance, another metric
on the set of quantum states, for which the entropy
has an infinite slope around non-full-rank states.

Bounding the gradient of the goal function–
To apply the continuity bound above to the goal func-
tion in Eq. (38), we use the following parametrization
of the state

√
L =


cos(α) cos(µ)
cos(α) sin(µ)
sin(α) cos(ξ)
sin(α) sin(ξ)

 , (44)

so that the quantum models are described by four
angles

x = (α, µ, ξ, φ), (45)

with x ∈ [0, π4 ]×3 × [0, π2 ]. Here, the condition
µ, ξ ≤ π

4 follow from L1 ≥ L2, L3 ≥ L4. The bound
α ≤ π

4 is a consequence of L1 + L2 ≥ L3 + L4, which
can be imposed on the states as an alternative to
L1 − L2 ≥ L3 − L4, see App. A.1.

To obtain a bound on the gradient of the goal func-
tion

G(x) = H(L)−H(ρE |â = +1)+ t βmax(L,φ; Ω) (46)

we bound the gradient of each term independently,
as described in App. B.2 and B.3. For the entropic

terms, we use Eq. (43), while the computation of
the maximal gradient is quite straightforward for the
CHSH score. Combining the three terms, we obtain
a general bound

|∇xG| ≤ 12.7 + 7 t (47)

on the whole domain of x.

With this global bound on the gradient, a certified
maximization of the function G(x) can be obtained
with a slight modification of the code that we
developed in Ref. [33], which is available on GitLab.
A detailed description of this code can be found in
the App. B.4.

4 Results
Improved bound on Eve’s conditional entropy–
In order to demonstrate the advantage of considering
the pair of variables (X,Y) when bounding Eve’s con-
ditional entropy, we compute the bound on H(Â0|E)
for different values of X, Y and p and compare it
to the bound obtained from the CHSH score [13].
Because of the two regimes identified earlier, we
compute both the optimal bound assuming Ω ≤ π/4
and the one assuming Ω > π/4 for each value of X
and Y, and keep the best one. In the case Ω ≤ π/4,
the optimal choice of Ω is readily given by Eq. (29).
In the other case, we optimize the bound over
Ω ∈ (π/4, π/2]. The difference between this optimal
bound on H(Â0|E) given X and Y and Eq. (3) is
shown in Fig. 1. It shows that our bound on H(Â0|E)
is better than the one derived from the CHSH score,
except along the line satisfying X(X + Y) = 4.

Implication for a practical realization of
DIQKD– We now study the potential impact of
our bound on practical realizations of DIQKD. In the
limit of asymptotically many repetitions, an imple-
mentation is uniquely characterized by its key rate
r, which is given in Eq. (2). In our case, this key
rate is determined from three quantities: X, Y and
Bob’s uncertainty about Alice’s key generating bit as
a function of the noisification parameter, given by
H(Â0|B2). Hence, in order to find the optimal de-
sign for an experimental implementation of DIQKD,
we express the quantities

setup '
(
X,Y, H(Â0|B2)

)
(48)

as a function of the model’s parameters. Then, we
maximize the key rate over these parameters:

ř = max
setup,Ω,q

H(Â0|E)−H(Â0|B2)

= max
setup,Ω,q

1− Î
(CΩX + SΩY

2 ; Ω, q
)
−H(Â0|B2)

(49)
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Figure 1: Difference between the bound on Eve’s con-
ditional entropy H(Â0|E) computed as a function of
X and Y, and as a function of the CHSH quantity
S = 2

√
2(X + Y), for p = 0. In presence of noisifi-

cation (i.e. p > 0), the advantage follows a similar
distribution, but is smaller in magnitude. The CHSH
bound is only optimal along the curve X(X + Y) = 4.
The advantage on the right-hand side of this curve is
obtained with Ω < π/4, and on the left-hand side with
Ω > π/4. The yellow (red) curve shows the trajectory
in the X-Y plane which optimizes the key rate in an
optical implementation of DIQKD for low (high) de-
tection efficiencies. At the efficiency η = 0.923, it is
better to switch from one curve to the other one (at
the transition between full and dashed curves).

Solving this maximization gives a bound on the key
rate ř, the values

(
X∗,Y∗, H(Â0|B2)

)
expected for a

given implementation, as well as the optimal values
of the parameters Ω∗ and q∗ for this implementation.

SPDC-based implementation of DIQKD–
Photonic experiments using a source based on
spontaneous parametric down conversion (SPDC) are
one of the most promising setups for implementing
DIQKD, as shown by recent experiments reporting
on the violation of a Bell inequality without the fair
sampling assumption [4, 11, 12, 16, 29, 30]. We con-
sider such a setup in which an SPDC source is used
to create and distribute polarization entanglement
between distant parties who perform measurements
as requested here in the proposed protocol. The
main limitation in this setup is the overall detection
efficiency, i.e. the possibility of losing a photon at
any point between its creation at the source and its
final detection. To reflect photon losses and non-
unit detection efficiency, the transmission channel
between the source and the parties is modeled as a

lossy channel with an overall transmission η. It is
also important to include the statistics of an SPDC
source which does not produce a two-qubit state, but
a state that contains vacuum and multiple photon
components. We invite the reader to look at Ref. [13]
to get explicit expressions of the exact statistics
created by this source as well as a description of
tunable parameters.

When computing the key rate for an SPDC source
with a security determined by the CHSH score, any
values of X and Y with the same sum impose the same
bound on Eve’s conditional entropy H(Â0|E). In a
Eberhard-like scenario where a significant fraction
of the entangled particles can be lost before yielding
their measurement result, it is advantageous for
Alice to use two measurement settings with different
overlap with her Schmidt basis in order to maximize
the CHSH quantity [7]. It is then easier for Bob to
guess the outcome of one of the two measurements
(the one best aligned with the Schmidt basis). When
the key rate is extracted from this measurement to
minimize the cost of error correction (see Ref. [13]
for more details), the value of the X quantity is
then larger than Y, as shown in Fig. 1. But in this
case, the (X,Y) values are very close to the line
X(X + Y) = 4, for which there is no advantage.
Therefore, we only expect a small improvement in
the key rate here.

Given the values shown in Fig. 1, a better bound
on Eve’s information would be obtained if the
same CHSH value was obtained with the contri-
butions from X and Y being inverted, i.e. with
Y > X. However, this requires Alice to define her
key-generating measurement as being the one less
aligned with the Schmidt basis, hence leading to an
increase of the error correction cost. In this case,
both conditional entropies H(Â0|E) and H(Â0|B2)
are larger, and we need to check which one increases
the most in order to infer a possible gain on the key
rate. As it turns out, the tradeoff between these two
entropies increase depends on the detection efficiency.

Namely, there are two regimes, as shown in Fig. 2.
When the detection efficiency is larger than ∼ 0.923,
relabelling the measurements in order to enter the
region with Y > X (where inequalities with Ω > π/4
significantly improve the bound on H(Â0|E)) is
advantageous, because the increase in Bob’s uncer-
tainty H(Â0|B2) is smaller. The red curve in Fig. 1
shows the corresponding trajectory in the X-Y plane.
When η < 0.923, the cost of error correction become
prohibitive compared to the potential increase in
Eve’s uncertainty, and it is better to stay in the
region X > Y, as represented by the yellow curve
in Fig. 1. There, a small increase of the key rate
is still found because the correlations do not satisfy
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Figure 2: Key rate achievable with a photonic setup
as a function of the symmetric detection efficiency η.
The dashed blue curve corresponds to the key rate
achieved with noisification and a security based on
the CHSH quantity alone; it is nonzero for efficiencies
above ∼0.828 [13]. The continuous red curve bases
its security on the values of both X and Y (and also
includes noisification). A significant increase of the
key rate is possible for efficiencies above η > 0.923.
At η = 1, the obtained key rate is 0.346 instead of
0.252.

X(X+Y) = 4 exactly. However, this condition is only
slightly violated, resulting in an increase in key rate
smaller than ∼ 10−4, which is practically negligible.
The critical detection efficiency then also remains at
82.8%, unchanged compared to a bound based on
CHSH alone.

Comparison of qubit vs SPDC bounds– To il-
lustrate the impact of the photon statistics of SPDC
sources on DIQKD, we now consider a simpler model
in which the state shared between Alice and Bob is a
two-qubit state:

|ψ〉 = cos(θ) |00〉+ sin(θ) |11〉 . (50)

We are not aware of physical setups allowing one
to produce a state with θ = π/4 but not allowing
for a different value of θ. Still, for the sake of the
discussion, we distinguish between the cases where
the state can be either constrained to be maximally
entangled, i.e. θ = π/4, or can have an arbitrary
parameter θ ∈ [0, π/4].

In Fig. 3, we report the critical detection effi-
ciencies corresponding to various security analyses
applied on these implementations. Like for the
SPDC model, no advantage on the critical detection
efficiency is found when using arbitrary two-qubit
systems. A small advantage is however present when

Figure 3: Comparison of the critical detection effi-
ciencies for several setup models. Blue markers are
for SPDC statistics, yellow ones for measurement on
a maximally entangled two-qubit state, and red ones
for measurement on an arbitrary two-qubit state. (a)
is with security from CHSH following Eq. (3) and er-
ror correction based on the QBER [23], (b) Eq. (3)
with error correction based on conditional entropy
H(A|B) [19], (c) security from CHSH with noisifica-
tion and error correction based on H(A|B) follow-
ing [13], (d) security from X and Y with noisification
and error correction based on H(A|B).

restricting to measurements on the singlet state.
Still, this model is not optimal and it remains of
course better to use partially entangled states. In
fact, even partially entangled states produced by an
SPDC source perform better.

In this respect, it is worth noticing here that the
performance of an SPDC source is essentially com-
parable to that of an arbitrary two-qubit state once
noisification is taken into consideration, i.e. the re-
quirement on the detection efficiency is very similar.
In the case with no noisification, the state produced
by these physical sources do not have a better tol-
erance to losses than measurements on a maximally
entangled state. Noisy preprocessing is thus a key in-
gredient for a first proof of principle implementation
with an SPDC source [13].

5 Discussion
In this paper, we introduced a refinement of the
usual CHSH-based analysis of DIQKD experiments:
Instead of projecting the measurement statistics onto
a single line giving the CHSH score 2

√
2(X + Y),

we kept the information about the individual values
of X and Y throughout the whole security analysis.
We found that this refined analysis gives a more
restrictive bound on the information available to the
eavesdropper for almost all values X and Y in the
quantum set.
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When applying our results to photonic implemen-
tations of DIQKD with a SPDC source, we found
that the key rate is improved by a factor going up
to 37% for unit detection efficiency. On the other
hand, we could not find any improvement for the
critical detection efficiency as compared to the CHSH
protocol with noisy processing presented in Ref. [13].
However, we focused on a given photonic implemen-
tation, and the question of the most favorable optical
setup combining squeezing operations, displacement
operations, linear optical elements and photon count-
ing techniques is still open. Advanced techniques
using automated design of quantum experiments
based on reinforcement learning which already proved
to be useful to optimize the CHSH score [20] are
inspiring. Applying them to the proposed protocol in
order to reduce the required detection efficiency for
implementing DIQKD appears to be promising for
future work.

Finally, we would like to remark that the certi-
fied numerical techniques we proposed also open up
the possibility of bounding Eve’s information reliably
when more correlators, or even the full measurement
statistics, are taken into account.

6 Note added
While writing this manuscript, we became aware of
another manuscript [37] reporting on similar results.
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A Analytical results

A.1 Parametrization of two-qubit models
Following the logic of [23], we assume, without loss
of generality that after the qubit reduction, the state
shared by Alice, Bob and Eve is of the form

|Ψ〉ABE =
4∑
i=1

√
Li
∣∣Φi〉

AB
|i〉E (51)

where we |Φi〉 = {Φ+,Ψ−,Φ−,Ψ+}4i=1, with nonneg-
ative L1 ≥ L2 and L3 ≥ L4, and the measurements
Ax, By appearing in the constraint are in the x-z plane

Ax = aTx
(
σz
σx

)
By = bTy

(
σz
σx

)
. (52)

The key generating setting is explicitly parametrized
by an angle φ

a0 =
(

Cφ
Sφ

)
. (53)

(As mentioned in the main text we use a compact
notation Cφ = cos(φ) and Sφ = sin(φ) throughout the

paper.) One notes that the application of a unitary
transformation σZ on Alice’s system is equivalent to
changing the state and the measurements as

(L1, L2, L3, L4)→ (L3, L4, L1, L2)
ax → σzax
by → by.

(54)

The two situations are completely equivalent for our
purpose, so our parametrization of quantum models
is actually redundant. To avoid this, we can intro-
duce an order relation between the pairs of coefficients
(L1, L2) and (L3, L4) (permuted by a basis transfor-
mation). In particular, we will impose

L1 − L2 ≥ L3 − L4 (55)
below, but will also use L1 + L2 ≥ L3 + L4 for the
certified numerical algorithm.

We also introduce a different parametrization of the
probability simplex L with a vector T = (Tz, Tx, Tp)
given by 

Tz = (L1 − L2) + (L3 − L4)
Tx = (L1 − L2)− (L3 − L4)
Tp = L1 + L2 − L3 − L4.

(56)

The conditions L1 ≥ L2, L3 ≥ L4 and L1 − L2 ≥
L3 − L4 enforce

0 ≤ Tx ≤ Tz ≤ 1
Tz + Tx − 1 ≤ Tp ≤ 1− (Tz − Tx)

(57)

A.2 Entropies of ρE|â=±1

Having introduced a parametrization of quantum
models, we now express the quantities of interest
H(ρE), H(ρE |Â0) and BΩ as functions of the distri-
bution L describing the state |Ψ〉ABE and the mea-
surement settings ax,by. The marginal state of Eve
is straightforward to write down:

ρE =


L1

L2
L3

L4

 . (58)

For the conditional states, we have

ρE|â=+1 = 2 trAB
1 + Â0

2 ⊗ 1BE |Ψ〉〈Ψ|ABE =

 L1 0 Cφ
√
L1L3q Sφ

√
L1L4q

0 L2 Sφ
√
L2L3q −Cφ

√
L2L4q

Cφ
√
L1L3q Sφ

√
L2L3q L3 0

Sφ
√
L1L4q −Cφ

√
L2L4q 0 L4

 , (59)

where the factor of two arises because the probability to observe the outcome Â0 = 1 is simply 1
2 . The conditional

state for the other outcome Â0 = −1 can be easily obtained by noticing that the two outcomes are interchanged
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by a mapping Â0 → −Â0, i.e. with the inversion of the vector
(Cφ

Sφ

)
→ −

(Cφ
Sφ

)
. Consequently, we have

ρE|â=−1 =


1

1
−1

−1

 ρE|â=1


1

1
−1

−1

 . (60)

It follows that the entropies of both conditional states are equal and

H(ρE |Â0) = 1
2H(ρE|â=+1) + 1

2H(ρE|â=−1) = H(ρE|â=+1). (61)

Analogously to Eq. (60), there are unitary transformations (with different positions of 1 and −1 on the
diagonal) that correspond to the transformations

(Cφ
Sφ

)
→
(−Cφ

Sφ

)
and

(Cφ
Sφ

)
→
( Cφ
−Sφ

)
. This implies that H(ρE |Â0)

and H(Â0|E) do not depend on these sign changes, i.e. they are only functions of C2
φ and S2

φ.

A.3 Optimal key generating setting a0

In this section, we give the minimal angle φ for which constraint BΩ ≥ β can be fulfilled for a given L. We first
focus on the possible values of φ. The expected Bell score is straightforward to compute:

BΩ = 1
2tr (((CΩA0 ⊗ (B0 +B1) + SΩA1 ⊗ (B0 −B1))⊗ 1E) |Ψ〉〈Ψ|ABE)

= 1
2CΩ aT0

(
Tz

Tx

)
(b0 + b1) + 1

2SΩ aT1
(
Tz

Tx

)
(b0 − b1)

(62)

From this expression we notice that any of the following transformations of the key generating setting:

a0 →
(

(−1)s1
(−1)s2

)
a0, (63)

with s1, s2 ∈ {0, 1} can be compensated by applying
the same transformation to the remaining settings a1,
by to give the same Bell score BΩ. Furthermore, we
have seen that this transformation does not change
Eve’s conditional entropy H(Â0|E). Therefore we can
always restrict a0 to the positive quadrant of the circle

φ ∈ [0, π2 ] (64)

without loss of generality. We now express the Bell
score with Bob’s settings parametrized as in Eq. (17):

BΩ =
〈

CΩCθ a0 ·
(
Z

X

)
⊗ c ·

(
Z

X

)
+SΩSθ a1 ·

(
Z

X

)
⊗ c⊥ ·

(
Z

X

)〉
.

(65)

Computing the expected value of the operators on our
Bell diagonal state gives

BΩ =CΩCθ aT0
(
Tz

Tx

)
c

+ SΩSθ aT1
(
Tz

Tx

)
c⊥.

(66)

We introduce an angle γ to parametrize the vectors c
and c⊥:

c =
(

Cγ
Sγ

)
, c⊥ =

(
−Sγ
Cγ

)
. (67)

The maximization with the second setting of Alice is
straightforward, that is

max
a1

SθaT1
(
Tz

Tx

)
c⊥ = ‖Sθ

(
Tz

Tx

)
c⊥‖

= |Sθ|
√
T 2
z S2

γ + T 2
xC2

γ .

The Bell score (optimized with respect to a1) becomes

BΩ = CΩCθ
(

Cφ
Sφ

)T(
Tz

Tx

)(
Cγ
Sγ

)
+ SΩ|Sθ|

√
T 2
z S2

γ + T 2
xC2

γ .

Since Tz, Tx ≥ 0 and φ,Ω ∈ [0, π2 ], we can also restrict
the angle θ and γ to the interval [0, π2 ] without loss
of generality, and drop the absolute value: |Sθ| = Sθ.
The constraint BΩ ≥ β takes the form

CΩ

(
Cφ
Sφ

)T(
Tz

Tx

)(
Cγ
Sγ

)

≥
β − SΩSθ

√
T 2
z S2

γ + T 2
xC2

γ

Cθ
.

(68)
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Recall that we wish to find the minimal φ for which
this inequality can be fulfilled for at least one value of
the free parameters θ and γ. We observe that if the
right hand side (RHS) can become zero or negative
by some choice of θ and γ, the constraint becomes
trivial. Since Tz ≥ Tx, this is possible for

β2 ≤ S2
ΩT

2
z =⇒ φ∗ = 0. (69)

In the following we assume that this is not the case,
i.e. β2 > S2

ΩT
2
z . The angle θ only appears on the right

of the inequality, so to satisfy the inequality our best
choice is to minimize the RHS with respect to θ. The
expression

β − SΩSθ
√
T 2
z S2

γ + T 2
xC2

γ

Cθ
(70)

either has a local minimum that can be found by set-
ting its derivative to zero, or there is no local mini-
mum and the expression is minimal at the boundary
θ = 0 since it diverges for θ → π

2 . Differentiating the
expression with respect to theta, we find that a local
minumum does exist at

Sθ =
SΩ

√
T 2
z S2

γ + T 2
xC2

γ

β
, (71)

(recall the assumption above). Plugging this value
into Eq. (68) allows us to rewrite the constraint as

CΩ

(
Cφ
Sφ

)T(
Tz

Tx

)(
Cγ
Sγ

)
≥
√
β2 − S2

Ω(T 2
z S2

γ + T 2
xC2

γ),
(72)

which we rewrite as(
Cφ
Sφ

)T
vγ ≥ 1, with

vγ = CΩ√
β2 − S2

Ω(T 2
z S2

γ + T 2
xC2

γ)

(
TzCγ
TxSγ

)
.

(73)

Now it becomes simple to check if the constraint
can be satisfied at all. The vector vγ belongs to
the positive quadrant of the plane with v0 ‖

(1
0
)

and
vπ/2 ‖

(0
1
)
, hence the inequality a0 ·vγ ≥ 1 can be sat-

isfied if and only if the length of the vector vγ reaches
1, i.e.

|vγ |2 =
C2

Ω(T 2
z C2

γ + T 2
xS2

γ)
β2 − S2

Ω(T 2
z S2

γ + T 2
xC2

γ)
≥ 1 (74)

for some γ. We rewrite this inequality as

1
2
(
T 2
z + T 2

x + (T 2
z − T 2

x )C2γC2Ω − 2β2) ≥ 0. (75)

Given that T 2
z ≥ T 2

x , the left hand side (LHS) is max-
imal for γ = 0 if Ω ≤ π

4 and for γ = π
2 if Ω > π

4 .
Hence, BΩ ≥ β can be fulfilled if and only if

for Ω ≤ π

4 , C2
ΩT

2
z + S2

ΩT
2
x ≥ β2

for Ω >
π

4 , S2
ΩT

2
z + C2

ΩT
2
x ≥ β2.

(76)

Consider the first case Ω ≤ π

4 . Setting γ = 0 one

verifies that if the constraint can be fulfilled, then it
can be fulfilled with φ = 0:(

1
0

)T
v0 = CΩTz√

β2 − S2
ΩT

2
x

≥ 1

⇐⇒ C2
ΩT

2
z + S2

ΩT
2
x ≥ β2.

(77)

Hence, in this case the minimal possible angle is
φ∗ = 0 as long as the Bell score can be attained as
formalized by Eq. (76).

The other case Ω >
π

4 is less trivial. Assume that

the constraint can be satisfied, S2
ΩT

2
z + C2

ΩT
2
x ≥ β2.

We first check if φ = 0 is a solution((
1
0

)T
vγ

)2

=
C2

ΩC2
γT

2
z

β2 − S2
Ω(T 2

z S2
γ + T 2

xC2
γ)
≥ 1

⇐⇒ C2
γ(C2

ΩT
2
z + S2

ΩT
2
x − S2

ΩT
2
z ) + S2

ΩT
2
z ≥ β2

(78)

As S2
ΩT

2
z + C2

ΩT
2
x ≥ β2 ≥ S2

ΩT
2
z , the LHS is maximal

for γ = 0. Therefore φ∗ = 0 iff

C2
ΩT

2
z + S2

ΩT
2
x ≥ β2. (79)

We now assume

S2
ΩT

2
z + C2

ΩT
2
x ≥ β2 > C2

ΩT
2
z + S2

ΩT
2
x , (80)

such that the constraint can be fulfilled but not with
φ = 0. To find the minimal φ that allows to do so we
look on the dependence of the length of the vector vγ
on γ. We compute
d

dγ
|vγ |2 =

(T 2
z − T 2

x )C2
ΩS2γ

(β2 − (T 2
z S2

γ + T 2
xC2

γ)S2
Ω)2

((T 2
z + T 2

x )S2
Ω − β2),

(81)

here (T 2
z + T 2

x )S2
Ω ≥ S2

ΩT
2
z + C2

ΩT
2
x ≥ β2. Thus the

derivative is positive and the length of vγ is increasing
with γ.

We can now give a simple geometrical interpreta-
tion to our problem of finding the minimal φ: for each
value φ such that (

Cφ
Sφ

)T
vγ ≥ 1 (82)
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a line tangent to the unit circle at
(Cφ

Sφ

)
is also crossing

the curve vγ . So for the minimal value φ∗ there is a
line tangent to both vγ and the unit circle at

(Cφ∗
Sφ∗

)
.

The equation of the line tangent to vγ reads `(λ) =
vγ +λv′γ . This line is tangent to the unit circle if and
only if the equation

|vγ + λv′γ |2 = 1 (83)

has only one solution, where the derivative is with
respect to γ. This is a quadratic equation

λ2|v′γ |2 + 2λv′γ · vγ + |vγ |2 − 1 = 0, (84)

which has a unique solution iff its determinant is zero(
v′γ · vγ

)2 = |v′γ |2
(
|vγ |2 − 1

)
. (85)

With

v′γ = CΩ

(β2 − S2
Ω(T 2

xC2
γ + T 2

z S2
γ))3/2

(
TzSγ(T 2

z S2
Ω − β2)

−TxCγ(T 2
xS2

Ω − β2)

)
(86)

lengthy but straightforward algebra gives

S2
γ = − T 2

x (β2 − T 2
xS2

Ω)(β2 − (T 2
z + T 2

x )S2
Ω)

(T 2
z − T 2

x )
(
β4 + S2

Ω(T 2
xT

2
z − 2β2(T 2

x + T 2
z )) + S4

Ω(T 4
x + T 4

z )
) . (87)

To find that the minimal angle φ∗ note that for the tangent line
(Cφ∗

Sφ∗

)
· v′γ = 0, and therefore

(−Sφ∗
Cφ∗

)
= v′γ
|v′γ |

.
Plugging in the above equations we find

c2∗(L,Ω, β) = cos2 (φ∗(L,Ω, β)
)

= (β2 − S2
ΩT

2
x )(C2

ΩT
2
x + S2

ΩT
2
z − β2)

C2
Ω(T 2

z − T 2
x )(S2

ΩT
2
z + S2

ΩT
2
x − β2)

. (88)

A.4 Eve’s maximum information for Ω ≤ π
4

We here give details on the derivation of the formula (25) in the main text which corresponds to Eve’s maximum
information in the case Ω ≤ π

4 . For these inequalities we have seen that the constraint C2
Ω T

2
z + SΩ T

2
x ≥ β2 can

be fulfilled with c2∗(L, β) = 1. The choice of the measurement angle implies Cφ = 1 implies a simple form for
the state ?

ρE|â=+1 =


L1 0

√
L1L3q 0

0 L2 0 −
√
L2L4q√

L1L3q 0 L3 0
0 −

√
L2L4q 0 L4

 , (89)

with a closed form expression for its eigenvalues implying

H(ρE|â=1) = H
(
p =



1
2

(
L1 + L3 +

√
4L1L3q + (L1 − L3) 2

)
1
2

(
L1 + L3 −

√
4L1L3q + (L1 − L3) 2

)
1
2

(
L2 + L4 +

√
4L2L4q + (L2 − L4) 2

)
1
2

(
L2 + L4 −

√
4L2L4q + (L2 − L4) 2

)


)
. (90)

The constraint on the generalized CHSH score leads to the following constraint on the vector L(
T 2
Z

T 2
X

)
·
(

C2
Ω

S2
Ω

)
= 2 (L3 − L4) (L1 − L2) C2Ω + (L1 − L2) 2 + (L3 − L4) 2 ≥ β2. (91)

Our goal is thus to find the components of the vector L maximizing H(L)−H(p) and satisfying the previous
constraint. Inspired by Ref. [13], we first introduce the following parametrization

L1 = Px L3 = P (1− x) L2 = (1− P )y L4 = (1− P )(1− y). (92)

The partial ordering of the L coefficients implies

(1− P )y ≤ Px ≤ (1− P )y + 2P − 1 (93)
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which requires P ≥ 1
2 . The advantage of this parametrization comes from the fact that our figure of merit can

be nicely rewritten as

H(L)−H(p) = Phq(x) + (1− P )hq(y)
hq(z) = h(z)− h(nq(z))

nq(z) =
1 +

√
1− 4 (1− q) z(1− z)

2

(94)

where h(z) = −z log(z) − (1 − z) log(1 − z) is the binary entropy function with the logarithm in base 2, while
the constraint on the expected value of the generalized CHSH operator is given by

SΩ (2P (x+ y − 1)− 2y + 1)2 + CΩ (1− 2P )2 ≥ β2 (95)

For a fixed P, the curve in the (x, y)-plan that cor-
responds to a constant value β satisfies P dx =
(1 − P ) dy. This remark allows one to maximize
H(L)−H(p) along this curve and find that it is op-
timal for Eve to set x + y = 1, see appendix C2 in
Ref. [13] for the detailed argument. The symmetry of
the function hq(x) = hq(1− x) allows us to write the
problem as

max
x,P

H(L)−H(p) = hq(x)

s.t. (2P − 1)2C2
Ω + (1− 2x)2S2

Ω ≥ β2.
(96)

As the goal function hq(x) does not depend on P , we
can set its value to P = 1 because this is the value
maximizing the LHS of the constraint inequality and
allowing the largest possible interval for the remaining
variable x. We thus get

max
x,P

H(L)−H(p) = hq(x)

s.t. (1− 2x)2 ≥ β2 − C2
Ω

S2
Ω

.
(97)

Finally, as hq(x) is a monotonically decreasing func-
tion of x (see Ref. [13]), it is optimal to set x to the
least possible value compatible with the constraint.
This implies

I(β; Ω, q) = hq(z)

with z = 1
2


√
β2 − C2

Ω

SΩ
+ 1

 .
(98)

Let us now recall that the situation with c2∗(L, β) =
1 and C2

Ω T
2
z + SΩ T

2
x ≥ β2 also occurs in the case

Ω > π
4 . The above proof guarantees that it is optimal

for Eve to use strategies where the inequality is satu-
rated C2

Ω T
2
z + SΩ T

2
x = β2. Hence in the optimization

problem for Ω > π
4 we can ignore all the strategies

with C2
Ω T

2
z + SΩ T

2
x > β2.

A.5 Concavity of hq ◦ z(β)
Recall that in order to use the bound I(β; Ω, q) de-
rived for two-qubit strategies in the previous section
as a universal bound (valid for strategies in any di-
mension), we have to show that this function is con-
cave. In this case, for any mixture of qubit strategies
(enforced by the Jordan’s lemma) with an average
score β̄ =

∑
i piβi, Eve’s information satisfies

Ī(β; Ω, q) =
∑
i

piI(βi; Ω, q) ≤ I(β̄; Ω, q). (99)

The concavity of I(β; Ω, q) = hq(z(β)) follows from
the fact that its second derivative is negative

d2

dβ2 hq
(
z(β)

)
= h′′q (z)

(
z′(β)

)2 + h′q(z)z′′(β) ≤ 0, (100)

which we are going to show below. In this section we
will use the natural algorithm instead of logarithm
in base 2. The function hq(z) takes a positive real
factor upon changing the base of the algorithm, so it
is irrelevant for its concavity. Note first that z(β) ∈
[ 1
2 , 1] and √

β2 − C2
Ω = SΩ(2z − 1). (101)

Then consider the following identities

(z′(β))2 = β2

4S2
Ω(β2 − C2

Ω)
= S2

Ω(2z − 1)2 + C2
Ω

4S4
Ω(2z − 1)2

z′′(β) = −C2
Ω

2SΩ(β2 − C2
Ω)3/2

= −C2
Ω

2S4
Ω(2z − 1)3

.

(102)

The identity (100) that we want to prove thus be-
comes

h′′q (z)(2z − 1)(S2
Ω(2z − 1)2 + C2

Ω)− 2h′q(z)C2
Ω

4S4
Ω(2z − 1)3 ≤ 0. (103)

Multiplying by a positive fraction 4S4
Ω(2z−1)3

C2
Ω

it can be
straightforwardly simplified to the form

h′′q (z)(2z − 1)(T2
Ω(2z − 1)2 + 1)− 2h′q(z) ≤ 0. (104)

As h′′q (z) ≤ 0 was proven in [13, 36], we have the
inequality

h′′q (z)(2z − 1)2 T2
Ω ≤ 0. (105)
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We use it to relax the inequality in Eq. (104) to

h′′q (z)(z − 1
2)− h′q(z) ≤ 0. (106)

At the point z = 1
2 the left hand side becomes zero,

since h′q( 1
2 ) = 0 and |h′′q ( 1

2 )| < ∞, see below. From
now on, we thus exclude the point z = 1

2 and consider
z ∈ ( 1

2 , 1]. Now we can divide the whole expression
by a strictly positive factor (z − 1

2 )2. We obtain

1
2
h′′q (z)(z − 1

2 )− h′q(z)(z − 1
2 )′

(z − 1
2 )2 ≤ 0, (107)

or
1
2

(
h′q(z)
z − 1

2

)′
=
(
h′q(z)
2z − 1

)′
≤ 0. (108)

In other words we want to show that the function

(∗) d

dz

(
h′q(z)
2z − 1

)
≤ 0 (109)

on the interval z ∈ ( 1
2 , 1]. Let us now compute this

function:

h′q(z)
2z − 1 = h′(z)

2z − 1 − h
′(nq(z))

n′q(z)
2z − 1 . (110)

The last fraction can be simplified to

n′q(z)
2z − 1 = (2z − 1)(1− q)

(2z − 1)
√

1− 4 (1− q) z(1− z)

= 1− q
2nq(z)− 1 .

(111)

Therefore

h′q(z)
2z − 1 = h′(z)

2z − 1 − (1− q) h
′(nq(z))

2nq(z)− 1
= g(z)− (1− q)g

(
nq(z)

)
,

(112)

where
g(z) = h′(z)

2z − 1 = −
log( z

1−z )
2z − 1 . (113)

To complete the proof we thus need to show that

(∗) g′(z)− (1− q)g′
(
nq(z)

)
n′q(z) ≤ 0. (114)

From Eq. (111), we have

n′q(z) = (1− q) 2z − 1
2nq(z)− 1 , (115)

so the inequality to be shown can be rewritten as

g′(z)
2z − 1 − (1− q)2 g′(nq(z))

2nq(z)− 1 ≤ 0. (116)

For q = 0 we have (1 − q) = 1 and nq(z) = z so the
two terms are equal. The identity to be shown can
then be expressed as

(∗) f(z, 0)− f(z, q) ≤ 0 with
f(z, q) = (1− q)2u(nq(z))

u(z) = g′(z)
2z − 1 =

1
z−1 + 1

z
+ 2 log

(
z

1−z

)
(2z − 1)3 ,

(117)

which holds for q = 0 trivially. To show that it holds
for all q it is sufficient to demonstrate that the func-
tion f(z, q) is increasing with q, i.e.

(∗) d

dq
f(z, q) ≥ 0, (118)

which we are going to show now.
Using

d

dq
nq(z) = (1− z)z√

1− 4(1− q)(1− z)z

= nq(z)(1− nq(z))
(1− q)(2nq(z)− 1)

(119)

we obtain

d

dq
f(z, q) = −2(1− q)u

(
nq(z)

)
+ (1− q)2u′

(
nq(z)

) d
dq
nq(z)

= −2(1− q)u(n) + (1− q)u′(n)n(1− n)
2n− 1

(120)

for n > 1
2 , which is positive iff q = 1 or

(∗) u′(n)n(1− n)− 2u(n)(2n− 1) ≥ 0. (121)

In the case q < 1, straightforward algebra allows to find a simple expression of the left hand side and rewrite
the condition as

6n2 − 4n3 − 1 + 4(n4 − 2n3 + 2n2 − n) log
(

n
1−n

)
(2n− 1)4n(1− n) ≥ 0

⇐⇒ 6n2 − 4n3 − 1 + 4(n4 − 2n3 + 2n2 − n) log
(

n

1− n

)
≥ 0

(122)
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Changing the variable to x+ 1 = n
1−n with x ≥ 0 we express the above inequality as

x(x2 + 6x+ 6)
(x+ 2)3 − 4(x+ 1)(x2 + 3x+ 3)

(x+ 2)4 log(x+ 1) ≥ 0

⇐⇒ log(1 + x) ≤ x(x+ 2)(x2 + 6x+ 6)
4(x+ 1)(x2 + 3x+ 3) .

(123)

To prove this relation note that there is equality for x = 0, but the LHS increases slower than the RHS

log′(1 + x) ≤
(
x(x+ 2)(x2 + 6x+ 6)
4(x+ 1)(x2 + 3x+ 3)

)′
⇐⇒

1
1 + x

≤ 1
4

(
9(x+ 1)

(x(x+ 3) + 3)2 + 1
(x+ 1)2

+ 3
x(x+ 3) + 3 + 1

)
⇐⇒ x4(x+ 2)2

4(x+ 1)2(x(x+ 3) + 3)2 ≥ 0,

(124)

which concludes the proof.

Properties of h′q( 1
2 ) and h′′q ( 1

2 ) We start with the
first derivative and want to show that h′q( 1

2 ) = 1/2.
We have

h′q(z) =
(
h(z)− h(nq(z))

)′
= h′(z)− h′(nq(z))n′q(z)

(125)

The binary entropy hits a maximum at z = 1/2 so
h′( 1

2 ) = 0. For the second term, we use (115) to get

h′(nq(z))n′q(z)

= −(1− q) 2z − 1
2nq(z)− 1 log

(
nq(z)

1− nq(z)

)
,

(126)

(2z − 1) = 0 at z = 1
2 , while

| 1− q
2nq(z)− 1 log

(
nq(z)

1− nq(z)

)
|z=1/2|

= |
(1− q) log

(
1+√q
1−√q

)
√
q

|

. (127)

Changing the variable to x + 1 = 1+√q
1−√q with x ≥ 0

yields for the last expression

|4(x+ 1) log(x+ 1)
x(x+ 2) | <∞. (128)

It is obviously bounded for x > ε with any ε, and
the fact that the limit x → 0 exists can be seen by
straightforward application of l’Hôpital’s rule. Hence,

h′q(
1
2) = 0. (129)

We also wish to show that the second derivative
h′′q ( 1

2 ) is bounded. To do so we compute

h′′q (1
2) =

2(1− q) log
(

1+√q
1−√q

)
√
q

− 4. (130)

But as we have just shown that

|
(1− q) log

(
1+√q
1−√q

)
√
q

| <∞, (131)

the desired result

|h′′q (1
2)| <∞ (132)

follows.

A.6 Maximization of the generalized CHSH
score with respect to auxiliary settings
In the goal function

H(ρE)−H(ρE |â0(q)) + tBΩ(L, φ,a1, b0, b1) (133)

that a priori appears in Eq. (38), it is only the Bell
score which depends on the auxiliaty measuremnt set-
tigns a1, b0 and b1. As t is always positive we can
straigtforwardly maximise the score with respect to
these settings. We thus define

βmax(L, φ) = max
a1,b0,b1

BΩ(L, φ,a1, b0, b1), (134)

which actually appears in Eq. (38).
Let us now compute this expression starting from

Eq. (66), that we put in the form

BΩ =
(

Cθ
Sθ

)
·

(
CΩ aT0

(
TzCγ
TxSγ

)
SΩ aT1

(−TzSγ
TxCγ

) ) . (135)
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This form makes the maximization with respect to θ and a1 straightforward

max
θ,a1
BΩ

= max
a1

√(
CΩ aT0

(
TzCγ
TxSγ

))2
+
(

SΩ aT1
(
−TzSγ
TxCγ

))2

=
√

C2
Ω (CφTzCγ + SφTxSγ)2 + S2

Ω
(
T 2
z S2

γ + T 2
xC2

γ

)
.

(136)

To find the maximum with respect to γ or c =
(Cγ

Sγ

)
it is convenient to write the expression inside the square

root as (
max
θ,a1
BΩ

)2
=

cT
(

C2
ΩC2

φT
2
z + S2

ΩT
2
x C2

ΩCφSφTzTx
C2

ΩCφSφTzTx C2
ΩS2

φT
2
x + S2

ΩT
2
z

)
c.

(137)

It is now obvious that the value is maximal if c is aligned with the eigenvector of the matrix which corresponds
to the maximal eigenvalue. Therefore

βmax(L, φ) = max
θ,γ,a1

BΩ(L, φ,a1, b0, b1),

=

√
Eig+

(
C2

ΩC2
φT

2
Z + S2

ΩT
2
x C2

ΩCφSφTzTx
C2

ΩCφSφTzTx C2
ΩS2

φT
2
x + S2

ΩT
2
z

)
= 1√

2

(
C2

Ω(C2
φT

2
z + S2

φT
2
x ) + S2

Ω(T 2
z + T 2

x )+√
(C2

Ω(C2
φT

2
z − S2

φT
2
x )− S2

Ω(T 2
z − T 2

x ))2 + 4(C2
ΩCφSφTzTx)2

)1/2
.

(138)

B Numerical tool
B.1 Lipshitz continuity of von Neumann en-
tropy
Consider two states ρ and σ on an n-dimensional
Hilbert space, that are close in fidelity:

F (ρ, σ) = tr|√ρ
√
σ| = f. (139)

Given the monotonicity of arccos in the range [0, 1],
this condition can be equivalently written in terms of
the angle A(ρ, σ) = arccos(F (ρ, σ))

A(ρ, σ) = a = arccos(f). (140)

The angle is a metric on the space of density op-
erators [22], in particular it satisfies the triangle
inequality.

Next, note that the angle between two states is
lower bounded by the angle between the ordered vec-
tors made of their ordered eigenvalues

a = A(ρ, σ) ≥ A(p,q) = arccos (√p · √q) , (141)

with p = Eig↓(ρ), q = Eig↓(σ) such that p1 ≥ p2 ≥
. . . This inequality follows from

F (ρ, σ) = tr|√ρ
√
σ| = max

U
tr√ρ (

√
σU)

≤ √p · √q,
(142)

where in second line we used the so-called von Neu-
mann trace inequality [21]. This bound is useful be-
cause the entropies of the states match the entropies
of the probability distributions

H(ρ) = H(p) H(σ) = H(q). (143)

Let us now bound their difference

∆H = |H(ρ)−H(σ)| = |H(p)−H(q)|. (144)

To do so, note that for any two unit vectors √p and√q on the n-sphere there exist a path γ connecting
the two and such that the integral along the path
satisfies ∫ √q

√p
dA = A(p,q) ≤ a. (145)

Let us bound the variation of the entropy along the
path. To this end, we associate a probability distribu-
tion r to each vector v on the path γ, with ri = (v(i))2

(note that the vectors along the curve remain in the
positive part of the n-sphere v(i) ≥ 0). A step dA from
v along the path corresponds to some deformation of
the vector given by

vdA → v + v⊥dA, (146)

with v · v⊥ = 0. From

H(r) = −
∑
i

(v(i))2 log((v(i))2) (147)
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we compute the entropy variation for an infinitesimal
increment of the angle

|dH
dA
| = 2|

∑
i

v(i)v
(i)
⊥ ( 1

loge(2) + log((v(i))2))|

= 2|
∑
i

v
(i)
⊥ v(i) log((v(i))2)|

= 2 |v⊥ ·w| ≤ 2||w||

(148)

where we defined a vector w as wi = v(i) log((v(i))2) =√
ri log(ri). Hence we obtain

|dH
dA
| ≤ 2

√∑
i

ri log2(ri), (149)

and it remains to bound the expression on the RHS.
To do so, we will construct a concave upper bound on
the function

c(r) = r log2(r) (150)
defined on [0, 1]. By computing the second derivative

c′′(r) = 21 + loge(r)
r loge(2)2 (151)

we see that the function is concave c′′ ≤ 0 on the
interval r ∈ [0, 1

e ], and convex on the complement. To
get a concave upper-bound we look for a line passing
by r = 0 and c(1) = 0 and tangent to c(r). In the
(r, c)-plane the equation of a line tangent to c(r) at r
is given by

`r(λ) =
(

r

c(r)

)
+
(

1
c′(r)

)
λ. (152)

It passes through the point `r(λ) = (1, 0) iff

c(r) + c′(r)(r − 1) = 0
log(r)(−2r + log(r) + 2) = 0

with solutions{
r1 = − 1

2W0(− 2
e2 ) ≈ 0.203

r2 = 1

(153)

where W0 is the principal branch of the Lambert W -
function. The second solution r2 = 1 is irrelevant.
From the first solution we can construct a concave
upper bound

c(r) ≤ ĉ(r) =
{
c(r) r ≤ r1

c(r1) 1−r
1−r1 r > r1.

(154)

Note that r1 <
1
e .

Finally with the concave bound ĉ it is easy to obtain∑
i

ri log2(ri) =
∑
i

c(ri)

≤
∑
i

ĉ(ri) = n
∑
i

1
n
ĉ(ri)

≤ n ĉ

(∑
i

ri
n

)
= n ĉ

(
1
n

)
.

(155)

So for entropy susceptibility we get

|dH
dA
| ≤ 2

√
n ĉ( 1

n
) (156)

For n ≤ 4 one has 1
n > r1, while for n ≥ 5 the contrary

is true, 1
n < r1. Therefore we can have a more explicit

expression

|dH
dA
| ≤

{
4
√
r1(1− r1)

√
n− 1 n ≤ 4

2 log(n) n ≥ 5
, (157)

where we used the equation − log(r1) = 2(1 − r1) to
compute c(r1). In particular we get for n = 4

ĉ

(
1
4

)
= c(r1)1− 1/4

1− r1
< 1.011. (158)

and deduce

|dH
dA
| ≤ 2

√
4 ĉ
(

1
4

)
< 4.023. (159)

To bound the global entropy difference, we simply in-
tegrate along the curve γ to get

∆H ≤
∫ √q

√p
|dH|

⇔ ∆H ≤
∫ √q

√p
|dH
dA
| dA < 4.023A(ρ, σ).

(160)

As a side remark, we note that for n ≥ 5, we get
1
n < r1 and the bound becomes simpler

ĉ

(
1
n

)
= log2(n)

n
, (161)

and
|dH
dA
| ≤ 2 log(n). (162)

B.2 Continuity of the goal function
The entropy term – To apply the continuity
bound previously described to our situation, let ρ, ρ′
be the states on Â0E produced by measurements
along angles φ, φ′ on the states |Ψ〉ABE with the
weight L,L′ respectively. Our aim is to bound∣∣∣H(Â0|E)ρ −H(Â0|E)ρ′

∣∣∣ . We use∣∣H(Â0|E)ρ −H(Â0|E)ρ′
∣∣

=
∣∣H(ρE)−H(E|Â0)ρ −H(ρ′E) +H(E|Â0)ρ′

∣∣
≤
∣∣H(ρE)−H(ρ′E)

∣∣+
∣∣H(E|Â0)ρ −H(E|Â0)ρ′

∣∣ (163)

and bound the two last terms independently. For
the first term involving H(ρE)ρ, things are straight-
forward. The states of Eve ρE = diag(L) are 4-
dimensional and independent of φ, so

|H(ρE)L+H(ρE)L′ | ≤ 4.023 arccos(
√

L·
√

L′). (164)
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For the other term, we note∣∣∣H(E|Â0)ρ −H(E|Â0)ρ′
∣∣∣

=
∣∣∣H(Â0E)ρ −H(Â0E)ρ′

∣∣∣
= |H(ρ)−H(ρ′)|

(165)

as H(Â0) = 1. Since Â0E is 8-dimensional we get∣∣∣H(E|Â0)ρ −H(E|Â0)ρ′
∣∣∣

≤ 2 log(8)A(ρ, ρ′) = 6A(ρ, ρ′).
(166)

Given that ρ = ρ(L, φ) and ρ′ = ρ(L′, φ′), we can use
the triangle inequality to write

A(ρ, ρ′)
≤ A(ρ(L, φ), ρ(L′, φ)) +A(ρ(L′, φ), ρ(L′, φ′)).

(167)

For A(ρ(L, φ), ρ(L′, φ)) we note that both states re-
sult from the action of the same CPTP map on two
initial state |Ψ(L)〉ABE and |Ψ(L′)〉ABE . By the data-
processing inequality (inherited by the angle from the
fidelity F ) we have

A(ρ(L, φ),ρ(L′, φ))
≤ A(|Ψ(L)〉ABE , |Ψ(L′)〉ABE)
= A(L,L′)

= arccos(
√

L ·
√

L′).

(168)

To bound the other term A(ρ(L′, φ), ρ(L′, φ′)) we note
that if we apply a channel that performs a Z mea-
surement followed by noisy preprocessing to the state(
eiφYA/2 ⊗ 1BE

)
|Ψ〉ABE , this produces exactly the

state ρ on Â0E; analogously, applying the same chan-
nel to the state

(
eiφ
′YA/2 ⊗ 1BE

)
|Ψ〉ABE produces

the state ρ′. Therefore the data-processing inequality
implies F (ρ, ρ′) is lower-bounded by

F
((
eiφYA/2 ⊗ 1BE

)
|Ψ〉 ,

(
eiφ
′YA/2 ⊗ 1BE

)
|Ψ〉
)

=
∣∣∣〈Ψ|(ei(φ′−φ)YA/2 ⊗ 1BE

)
|Ψ〉
∣∣∣

=
∣∣∣∣cos φ

′ − φ
2 + i sin φ

′ − φ
2 〈Ψ| (YA ⊗ 1BE) |Ψ〉

∣∣∣∣
≥
∣∣∣∣cos φ

′ − φ
2

∣∣∣∣ , since 〈Ψ| (YA ⊗ 1BE) |Ψ〉 ∈ R.

(169)

Putting these together, we conclude that (for |φ′ −
φ| < π)

A(ρ(L′, φ), ρ(L′, φ′)) ≤ |φ
′ − φ|
2 . (170)

Combining everything together, we get∣∣∣H(Â0|E)ρ −H(Â0|E)ρ′
∣∣∣

≤ 10.023 arccos(
√

L ·
√

L′) + 3 |φ− φ′|
(171)

The Bell score – Next we wish to bound the incre-
ment |dβmax(L,a0,Ω)| for infinitesimal changes of the
parameters (dL, dφ). It is actually straightforward to
bound the gradient of the Bell score before the max-
imization with respect to a0,b0,b1, so we just need
to be careful to apply this bound on βmax.

First, note that BΩ(L, φ,a1,b0,b1) is a positive
smooth infinitely differential function of all its param-
eters. For a fixed Ω, let us group these parameters in
two vectors x = (a1,b0,b1) and y = (Tz, Tx,a0). We
then formally define

f(x,y) = BΩ(L, φ,a1,b0,b1)
g(y) = max

x
f(x,y) = βmax(L,a0,Ω). (172)

We are interested in bounding |dg(y)| as a function
of dy. Consider two values of the parameter, y1 and
y2, and define

x̄1 = argmaxxf(x,y1)
x̄2 = argmaxxf(x,y2),

(173)

such that g(y1) = f(x̄1,y1) and g(y2) = f(x̄2,y2).
Without loss of generality we assume g(y1) ≥ g(y2)
and consider the difference

|g(y1)− g(y2)| = |f(x̄1,y1)− f(x̄2,y2)|
≤ |f(x̄1,y1)− f(x̄1,y2)|
≤ max

x
|f(x,y1)− f(x,y2)|

(174)

Taking the limit y2 → y1 we get

|dg(y)| ≤ max
x
|∇yf(x,y) · dy|. (175)

Using the expression (66) for BΩ(L, φ,a1,b0,b1) we
then get

|dβmax(L, φ)| ≤

 1
1

CΩ

 ·
 |dTz||dTx|
|dφ|

 . (176)

B.3 Gradient of the goal function
We will now combine all the elements to upper bound
the gradient of the goal function

G(L, φ; Ω, q) = H(ρE)−H(E|â0(q))+tβmax(L, φ). (177)

We parametrize the vector L with the help of the an-
gles as in Eq. (44), such that the “model” is described
by four angles

(L, φ) ' ω = (α, µ, ξ, φ). (178)

We will bound the gradient of the goal function with
respect to this parametrization.

We start with the gradient of the angle. It satisfies

dA = |A(L(ω),L(ω + ndω))|
|∇A(ω)| dω|,

(179)
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with a unit vector n = (nα, nµ, nξ, 0). For the fidelity
one finds

F (L(ω),L(ω + ndω)) =
√

L(ω) ·
√

L(ω + dωi)

≥ 1− 3
4dω

2 +O(dω3)
(180)

for dωi = dα, dµ or dξ, one easily finds

|∇A(ω)| ≤
√

3
2 . (181)

We thus get from Eq. (171)

|d(H(ρE)−H(E|â0(q)))|

≤ 10.023
√

3
2
√
dα2 + dµ2 + dξ2 + 3dφ

(182)

and

|∇(H(ρE)−H(E|â0(q))|

≤
√

10.0232 3
2 + 9 < 12.7

(183)

For the gradient of the Bell score contribution
|∇βmax(L, φ)| we note that

|dTz|, |dTx| ≤ 2
(
|dα|+ |dµ|+ |dξ|

)
, (184)

which implies form (176) that

|∇βmax(L, φ)| ≤ t
√

3× 42 + C2
Ω ≤ 7t (185)

Finally, for the goal function

|∇G| ≤ 12.7 + 7 t . (186)

B.4 Lipschitz function certified maximization
on a compact space
General approach – In this section section we ex-
plain how we obtain a certified maximum of a Lips-
chitz function f : Rn → R with a Lipschitz constant
Λ, i.e. a bounded gradient |∇f | ≤ Λ, on a closed
domain

D = {x =

x1
...
xn

 ∈ Rn | xi ∈ [τi, µi], ∀ i}. (187)

We start by meshing D into an hypercube grid graph
G(s) with element of size s. If possible, we take s so
that s evenly divides µi − τi for all i. We label the
center of each hypercube ~c so that each first neighbor
in a given direction is separated by s, e.g. for ~c and
its neighbor ~c′ in the direction +~e1

~c′ =


c′1
c′2
...
c′n

 = ~c+ s.~e1 =


c1 + s
c′2
...
c′n

 . (188)

A hypercube of center ~c, h(~c), element of G, is thus
defined as
h(~c) = {x ∈ Rn|ci −

s

2
≤ xi ≤ ci +

s

2
, ∀i ∈ {1, . . . , n}}. (189)

Given the Lipschitz constant Λ, the function f in a
given hypercube h(~c) is upper bounded by

f(x) ≤ f(~c) +
√
nΛ
2 s, ∀x ∈ h(~c). (190)

Trivially, an upper bound on the maximum of f over
D is given by,

max
x∈D

f(x) ≤ max
~c∈G(s)

f(~c) +
√
nΛ
2 s. (191)

The maximum of f over D can thus be obtained by
taking the smallest possible step, i.e.

max
x∈D

f(x) = lim
s→0

(
max
~c∈G(s)

(
f(~c) +

√
nΛ
2 s

))
. (192)

Numerical realisation – While Eq. (192) gives
the optimal maximum on f , it is however imprac-
ticable using numerical resources, due to the obvious
need of discretization. A first naive approach is to re-
lax the problem by setting a lower bound on s. This
is, with the lower bound s ≥ ε,

max
x∈D

f(x) ≤ lim
s→ε

(
max
~c∈G(s)

(
f(~c) +

√
nΛ
2 s

))
. (193)

Resource wise, this method is cumbersome. Indeed,
setting ε to a small value compared to the domain
space, i.e. ε � mini(τi − µi), will result in a high
number of hypercubes to explore. Furthermore, for
a given step s, the number of hypercubes scales
exponentially with the dimension n.

Speed-up using a guess on the maximum –
Providing a guess on the maximum of f may signif-
icantly speed up the previous method. Such a max-
imum can be found using an optimization algorithm
without guarantees of optimality (BFGS, CMA, and
others...). Denote such a maximum as ν.
We start by setting a not-too-small step, s0, so that
the number of hypercubes composing the grid graph,
G0(s0), is reasonnable. For each hypercube h0(~c) we
start by computing the potential maximum,

ξ0(~c) = f(~c) +
√
nΛ
2 s0. (194)

We then compare this value to ν. In the case where
ν > ξ0(~c), we pass to the next hypercube since the
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guessed maximum is higher than the potential maxi-
mum value of f in h0(~c). Otherwise, we mesh h0(~c)
into a new hypercube grid graph G1(s1) of element
of size s1 = s0/2. For all of the new generated hy-
percubes, h1(~c) ∈ G1(s1), we compute the potential
maximum ξ1(~c) using Eq. (195). This method is ap-
plied recursively until either all new hypercubes of
graph Gkm satisfy ν > hm(~c), or we reach the mini-
mum step sm ≤ ε. An upper bound of f is thus given
by the maximum ξm(~c)

max(ξm(~c)) = f(~c) +
√
nΛ
2 sm (195)

where sm = s0/2m.
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