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ABSTRACT

We present a study of the dependencies of shear bias on simulation (input) and measured (output) parameters, noise, point-spread
function anisotropy, pixel size, and the model bias coming from two different and independent galaxy shape estimators. We used
simulated images from Galsim based on the GREAT3 control-space-constant branch, and we measured shear bias from a model-
fitting method (GFIT) and a moment-based method (Kaiser-Squires-Broadhurst). We show the bias dependencies found on input and
output parameters for both methods, and we identify the main dependencies and causes. Most of the results are consistent between
the two estimators, an interesting result given the differences of the methods. We also find important dependences on orientation
and morphology properties such as flux, size, and ellipticity. We show that noise and pixelization play an important role in the bias
dependencies on the output properties and galaxy orientation. We show some examples of model bias that produce a bias dependence
on the Sérsic index n as well as a different shear bias between galaxies consisting of a single Sérsic profile and galaxies with a disc
and a bulge. We also see an important coupling between several properties on the bias dependences. Because of this, we need to
study several measured properties simultaneously in order to properly understand the nature of shear bias. This paper serves as a first
step towards a companion paper that describes a machine learning approach to modelling shear bias as a complex function of many
observed properties.
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1. Introduction

Weak gravitational lensing is a powerful and promising probe
of cosmology for current and upcoming galaxy surveys, such as
the Hyper Suprime-Cam (HSC; Miyazaki et al. 2006), the Dark
Energy Survey (DES; The Dark Energy Survey Collaboration
2005; Flaugher 2005), the Kilo Degree Survey (KIDS; de Jong
et al. 2013), the Large Synoptic Survey Telescope (LSST; LSST
Science Collaboration 2009), Euclid (Laureijs et al. 2011), and
the Wide-Field Infrared Survey Telescope (WFIRST; Green et al.
2012). Due to the gravitational potentials of the mass fluctuations
between distant galaxies and us, the light is deflected, causing dis-
tortions in the images of the galaxies. By studying these distor-
tions, we can infer and study the distribution of the total matter
(dark and baryonic) in the Universe. However, most of the galax-
ies are only distorted by a few percent of their intrinsic elliptic-
ity value. Because of this, the ellipticity of the image of a galaxy
is dominated by its intrinsic ellipticity, so we cannot measure the
shear distortion of individual galaxies; instead, we can study them
statistically if we have a sample of galaxies that is large enough
so that the intrinsic ellipticities average out.

Cosmic shear measured from statistics on galaxy elliptici-
ties allows us to improve the estimation of cosmological parame-
ters by adding this new probe to cosmological studies. However,
systematics in shear measurement propagate to cosmological
parameter estimates. There are several systematics that make this

measurement challenging (Bridle et al. 2009). Firstly, images are
blurred due to the atmosphere or instrument response and suffer
from other effects from the telescope optics. Moreover, the con-
volution kernel of the image (point-spread function, or PSF) is
not necessarily isotropic, varies spatially, and has to be estimated
from either modelling or from the images of the stars from the
same field. Secondly, the output images are pixelated. Finally,
the pixels can suffer from Poisson noise coming from galaxy
photons and other noise contributions such as sky background.
Besides taking into account all these steps, we also need an accu-
rate algorithm to estimate the galaxy ellipticities from the pixe-
lated images.

All these effects can produce a bias on the estimation of the
shear that can affect our statistics and cosmological analysis, and
hence it is crucial to understand the nature of this bias in order
to be able to either calibrate it or to improve our methodology
to reduce its impact. Because of this, many studies have focused
on the different sources of shear bias and calibration techniques.
The shear bias is usually defined as multiplicative and additive
factors that define a linear relation between the true and the mea-
sured shear.

One of the most studied sources of bias is noise, commonly
referred to as noise bias (Bridle et al. 2009, 2010; Kitching et al.
2011, 2012, 2013; Refregier et al. 2012; Kacprzak et al. 2012;
Melchior & Viola 2012; Taylor & Kitching 2016). Refregier et al.
(2012) present an analytic derivation for the bias of maximum
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likelihood estimators (MLEs) affected by an additive noise. They
explore a simplified case where galaxy images are modelled and
fitted with a Gaussian with its size as the single free parameter;
they find a significant effect even for this simple approximation.
Taylor & Kitching (2016) and Hall & Taylor (2017) present ana-
lytic descriptions of the impact of different sources of bias to
dark energy measurements, finding noise bias to be the most rel-
evant. They also present an analytic calibration of part of the
bias. However, these expressions do not account for the full com-
plexity of real images, and their precision is thus limited.

Other studies have shown many other potential sources of
bias. Some examples are: scale-dependence of bias on differ-
ent cosmological parameters and redshifts (Huterer et al. 2006;
Amara & Réfrégier 2008; Kitching et al. 2015); model bias
coming from the assumptions of wrong models of galaxy mor-
phology (Massey et al. 2007b; Voigt & Bridle 2010; Bernstein
2010; Zhang & Komatsu 2011; Kacprzak et al. 2012, 2014;
Mandelbaum et al. 2015); selection bias coming from the fact that
different samples of galaxies are affected differently by all these
systematics (Kacprzak et al. 2012, 2014); limitations of model-
fitting methods (Melchior et al. 2010; Voigt & Bridle 2010) and
how to improve them (Bernstein 2010); galaxy morphology or
size (Mandelbaum et al. 2015; Clampitt et al. 2017); PSF mod-
elling and instrumental effects that cannot be treated as convolu-
tions (Massey et al. 2013); the number of pixels in the PSF and the
pixel integration level (Voigt & Bridle 2010); and the bulge-to-
total flux ratio (Voigt & Bridle 2010). Hoekstra et al. (2015, 2017)
explored the sensitivity of multiplicative bias to the input param-
eters of simulated images and inferred the accuracy to which we
need to measure the sizes and intrinsic ellipticities of galaxies for
Euclid-like surveys. Recently, Euclid Collaboration (2019) stud-
ied the impact of undetected galaxies in the image background
on the shear calibration.

Finally, different shape estimators can lead to different biases
and accuracies of the shear measurements. In order to compare a
wide variety of estimators, several image processing challenges
to put together different algorithms to estimate the shape of
galaxies in the same set of simulations have been organized. The
first challenges, known as the Shear Testing Programme STEP1
(Heymans et al. 2006) and STEP2 (Massey et al. 2007a), showed
the complexity of the shear measurement and the important role
of shear bias. In order to improve the clarity in these studies,
the GREAT08 Challenge (Bridle et al. 2009, 2010) focused on a
simplification of the problem, using a known PSF, simple galaxy
models, and a constant shear. Later, in the GREAT10 Challenge
(Kitching et al. 2011, 2012, 2013), the realism was increased to
include more complex galaxy morphologies, a varying applied
gravitational shear, and some telescope systematics. Finally, in
the GREAT3 Challenge (Mandelbaum et al. 2015), different
shape measurement methods were tested to infer weak lens-
ing shear distortions from different simulated surveys (space-
and ground-based), shear variations (constant or cosmologically
varying), and galaxy morphologies (realistic and parametric).
They also studied the bias dependencies on truncation due to
finite postage stamps, the Sérsic index of the galaxy profiles, the
PSF size, ellipticity and defocus, and the impact of the estima-
tion and interpolation of the PSF. An encouraging conclusion of
the study is that several methods were able to measure shear with
systematic errors around the level required by Stage IV galaxy
surveys. However, we note that GREAT3 had low sensitivity to
noise bias due to the limited number of galaxies involved and the
high signal-to-noise ratio (S/N) per galaxy.

In this paper we present a complementary study of the
bias dependencies found in galaxy image simulations based on
GREAT3 for different shape estimators. Our goal is to identify
the main dependencies of bias found as a function of all simula-
tion (input) and measured (output) parameters, PSF anisotropy,
noise, pixelization, and model bias coming from the use of dif-
ferent shear estimators. This identification will be used as a first
analysis (Paper I) and as motivation to develop a shear calibra-
tion method based on machine learning techniques in Pujol et al.
(2020, hereafter Paper II). In particular, we study the bias depen-
dencies on all input parameters of the simulations and all out-
put parameters obtained from the shear estimators in order to
identify the properties to which bias is most sensitive. We also
show some examples of the differences between ellipticity bias,
which describes the errors on the estimation of the shape of the
images, and shear bias, which defines the errors obtained in the
estimation of the shear of a given sample of galaxies. We study
the method dependence by using two different and independent
methods to estimate the shape and shear. One of the methods,
GFIT (Gentile et al. 2012; Mandelbaum et al. 2015), is an MLE
that measures the galaxy shape from fitting the best parameters
from a given model. The second method is the Kaiser-Squires-
Broadhurst (Kaiser et al. 1995, hereafter KSB) implementation
of the public code shapelens (Viola et al. 2011), which esti-
mates the shape of the galaxy from the measurement of the
weighted moments of the image. We also studied the effect of
isotropic and realistic PSFs, noise, and pixelization by repeat-
ing the measurements of the estimators on new realizations of
the image simulations; here, we applied some variations on the
noise variance and the use of either an isotropic Gaussian PSF
or different realistic and anisotropic PSFs. We do not explore
the dependencies of bias coming from implementation parame-
ters, such as the minimization or initialization parameters or the
choice of different galaxy models, in this paper. However, given
the agreement found between GFIT and KSB on most of the
dependencies, we think that the implementation of these meth-
ods does not significantly affect the conclusions of this paper.

The paper is organized as follows. In Sect. 2, we describe the
image simulations, the shape estimators, and the methodology
used to measure the shear and ellipticity bias. In Sect. 3, we show
and discuss the results of the main bias dependencies on input
parameters (from the simulated images) and output parameters
obtained from both estimators. We end in Sect. 4 with a summary
and discussion of the most important results of the paper.

2. Data and methodology

2.1. Images

We used Galsim (Rowe et al. 2015) to simulate the galaxy
images of this analysis. We generated the images from the con-
figuration parameters from the GREAT3 (Mandelbaum et al.
2015) control-space-constant (CSC) branch for most of the
study together with the centred corresponding PSFs. With this,
we obtained images of 2 × 106 galaxies corresponding to the
GREAT3 CSC branch and their respective PSFs, with which
we run our shear estimators. Each of the 200 images contains
100 × 100 stamps of 96 pixels per side and a pixel scale of
0.05 arcsec with one galaxy in each stamp, giving a total of
10 000 galaxies per image and a total of 2 000 000 galaxies. In
order to have an average intrinsic ellipticity of 0 without the need
for simulating more images, all galaxies have a 90-degree rotated
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counterpart. This was already the case for the GREAT3 Chal-
lenge. In every measurement of bias presented in this paper, we
always included the orthogonal pairs of galaxies, or, if not, we
corrected for the non-zero average ellipticity, as discussed later.
Two types of galaxies are included in the CSC branch: galaxies
with a bulge using a single Sérsic profile with a varying index
n; and galaxies with a bulge defined from a de Vaucouleurs pro-
file and an exponential disc. In Fig. 1, we show some examples
of images of both types of galaxies, with the exponential disc
(top two rows) and without the disc (middle two rows). As in the
GREAT3 CSC branch, we used 200 different shear values and
optical PSFs from a random distribution of values in a radius of
|g| < 0.05, each of them assigned to each image of 10 000 galax-
ies. Some examples of PSFs are shown in the bottom rows of
Fig. 1. The distribution of the galaxies’ morphological param-
eters (flux, bulge and disc profiles, radius, etc.) were obtained
from fits on real Hubble Space Telescope (HST) images from the
COSMOS F815W < 23.5 sample so that they represent a realis-
tic distribution. The orientation angle is set randomly, including
an orthogonal version of each galaxy, cancelling shape noise but
bringing a random distribution of orientation angles. The mean
and variance of background noise is also estimated from the real
images. More details on the parameters and characteristics of
the simulations are available in the GREAT3 Challenge Hand-
book (Mandelbaum et al. 2014), where the authors give a full
description of the fitting process and the properties of the galaxy
catalogue, the instrument parameters, and the image simulations.

Additionally, in order to study effects such as truncation,
miscentring, or PSF effects, we also generated simulations with
small variations with respect to the original ones correspond-
ing to the GREAT3 CSC branch described above. In particular,
we generated the following simulated images. On one side, we
forced all the images to be well centred in the stamps. As the
GFIT minimizer used allows for the possibility of leaving spe-
cific galaxy model parameters fixed while fitting, we used this
feature to fix the centre positions of the galaxies to the correct
ones in order to study miscentring. Comparing these simulations
with the previous ones, we can measure the effects of miscen-
tring on shear and ellipticity bias. Secondly, instead of using the
original PSFs from GREAT3 CSC, we used a Gaussian isotropic
PSF to generate the images. This allows us to evaluate the impact
of the PSF anisotropies on the bias measurements. Finally, we
generated other simulations where we reduced or increased the
variance of the images’ Gaussian noise. In particular, we gen-
erated simulations applying a factor of 4 or a factor of 1/4 to
the noise variance from GREAT3. We also repeated this for the
images with smaller pixels described above in order to see the
correlation between pixel size and noise on the effects of elliptic-
ity and shear bias. These additional image simulations are used
for Sect. 3.5, so the rest of the results are based on the fiducial
set of simulations.

2.2. Image processing

We used two different shape estimators to measure shear and
ellipticity. We then compared the different results to see how
much our study depends on the estimators used. Below we
describe the two estimators.

2.2.1. GFIT

The GFIT method (Gentile et al. 2012; Mandelbaum et al. 2015)
is a maximum-likelihood shape estimator. A forward model fit-

Fig. 1. Examples of galaxy and PSF images generated from Galsim.
Top two rows: examples of galaxies with a de Vaucouleurs bulge and an
exponential disc. Middle two rows: examples of galaxies with a single
Sérsic profile. In these two cases, we show galaxies of a variety of sizes
and in increasing order. Bottom two rows: examples of PSF images,
showing a wide range of complexities from simple and isotropic to com-
plex and anisotropic. The PSF images have been zoomed in for visual
reasons.

ting algorithm is used to minimize an χ2 between the simu-
lated patch and a parametric model generated using Galsim.
We chose to use the native minimization algorithm provided by
GFIT, which is based on cyclic coordinate descent.

The chosen model (the same one used in Mandelbaum et al.
2015) implements galaxy profiles as a weighted sum of an expo-
nential disc and a de Vaucouleurs bulge, with eight parame-
ters: centroid position, ellipticity, flux, flux ratio, and half-light
radius, each for bulge and disc. We ran SExtractor (Bertin &
Arnouts 1996) to initialize the centroid estimates. The method
estimates the ellipticity defined as:

ε = ε1 + iε2 =
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

, (1)

A164, page 3 of 11

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038657&pdf_id=1


A&A 641, A164 (2020)

with

Qi j =

∫
d2xI(x)W(x)xix j∫

d2xI(x)W(x)
, (2)

where I(x) is the surface brightness at the image position x and
W(x) is a weighting function used to suppress the noise contri-
bution at large scales. We note that Qi j is not used for the model
fitting method and that it is only introduced to define the ellip-
ticity parameters that are measured.

It is important to note that our simulations are built from
either a single Sérsic model or from the weighted sum of an
exponential and a de Vaucouleurs profile with different elliptic-
ity and orientation, contrary to the model used in the fitting. All
these factors can result in significant model bias in the estimation
of galaxy shapes.

2.2.2. shapelens

This public C++ library includes several modules to estimate the
shape of galaxy images. One of them is presented in Viola et al.
(2011) and is based on the KSB method (Kaiser et al. 1995).
This method estimates the shape from the surface-brightness
moments of the images according to the following definition of
ellipticity:

χ =
Q11 − Q22 + 2iQ12

Q11 + Q22
. (3)

Although the ellipticity definition from Eq. (1) is supposed to be
more precise, it is also noisier and, because of this, is not used for
the implementation of this model. We note that the two estima-
tors use different ellipticity definitions with a different ellipticity
modulus. The comparison between the two methods in the paper
shows how these different algorithms and definitions affect shear
bias when average measurements are made.

To compute these moments, the method uses an isotropic
weighting function, whose size depends on the estimation of
the galaxy size. Due to the isotropy of the weighting function,
this estimation produces a bias that increases with the elliptic-
ity. However, this effect can be corrected by considering the
higher order contributions that the weighting function makes
to the shape measurements, as discussed in Viola et al. (2011).
This correction can be directly implemented from shapelens.
From all the implementation modes available in shapelens, we
implemented the one that uses the trace of the first order cor-
rection (Eq. (33) from Viola et al. 2011), since it gives the best
results. Throughout the paper we refer to this implementation as
KSB.

By design, this estimator does not involve any analytic form
for the galaxy shape. However, the analysed pixels are weighted
with an isotropic Gaussian kernel from a pre-selected family of
size, which can also produce a model bias.

2.3. Bias measurement

We describe the relation between the observed ellipticities εobs
from our shape estimators and the true ellipticities ε (from both
intrinsic shape εint and shear g) as follows:

εi,obs = ai + (1 + bi)εi = ai + (1 + bi)(εi,int + gi), (4)

where i = 1, 2,+,×, and ai, bi are the additive and multiplicative
ellipticity bias parameters and describe the errors produced on
the estimation of the images’ shapes with respect to their true

shapes. We measured them from a linear fit to the scatter distri-
bution between (εi,int + gi) and εi,obs. The tangential and radial
components + and × refer to the alignment with respect to the
PSF.

As the mean intrinsic ellipticity of galaxy samples is zero
and its shear g is constant, we can describe the relation between
the mean observed ellipticity and shear as:

〈εi,obs〉 = gi,obs = ci + (1 + mi)gi, (5)

where i = 1, 2,+,×, and now ci,mi are the additive and multi-
plicative shear biases (see Huterer et al. 2006 and Heymans et al.
2006 for their Taylor expansion notation). Shear bias describes
the sensitivity of the shape estimators to small distortions with
respect to the intrinsic ellipticity. We note that ellipticity and
shear bias describe different errors and sensitivities produced in
the shape measurements, and thus their behaviours are not nec-
essarily similar.

We measured these parameters in two steps. First, we mea-
sured 〈εi,obs〉 and its error σ〈εi,obs〉 for each set of galaxies with the
same value of gi. Second, with these measurements we linearly
fitted gi,obs versus gi using 〈εi,obs〉 and weighted by 1/σ〈εi,obs〉, as
estimated in the first step. We calculated σ〈εi,obs〉 by performing a
jackknife (JK) method on 50 balanced subsamples. We checked
that the errors obtained when using more than 20 subsamples did
not depend on the number of subsamples used. We also checked
that the distribution of the results of the JK subsamples is consis-
tent with a Gaussian distribution and did not find outliers in these
distributions, which suggests that the error estimation used here
is sufficiently describing the scatter in the results. We excluded
from the analyses galaxies whose shape is wrongly estimated
(with a failed measurement or an ellipticity modulus larger than
1) as well as their orthogonal pairs. The final catalogue for the
two methods is slightly different because the rejected objects and
their numbers are not the same. This does not have a significant
impact on the results of the paper, with the exception of small
differences in the error bars.

Depending on the properties used to define our galaxy sam-
ples (in particular when using output properties), we find situa-
tions where the mean intrinsic ellipticity is not consistent with 0.
In these cases, the estimated parameters from these formulas are
very sensitive to the residual ellipticities. This can be taken into
account using the following estimators for c and m:

gi,obs = ci + (1 + mi)(〈εi,int〉 + gi) (6)

and then again computing the mean ellipticities over the different
values of gi. These formulas are the equivalent to Eq. (5) when
〈εi,int〉 = 0. When this was not the case, we used this formula in
order to compensate for the effects of the residual of gi,int on c
and m. We have found this to happen with a similar frequency
for both shape estimators.

3. Results

We studied the ellipticity and shear bias dependencies on all the
input properties available from the image catalogues generated
from Galsim (i.e. the grand-truth parameters that describe the
galaxies and characteristics of the simulated images) and on all
the output parameters obtained from both KSB and GFIT. We
noticed a few parameters that strongly impact the bias. More-
over, we find that ellipticity bias is sensitive to more proper-
ties than just shear bias. In this section, we focus on the main
properties that strongly impact ellipticity and shear bias. For
all the properties and bias measurements shown in the paper,
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Fig. 2. Multiplicative ellipticity bias (b1,2 from Eq. (4)) and shear bias (m1,2 from Eq. (5)) as a function of the input galaxy properties, such as bulge
size Rb (top left), disc-to-bulge flux ratio (top right), the difference between the disc and bulge orientation angles (bottom left), and disc axis ratio
q (bottom right) for galaxies with a disc and a bulge and for both models GFIT and KSB.

the applied bins are defined so that each bin contains the same
amount of galaxies, and the biases are shown as the mean of the
two components 1 and 2 unless specified.

3.1. Ellipticity bias versus shear bias

In Fig. 2, we show some examples of different behaviours
between ellipticity and shear bias. In many cases, shear bias
m is very different than ellipticity bias b; the difference comes
not only from the amplitude but also from the behaviour of the
dependencies of bias. These differences illustrate the different
concepts behind both biases mentioned in Sect. 2. A large ellip-
ticity bias does not imply a large shear bias because even if our
estimator does not correctly predict the ellipticity of an image,
it could still correctly capture small changes around this ellip-
ticity. We can see that b is generally significantly below 0, with
an average value of around −0.25 for the galaxies with a bulge
and a disc. On the other hand, m tends to be much more con-
sistent with 0, having an average value of approximately −0.05.
This indicates that, although we do not recover the correct indi-
vidual ellipticities of the galaxies when they have a bulge and
a disc (and thus have a large ellipticity bias), we still detect the
shear signal from shear (that is, we have a low shear bias). This
is consistent with previous analyses, which established that shear
bias has to be considered over sample statistics rather than from
the individual shape measurements, since individual ellipticities

(and their biases) are not meaningful for cosmological analysis
(Bernstein & Jarvis 2002; Bernstein & Armstrong 2014; Israel
& Moffat 2018; Fenech Conti et al. 2017; Huff & Mandelbaum
2017; Mandelbaum 2018). For this reason, we focus on shear
bias dependences in the rest of the paper.

We also note the consistency between the two KSB and
GFIT estimators. The agreement indicates that, at least at
the precision level of this study and for these image simula-
tions, both methods respond similarly to the simulated image
characteristics.

3.2. Shear bias dependencies on input parameters

In Figs. 3–5, we show the input properties on which we found
the strongest shear bias dependencies. Again, we note the good
agreement between both shear estimators, KSB and GFIT, given
the precision of the errors of our analysis; they show similar
behaviours for all the image characteristics (except for one case
that we mention later).

3.2.1. Effects of size, flux, and ellipticity

In Fig. 3, we show the shear bias dependencies on size and
flux. We note that in these cases the flux and size of the bulges
correspond to the total flux and size of the galaxies; however,
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Fig. 3. Multiplicative shear bias as a function of the input disc flux (top left) and size (top right) for galaxies with a disc and a bulge, and as a
function of bulge flux (bottom left) and size (bottom right) for galaxies with only a bulge. Green dashed lines show the results of the average m for
GFIT, and the orange solid lines show m for KSB.

the disc information from the top panels does not give all the
information about the size and flux of the object, since the bulge
can be significant in some cases.

We see that shear bias tends to increase with galaxy flux
and size. This indicates that the estimators give better results for
larger images, as expected, since the signal of the image is bet-
ter. Although the error bars are large, we can see a difference of
around 0.1−0.15 on the bias from the first to the last bins. In the
case of galaxies without discs, shear bias is consistent with 0 for
bright and large galaxies.

3.2.2. Effects of orientation and shape

In Fig. 4, we focus on the parameters related to the image ori-
entation and we show the shear bias as a function of the bulge
orientation angle βb for galaxies with only a bulge, that is the
global orientation of these images (top panel), the disc orienta-
tion angle βd of the galaxies with a disc and a bulge (middle
panel), and βb for the same galaxies (bottom panel).

We see the same effect on m in all the cases, although with
different amplitudes, and m1 and m2 show antisymmetric depen-
dencies. While m1 increases (it has a positive slope) with β, m2
decreases with a similar amplitude. The dependencies are sym-
metric with respect to 45 degrees; this is the reason why we only
show the range from 0 to 45 degrees. In order to have a zero

mean ellipticity in all the bins, we included the orthogonal pairs
of the galaxies in each bin so that the bins that have galaxies with
orientation angle β also include galaxies with orientation β+90◦.

The fact that the dependence is weaker for the galaxies with
a disc and a bulge (middle and bottom panels) is expected, since
the orientation angle of the two components can be different and
hence the global orientation is less clear. This is because the
disc and bulge parameters are fitted independently, forcing them
to have the same centroid but allowing the orientation angle to
be different. The half-light radius of the bulge is forced to be
smaller than that of the radius, and the bulge-to-total flux ratio
is constrained to be between 0.1 and 0.9 (otherwise a single Sér-
sic profile is fitted). As a result of this, galaxies with the two
components have a wide range of bulge-to-disc radii and fluxes
with non-negligible differences between the disc and bulge ori-
entation angles. The fact that the weakest dependence is for the
orientation angle of the bulge (bottom panel) suggests that the
disc contribution to the global galaxy orientation is higher than
the bulge contribution.

The shear bias seen in this figure can be explained from pix-
elization effects, since the bias is correlated with the pixel direc-
tions. Due to the direction of the pixels and its discretization,
galaxies aligned with the pixels (represented in the first bins) will
affect the flux of the nearby pixels less if the image is sheared
towards its direction than if the shear causes a rotation of the
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Fig. 4. Multiplicative shear bias as a function of the input orientation
angle for galaxies with only a bulge (top), and as a function of the
disc (middle) and bulge (bottom) orientations for galaxies with a bulge
and a disc. Green lines show the results of m1 (dashed) and m2 (dot-
ted) for GFIT, and orange lines show m1 (solid) and m2 (dash-dotted)
for KSB.

image, and hence m1 will be more negative than m2. Exactly the
opposite happens when the images are oriented to the diagonal
of the pixels (shown in the last bins), where small distortions
of the image towards the diagonal of the pixels will impact the
closest pixels less than small rotations. We find that the ampli-
tude of the effect decreases with the size of the galaxy images,

Fig. 5. Multiplicative shear bias as a function of the input Sérsic index
n for galaxies with only a bulge (top), and as a function of the modulus
of the intrinsic ellipticity |ε | for galaxies with only a bulge (middle) and
with a bulge and a disc (bottom). Green dashed lines show the results of
m for GFIT, and orange solid lines show m for KSB.

since in this case the proportion between the galaxy and the pixel
size is larger. In particular, with the pixel scale and noise level
corresponding to the GREAT3 images, we find that for galaxies
with a disc half-light radius smaller than 0.1, the amplitude of
the effect is approximately 20%, while for galaxies larger than a
half-light radius of 0.4, the amplitude is approximately 10%.
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Analysing shear bias dependencies on orientation angles has
not been a priority for weak lensing studies because galaxy
samples are never selected based on galaxy ellipticities. How-
ever, galaxy orientation can be important when the alignment of
galaxies with the PSF or pixel grid has an effect on the selec-
tion and shear bias of the sample. The shear bias dependences
on orientation need to be well understood for a better shear bias
calibration. For this reason, in Paper II we incorporate the orien-
tation angle as input data for the machine learning algorithm to
improve the characterization and calibration of shear bias.

3.2.3. Model bias

In this subsection, we show an example of model bias found in
the study. We have already seen that model bias affects the two
simulated galaxy populations differently: m is in general consis-
tent with 0 for galaxies without a disc but approximately −0.05
for galaxies with a disc. Although this is not a rigourous estimate
of the impact of model bias on these shape estimators, it gives
us an idea of how much different galaxy profiles can affect the
shear estimation for these two estimators.

Another model bias example is shown in the top panel of
Fig. 5, where we show the dependence of shear bias on the Sérsic
index n for the galaxies with only a bulge. We have used the whole
range of Sérsic index values, 0.1 < n < 6, and distributed them
into equally dense bins. The bins are located in the mean values
of n for each bin. Bias increases up to a 10% bias for high Sérsic
index. This effect can come from two contributions. On one side,
our fitted models do not include arbitrary Sérsic profiles, and this
can cause a model bias. On the other hand, a large Sérsic index
n corresponds to a steep decrease in luminosity, which makes the
luminosity of these galaxies concentrated in the centre. Hence,
these galaxies can be detected as small, occupying few pixels,
which makes the estimation of the ellipticity and the interpretation
of small distortions difficult. Kacprzak et al. (2014) also studied
the shear bias dependence on the Sérsic index, finding opposite
trends (increasing with n instead of decreasing). In their case they
used an MLE with a different galaxy model than in GFIT; there-
fore, the difference between Kacprzak et al. (2014) and our results
shows how sensitive the trend can be to different assumptions in
the models used.

3.3. Bias dependencies on output parameters

In the previous sections, we explored the bias dependencies on
input properties. The advantage of using the input properties to
study shear bias is that we know precisely the relation between
the images and these properties, but it has the handicap that they
cannot be observed. On the other hand, measured properties are
the information we can obtain from observations, which can then
be used for calibration.

In Fig. 6, we show shear bias as a function of the mea-
sured ellipticity (top left) and the orientation angle (top right)
for galaxies with a bulge and a disc. We see very similar depen-
dencies for both shear estimators. In the bottom panels, we show
the dependence of m1 (left) and m2 (right) as a function of both
the measured ellipticity and the measured orientation angle for
the galaxies with only a bulge for KSB.

We see that m depends strongly on the measured modulus
of the ellipticity, |εout|, showing large biases for measured round
objects that can be explained by the difficulties of defining the
ellipticity of round objects. However, small and dim galaxies are
also difficult to measured correctly since they are more affected

by noise and pixelization, being frequently but wrongly esti-
mated as round. We also see a strong bias for the components
that have been measured to be very small, so we see strong bias
m1 for galaxies with β ∼ 45◦ and a strong bias m2 for galax-
ies with β ∼ 0◦. Finally, in the bottom panels we see that shear
bias depends on both properties at the same time, and we can-
not determine the shear bias of the galaxies if we only take into
account one of the properties.

We find that noise is the main cause of these dependencies.
To test this, we measured these bias dependencies by repeating
the same analysis with the same images but generated with dif-
ferent levels of noise (changing the noise level by factors of 1/4
and 4). Here we only describe the results for KSB, but the results
are equivalent for GFIT. In Fig. 7, we illustrate the impact of
noise on the measured parameters q (the axis ratio) and β. We
clearly see that noise has a strong impact on the shear bias of
measured round objects. This is because, especially for small
galaxies, noise contributes to the image with no correlated direc-
tions, so that galaxies will tend to be measured as rounder if the
noise is strong enough. The bias for different orientations comes
from the fact that small galaxies are more strongly affected by
noise and pixelization. These results agree with Refregier et al.
(2012) on the fact that noise bias affects galaxies with different
ellipticity and morphologies differently.

3.4. Differences between the shape estimators

In the middle and bottom panels of Fig. 5, we show the only
significant difference found between KSB and GFIT given our
set of simulations and the precision of the analysis. This shows
shear bias as a function of the modulus of the intrinsic ellip-
ticity. While GFIT does not show a strong bias dependence on
this property (especially for galaxies without a disc), KSB shows
a strong effect. This dependence from KSB comes from the
isotropic window function used in the method, as discussed in
Viola et al. (2011). However, in their study they show that dif-
ferent implementations of KSB can produce different amplitudes
of the bias as a function of the intrinsic ellipticity, and they pro-
pose different approximations to correct for it. In our study, we
applied the implementation that showed the smallest bias depen-
dence on ellipticity from those available in the public shape-
lens repository.

It is not surprising that the different radial weightings of
the methods give different shear bias results, as also stated in
Bernstein & Jarvis (2002) and Mandelbaum (2018). On the other
hand, we have seen throughout our study that, apart from this
case, most of the results are consistent between both estimators.
This means that (almost) all the sources of bias found in this
study do not come from the algorithm to estimate the shear, but
from the image characteristics.

3.5. Other tests and results

In the previous sections, we show the most important bias depen-
dences found from this study. Here we discuss some other tests
where we do not see a strong impact on ellipticity or shear bias
but are nevertheless worth mentioning.

First, we find additive bias to be weakly dependent on most
of the properties, always being significantly smaller than multi-
plicative bias. Because of this, we only focus on multiplicative
bias in this work.

Second, we repeated the study from the simulated images;
this time, we forced them to be centred in the stamps. In this
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Fig. 6. Multiplicative shear bias as a function of the modulus of the observed ellipticity (top left panel) and the observed orientation angle (top
right panel) for galaxies with a disc and a bulge. Green lines show the results of m1 (dash-dotted), m2 (dotted), and the mean m (dashed) for GFIT,
and orange lines show m1 (dash-dotted), m2 (dotted), and the mean m (solid) for KSB. Bottom panels: m1 (left) and m2 (right) represented by the
colour code as a function of observed ellipticity and orientation for galaxies with a single bulge for KSB. The point sizes are inversely proportional
to the error on m1,2 so that large points are more significant.

case, we ran GFIT but kept the parameters of the centre posi-
tions fixed to the correct ones in the fitting process. We compared
these results with the original case in order to see the impact of
miscentring in this method and these images. We do not find
significant differences in the multiplicative bias, and for this rea-
son we do not show the results in the paper. We find a small
improvement on the amplitude of the additive bias, which makes
it consistent with KSB, indicating that KSB is not affected by the
miscentring like GFIT is. We also studied the + and × compo-
nents of shear and ellipticity bias, but we find consistent results
with respect to the 1 and 2 components (except, as expected, for
the properties related to orientation, where the + and × compo-
nents are uncorrelated with the pixel directions).

Finally, we studied the effect of the PSF by repeating the
same test from the same images but applying an isotropic Gaus-
sian PSF. The bias dependencies found are the same in both
cases, and the PSF anisotropies only affect the error bars of our
measurements. This result can be expected from the fact that
we used the knowledge of the PSF for the shape estimation in
both methods; therefore, this test does not reflect the errors of
the methods originating from untracked PSF errors and their
anisotropy.

3.6. Comparison with existing literature

Some of the results from this paper confirm previous analyses.
In addition, we find new dependencies of shear bias that, to our

knowledge, have not been studied before or to which existing
work cannot be directly compared. In this section, we specify
the main similarities and differences with respect to existing lit-
erature as well as the new results shown in this paper.

Many studies have analysed the average shear bias over an
ensemble of galaxies with different properties with a focus on
comparing different shear estimators, such as the STEP and
GREAT challenges (Heymans et al. 2006; Bridle et al. 2009;
Kitching et al. 2012; Mandelbaum et al. 2015). In those analy-
ses, different estimators showed different results, up to a 5−10%
multiplicative bias for most of the methods. Although the com-
parison with our case is non-trivial due to the differences in
the estimators and the image properties used, our results seem
consistent with those previous results. In particular, both esti-
mators, GFIT and KSB, have an average bias of ∼5%, which
was expected from the results from the GREAT3 CSC branch
(see Fig. 17 and Table D2 of Mandelbaum et al. 2015). The
negative sign and magnitude of the KSB bias is in agreement
with Hoekstra et al. (2017), who show a negative multiplica-
tive bias of 2−6% throughout their analysis. The 5% bias for the
KSB method is also consistent with the KSB performance in the
GREAT10 challenge (Kitching et al. 2012). The GFIT method
shows a different performance in that study compared to ours,
but the comparison is misleading since in GREAT10 GFIT was
sensitive to a truncation effect that we avoided by using larger
postage stamps. We find that shear bias decreases with the size
and flux of the galaxies, going from a 10% bias for dim and small
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Fig. 7. Multiplicative shear bias as a function of the observed axis ratio
(top) and orientation angle (bottom) using three different realizations
with different noise variances. The green lines show the results for the
original case, while in the cyan (black) lines show the results for the
cases where we increased (decreased) the noise variance by a factor of
4. The results are only shown for KSB, but we obtained very similar
results for GFIT.

objects to almost no bias for the largest (brightest) ones. These
results are consistent with previous studies (Massey et al. 2007a;
Hoekstra et al. 2015), although the amplitudes of the effects can
vary because of the differences in the estimators and the charac-
teristics of the image simulations.

Most of the previous studies either focus on one estimator
and explore the shear bias dependencies on input properties, or
compare different estimators of the average shear bias over all
galaxy images. Here, we compare two common but different
estimators analysing, at the same time, the shear bias depen-
dences on both input and measured parameters. One of the inter-
esting results from this paper is the fact that both GFIT and KSB
give (with a few expected exceptions) very consistent results
on most of the property dependencies. This is not necessarily
expected given the different nature of both estimators (MLE ver-
sus moment-based). We have shown the bias dependence on the
Sérsic index n, showing different trends than in Kacprzak et al.
(2014). In that paper, the authors used an MLE but assumed a dif-
ferent model (single Sérsic) than GFIT. These comparisons show
how sensitive the assumed model is to the shear bias depen-
dence on n. We show, for the first time, the orientation angle
dependence of shear bias, giving antisymmetric dependencies
for m1 and m2. This has not been explored in previous analyses,

although Kacprzak et al. (2012) show an indication of ellipticity
bias that changes with the orientation angle in their Fig. A1. We
checked that we obtained a similar behaviour for the ellipticity
bias. Finally, most of the studies show the bias dependencies as
a function of input parameters, while they can never be obtained
for real images. Moreover, measured and input properties can
show very different biases. In this paper, we show the different
behaviour between input and measured morphology. In Figs. 6
and 7, we show the shear bias dependencies on measured ellip-
ticity and orientation angle at the same time, together with the
impact of noise.

4. Conclusions

In this study we explored the dependencies of ellipticity and
shear bias on input properties of simulated galaxy images, out-
put properties, and the impact of noise, pixelization, and PSF
anisotropy for two different shape estimators. We used Galsim
to simulate the images of galaxies from the GREAT3 CSC
(Mandelbaum et al. 2014) parameters, and we compared
the ellipticity and shear bias obtained from the MLE GFIT
(Gentile et al. 2012; Mandelbaum et al. 2015) and the moment-
based KSB method, which is available from the public software
shapelens (Viola et al. 2011). In order to study the effects of
pixelization, noise, and PSF anisotropy, we repeated the analysis
with some variations from the original simulated images, where
we tested different levels of noise variance and an isotropic
Gaussian PSF. In this paper, we focused on multiplicative bias
since, given the precision of the analysis, we do not find impor-
tant dependencies on additive bias. Here we discuss the most
important conclusions from our study.

First, we find a good agreement between the FFIT and KSB
shape estimators. Given the differences in the nature of these two
estimators, this suggests that most of the dependencies found in
this paper can be common for all image characteristics and for
many shape estimators based on moments or model fitting.

Second, we show that ellipticity bias and shear bias present
very different behaviours since they reflect the different sensitiv-
ities of the shape estimators. These differences agree with pre-
vious studies and show the importance of studying the average
shear bias and not the per-galaxy ellipticity bias for cosmologi-
cal analysis.

Finally, we studied the dependencies of bias on all input and
output properties, and we determined the ones to which bias is
most sensitive. We find three types of dependencies:

– Size and shape dependency: Shear and ellipticity bias
depends on the properties related to the dimensions of the
galaxy image, such as the bulge and disc fluxes and sizes.
Bias is larger for small objects since their shape is more
difficult to measure. Round galaxies also show large ellip-
ticity biases because the measurement of the ellipticity is
strongly affected by pixelization and noise. Elliptical and
large images are less sensitive to these aspects and thus show
a smaller bias.

– Orientation dependence: Shear bias depends strongly on ori-
entation, with asymmetric dependencies for m1 and m2. This
is due to pixelization effects that make the estimation of
the ellipticity more sensitive to small rotations than to small
elongations along the pixel directions.

– Model bias: Shear bias is larger for galaxies containing
a bulge and a disc than for galaxies consisting of only a
bulge. We also find a strong dependence of shear bias on the
Sérsic index n. Even though the KSB and GFIT use different
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assumptions or treatments regarding the luminosity profile of
the images, the model bias for these galaxies is similar.

We find that the bias as a function of measured ellipticity and
orientation is strongly affected by noise. This is because galax-
ies that are strongly affected by noise can be systematically inter-
preted to have the same properties even if their input properties
are different.

The results and conclusions of this paper are limited to the
accuracy that we can reach with the simulation images used.
More optimal approaches to estimate shear bias (Pujol et al.
2019) or using a larger set of images would help to improve the
analysis and potentially find other smaller dependencies or dif-
ferences between the estimators. However, this study has been
useful to identify the main causes of shear bias and the properties
on which bias is most dependent. We also highlight the complex-
ity of these dependencies, the impact of the coupling between
different properties on shear bias, and the need to study several
properties simultaneously in order to have a better understanding
of the nature of shear bias. This strongly motivates us to develop
a machine learning tool to characterize shear bias that simultane-
ously takes many properties and dependencies into account for a
more precise calibration approach. This new method is presented
in detail in Paper II (Pujol et al. 2020).
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