
Available online at www.sciencedirect.com
www.elsevier.com/locate/solener

Solar Energy 86 (2012) 2001–2016
Global approach test improvement using a neural network
model identification to characterise solar combisystem performances

Antoine Leconte a,b,⇑, Gilbert Achard a, Philippe Papillon b

a LOCIE, CNRS FRE3220, Université de Savoie, Polytech’Annecy-Chambery, 73376 Le Bourget du Lac, France
b CEA LITEN INES, BP 332, 50 avenue du Lac Léman, 73377 Le Bourget du Lac, France
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Abstract

Solar CombiSystems (SCSs) are very efficient systems for reducing conventional energy consumption of building but their thermal
performances are strongly dependent on the environment where they are installed (type of climate and thermal quality of the building).
Currently it is impossible to predict the energy savings generated by a SCS as there is no standard test to characterise SCS performances.

Currently, the Short Cycle System Performance Test (SCSPT), based on a 12 days test of the complete SCS on a semi-virtual test
bench, is able to predict annual energy savings with a good accuracy, but the performance prediction is limited to only one environment
(the building and the climate corresponding with the test).

Based on the SCSPT procedure, this paper proposes an improvement of the method by identifying a global SCS model from the test
data. Then, the identified model would be able to simulate the tested SCS in any environment and thus to characterise its performances.

The proposed model to identify is a “grey box” model, mixing a “White Box” model composed of known physical equations and a
“Black Box” model, which is an Artificial Neural Network (ANN). A complete process is developed to train and select a relevant global
SCS model from such a test.

This approach has been validated through numerical simulations of three detailed SCS models. Compared to those annual results,
“Grey Box” SCS models trained from a twelve days sequence are able to predict energy consumption with a good accuracy for 27 dif-
ferent environments. An experimental application of this procedure has been used to characterise a real system.
� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Solar combisystems are complex solar thermal systems
that provide energy for Domestic Hot Water (DHW) prep-
aration and space heating. Solar energy and auxiliary
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energy are managed in such a way that the thermal loads
are covered to fulfil the comfort requirements of the user,
but also to save as much as possible auxiliary energy. Each
combisystem has its own feature concerning, for example,
controller algorithm, hydraulic loops and storage design.

Nowadays, some combisystems can be very efficient and
cover up to nearly 50% of the total heat demand with solar
energy gains (Letz, 2006). However, such good results are
met in very special cases because combisystem perfor-
mances are very sensitive to climatic conditions and
energetic quality of buildings. Besides, it is not unusual
to see even poor design or installation mistakes making a
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Nomenclature

Variables and parameters in the collector model

Acoll collector area (m2)
c1 heat loss coefficient at (Tm � Ta) = 0

(W m�2 K�1)
c2 temperature dependence of the heat loss coeffi-

cient (W m�2 K�2)
c3 wind speed dependence of the heat loss coeffi-

cient (J m�3 K�1)
c4 sky temperature dependence of the heat loss

coefficient (–)
c5 effective thermal capacity (J m�2 K�1)
c6 wind dependence in the zero loss efficiency (s m�1)
EL longwave irradiance (k > 3 lm) (W m�2)
F0 collector efficiency factor (–)
G total solar irradiance on the collector plane

(W m�2)
Gb beam solar irradiance on the collector plane

(W m�2)
Gd diffuse solar irradiance on the collector plane

(W m�2)
Khb incidence angle modifier (–)
Khd incidence angle modifier for diffuse radiation (–)
_Qcoll heat flow rate supplied by the collector (W)
_Qsol;net net solar energy available at the bounds of the

collector (W m�2)
_Qsol;ref reference solar irradiation (W)
Ta ambient temperature (�C)
Tcoll mean temperature of the collector (�C)
v collector surrounding air speed (ms�1)
h angle of incidence (�)
r Stephan–Boltzman constant (W m�2 K�4)
(sa)en effective transmittance-absorptance product for

direct solar radiation at normal incidence (–)

Variables and parameters in the radiator model

Cem heat emitter effective heat capacity (W h K�1)
K heat emitter characteristic coefficient (W K�n)
n heat emitter characteristic exponent (–)
_Qem heat flow rate supplied for the heat emitter (W)
Tem mean temperature of the heat emitter (�C)

Variables and parameters in the building model
_Qd standard heat load at design outdoor tempera-

ture for chosen location (W)
Ta,d ambient design temperature of heating system at

chosen location (�C)
Troom mean temperature of the room air (�C)
Tset,room room setpoint temperature (�C)

Variables and parameters in the store model
Csto storage tank effective heat capacity (W h K�1)
_Qaux;sto heat flow rate supplied by the auxiliary heater,

at the bounds of the storage tank (W)

_Qdhw heat flow rate supplied for the DHW demand
(W)

_Qdhw;sto heat flow rate supplied for the DHW demand, at
the bounds of the storage tank (W)

_Qcoll;sto Heat flow rate supplied by the collector, at the
bounds of the storage tank (W)

_Qem;sto heat flow rate supplied for the heat emitter, at
the bounds of the storage tank (W)

Ta,sto temperature of the air surrounding the storage
(�C)

Ttap temperature of water at input of tap water net
(�C)

Tsto mean temperature of the storage tank (�C)
Tset,dhw DHW setpoint temperature (�C)
(UA)aux,loop,hot heat loss capacity rate of auxiliary loop

hot side (W K�1)
(UA)aux,loop,cold heat loss capacity rate of auxiliary loop

cold side (W K�1)
(UA)coll,loop,hot heat loss capacity rate of collector loop

hot side (W K�1)
(UA)coll,loop,cold heat loss capacity rate of collector loop

cold side (W K�1)
(UA)dhw,loop,hot heat loss capacity rate of DHW loop

hot side (W K�1)
(UA)dhw,loop,cold heat loss capacity rate of DHW loop

cold side (W K�1)
(UA)em,loop,hot heat loss capacity rate of heat emitter

loop hot side (W K�1)
(UA)em,loop,cold heat loss capacity rate of heat emitter

loop cold side (W K�1)
(UA)sto heat loss capacity rate of the storage tank

(W K�1)

Variables and parameters in the auxiliary boiler model
aaux boiler performance coefficient (W�1)
baux boiler performance coefficient (–)
caux boiler performance coefficient (W)
_Qaux power consumed by the auxiliary heater (W)
_Qaux;nom auxiliary heater nominal power (W)
_Qaux;out heat flow rate supplied by the auxiliary heater

(W)
Tset,boil set outlet temperature of auxiliary boiler (�C)

Symbols in system identification

H Heissian matrix of the cost function
J cost function
Ni number inputs
Nn number of neurones
Nn,max maximum number of neurones
No number of outputs
Ntp number of training patterns
Nsw number of synaptic weights
u input vector of system
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Fig. 1. Picture of a tested SCS on the semi-virtual test bench at INES.

w synaptic weight
x state vector of system
y output vector of system

~y predicted output vector of system
l learning rate of the training algorithm
t input of the activation function
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combisystem behave differently as it is supposed to (Thür,
2011). Performances can be reduced significantly in this
way. Therefore, it would be important to have an idea of
the performance expected before choosing a solar combi-
system and installing it in a building.

Nevertheless, there is no test to characterise combisys-
tems currently. Due to the large variety of energy manage-
ment strategies and their sensitivity to external conditions,
it is difficult to predict combisystem thermal performance
in a reliable and complete way. Some test methods have been
developed. They can be classified in two categories, depend-
ing on their approach to evaluate primary energy savings:

1.1. Component approach

Component approach method, like the “Component
Testing – System Simulation” (CTSS) (Albaric et al.,
2010; Drück and Bachmann, 2002), consists in testing the
main components of solar combisystem (heat store, con-
trollers, and collector) according to existing standard tests.
Parameters of each component are identified and then used
within thermal simulation software like TRNSYS (Klein
et al., 1994).

This approach is very flexible as it is possible to test
nearly every system configuration and to evaluate perfor-
mances for different climatic conditions and different kinds
of buildings, through several annual simulations.

On the other hand, it is not possible to check real system
controls and interactions between components since they
are only simulated. Design mistakes and installation diffi-
culties can pass through this kind of test.

1.2. Global approach

Global approach method, like the “Annual Calculation
and/or Direct Characterisation” (Bales, 2002), the “Con-
cise Cycle Test” (Vogelsanger, 2002) and the “Short Cycle
System Performance Test” (SCSPT) (Albaric et al., 2008),
consists in testing each combisystem as a whole. The com-
plete system is set up in an indoor test facility (except the
collectors). Charging and discharging of the system are
done according to a test sequence, peculiar to each method.
For SCSPT method, the annual performance is derived
from a simple extrapolation of the auxiliary energy con-
sumed during the procedure.

This kind of approach ensures that all system functions
and interactions are taken into account during the test.
Furthermore, the time needed with this approach is quite
short. The longer test sequence is 12 days long.

However, in this way, results are available to only one
fixed set of conditions, according to the heating load, the
climatic conditions and the system sizing (especially collec-
tor area) during the test.

The objective of the work presented in this paper is to
further develop one of the global approach methods, the
SCSPT. The improvement proposed here tries to get
through the limitation of the global approach results in
order to have a complete methodology to characterise com-
bisystem thermal performance.
2. The current SCSPT procedure

The new methodology proposed in this paper is based
on the SCSPT that has been developed at INES, the
French National Institute for Solar Energy (Albaric et al.,
2008, 2010). As a global approach method, the SCSPT first
consists in installing the entire tested system on the semi-
virtual test bench.
2.1. The semi-virtual test bench

The semi-virtual test bench located in the INES facilities
(Fig. 1) makes possible to test any thermal system or
process, confronting it with a virtual environment. In the
case of solar combisystem, all the components of the tested
system (store(s), controller(s), pump(s), valve(s), sensor(s)
and auxiliary energy device(s), if needed) are installed on
the test bench as they are usually in a building. Weather
variables, collectors, DHW draw-offs, heat emitter and
building are simulated, in real time, within the TRNSYS
software (Klein et al., 1994).

Communication between the real system and the virtual
environment is done thanks to hydraulic modules. Modules
are plugged in a hot water (180 �C) and a cold water



Fig. 2. Data recorded and exchanged between the real SCS and the emulated environment during a test on the semi-virtual test bench at INES.
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(�10 �C) network, supplied by a central heating room.
Thus, by means of heat exchangers, each module can pro-
duce or consume heat quickly from a secondary fluid when
they are ordered to.

Each loop of the combisystem (mainly DHW, space
heating and collector loops) is connected to a module. At
every time step (1 min), modules record the temperature
and the flow rate of incoming fluids and send these mea-
surements to the monitoring computer. Those measure-
ments are used as inputs to the TRNSYS simulation
software. Then, according to the outputs of the TRNSYS
calculation, fluid temperatures at the outlet of the modules
are adjusted. This way, each module emulates every virtual
component simulated by the software. Data exchanges are
represented in Fig. 2.
2.2. The SCSPT virtual environment and the weather test

sequence generation

The SCSPT has created a virtual environment to evalu-
ate performance of combisystem with a 12 days test on the
semi-virtual bench. The objective of the method is that the
tested system use proportionately the same auxiliary energy
during the test sequence (Q12d,aux), as it would use during a
complete year with the selected building and climate condi-
tions (Qy,aux). So, the auxiliary energy annual consumption
is evaluated by a simple extrapolation, as described by the
following equation.
Qy;aux ¼
365

12
� Q12d;aux ð1Þ

The virtual environment is made up of the building
model defined in the IEA Solar Heating and Cooling pro-
gramme Task 32 (Heimrath and Haller, 2007), a standard
DHW draw offs profile and a specific 12 days weather data
sequence selected from the annual weather data thanks to
an optimisation algorithm.

The process for the selection of the weather data
sequence is presented in (Albaric et al., 2008) and is the
special feature of the SCSPT. It is based on TRNSYS sim-
ulations of the reference combisystem modelled within
IEA-SHC Task 32 (Heimrath and Haller, 2007). The algo-
rithm selects 12 days from the annual weather data file so
that the two following criteria, internal storage energy
and space heating demand, have the same evolution day-
by-day during the test sequence as month-by-month during
the annual sequence.

Once generated for a climate, the same weather data
sequence is used to test any combisystem. The performance
evaluation is available for the corresponding climate and
the selected building model.
2.3. Validation of the SCSPT

The SCSPT approach has been tested within a French
project and a European project Combisol (http://
www.combisol.eu) for various combisystems available on

http://www.combisol.eu
http://www.combisol.eu
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the market. The method has been especially studied in
(Mette et al., 2010). To sum things up:

– Weather data selection relevancy has been validated
through numerous TRNSYS simulations;

– Experimental results are close to CTSS results, when this
one is adjusted, considering pipe heat losses and control-
ler defaults;

– Performance evaluations for three tested combisystems
are consistent with on-site monitoring results.

However, it seems impossible to characterise thermal
performances of combisystems with the current SCSPT
procedure. This paper proposes an extension of the SCSPT
procedure to make it able to evaluate thermal perfor-
mances of combisystems for other boundary conditions.
The improvement relies on global model identification,
analysing completely data recorded during the SCSPT test.
3. Improvement of the procedure with global model

identification

The objective is to develop a procedure which is able to
learn the behaviour of the tested combisystem from a
12 days test. Considering energy fluxes and temperatures
as inputs and outputs of the system, a global model could
be identified from an analysis of the test data. Such a model
could be used to simulate the combisystem with various
boundary conditions and then to evaluate its thermal per-
formance whatever the conditions.
3.1. The SCS global model

The proposed model is represented in Fig. 3. It is mainly
composed of one linear dynamic model with known equa-
tions (“White Box”), which estimates the states of the sys-
tem for the next time step, and one non-linear static model
to identify (“Black Box”), which represents the real specific
Fig. 3. The proposed globa
behaviour of each system. More explanations are given
below.

3.1.1. Inputs and outputs of the global model

The global model must evaluate the energy flows
involved in a combisystem according to weather and load
conditions. Therefore, inputs and outputs are defined as
follows:

– Inputs are defined as external variables, i.e. all the vari-
ables that are not controlled by the system. Those are
climate variables like ambient temperature and solar
irradiations, and DHW loads data like cold-water tem-
perature and DHW draw-offs.

– Outputs are defined as energy flows controlled by the
system: on the one hand, heat supplied to space heating
loop and DHW draw-offs; and on the other hand,
energy supplied by the collector and the auxiliary
energy. In this work, the auxiliary energy system is con-
sidered as part of the combisystem. Therefore, the
energy used by auxiliary system is considered as an out-
put of the model.

This set of variables is also chosen to represent combi-
system behaviour as simply as possible, to help the model
identification.

3.1.2. Dynamical model representation
One interesting representation of dynamical model in

this case is the state space model. The general form of a state
space model can be described by the following equation.

_x ¼ gðx; uÞ
y ¼ hðx; uÞ

�
ð2Þ

where y and u are respectively outputs and inputs vectors
of the model. x is the state vector of the model. g and h

are two functions, linear or not.
Analogy between this representation and the real func-

tioning of solar combisystem has inspired the structure of
l SCS model structure.
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the proposed model. Usually, heat flows are controlled
depending on the temperature of various components part
of the combisystem (collector, store, heat emitter, building
rooms). They provide information about the energy
needed, stored and available. Therefore, it seems relevant
to consider those temperatures as the state of the system.
It is even more interesting to use these temperatures as they
can be estimated with well-known and simplified equations.
The g function can so be expressed as a “White Box”

model. The real special feature of each system to be tested
by the SCSPT is how it manages energy according to exter-
nal variables and its own states. The h function, identified
from the test data analysis, is so a “Black Box” model.
Observing most system controlling, it can be stated that
the h function is non-linear. The whole model is a “Grey
Box” model.

3.1.3. The white box part

The “White Box” part aims to evaluate mean tempera-
ture of the collector, the store, the heat emitter and the room
of the building, from one time step to the next one. This
must be done only with the set of variables presented in Sec-
tion 3.1.1 and with standard parameters as far as possible.

The “White box” part presented below is the one cur-
rently used. Nevertheless, it is possible to envisage other
models, as long as no other variable is required to provide
evaluations of the temperatures needed.

For numerical computing, all equations described in
Section 3.1.3.1 are calculated with an explicit discretization
scheme and a 30 min time step.

3.1.3.1. Collector model. Eqs. (3) and (4) represent the
model used to evaluate the mean temperature of the collec-
tor. It is described in Perers (1997). This model is based on
the well-known “Hottel–Whillier–Bliss” equation for flat
plate solar collectors that is adapted to characterise almost
every kind of collectors, except ICS collectors. It has been
widely used for simulation (Perers and Bales, 2002) and
standards (EN 12975-2, 2006; ASHRAE 93-86, 1986).

c5

dT coll

dt
¼ _Qsol;net �

_Qcoll

Acoll

ð3Þ

_Qsol;net ¼ F 0ðsaÞenðKhbðhÞ � Gb þ Khd � GdÞ � c6vG

� c1ðT coll � T aÞ � c2ðT coll � T aÞ2 � c3vðT coll

� T aÞ þ c4ðEL � rT 4
aÞ ð4Þ
3.1.3.2. Heat emitter model. So far, tested combisystems
have been designed to work with radiators. This part of
the model must be adapted to be used with systems work-
ing with heating floor.

The radiator model used to evaluate the mean tempera-
ture of the heat emitter is based on standard parameters,
calculated with (EN 442-2, 1996). A thermal capacitance
has been added to take into account the dynamic
behaviour:
Cem

dT em

dt
¼ �KðT em � T roomÞn þ _Qem ð5Þ
3.1.3.3. Building model. The building model used is the one
defined in the international standard (ISO 13790:2008(E),
2008). Every heat transfer coefficients and the internal
capacity can be calculated out of architectural and physical
parameters of the building. The complete set of equation is
not described in this paper but it can be found in the men-
tioned standard. Parameters of this model have been calcu-
lated and tuned in order to have similar results as the
reference building described in IEA SHC Task32 (Heim-
rath and Haller, 2007): SFH30, SFH60 and SFH100 (i.e.
single family house with space heating loads respectively
of 30 kW h m�2, 60 kW h m�2 and 100 kW h m�2 over a
year for the Zurich climate).

3.1.3.4. Store model. As the store is one of the central com-
ponents of a combisystem, this part is not modelled during
the SCSPT, unlike the other components presented in the
above sections.

The goal of this model is to provide information about
the energy stored in the tank. Given that only few variables
and parameters are available, equations come down to a
simple energy balance, completed by a heat capacitance
and heat loss parameters:

Csto

dT sto

dt
¼ _Qaux;sto þ _Qcoll;sto � _Qem;sto � _Qdhw;sto

� ðUAÞstoðT sto � T amb;stoÞ ð6Þ

In this equation, heat flows take into account heat losses
of pipes. Only gross estimations of the heat losses can be
done for each loop with the variables available. They con-
sider both hot and cold side of each loop, giving them a
heat loss coefficient and a representative temperature.
Losses are cancelled when no heat is delivered through
pipes.

_Qaux;sto ¼ _Qaux;out � ðUAÞaux;loop;hotðT set;boil � T amb;stoÞ
�ðUAÞaux;loop;coldðT sto � T amb;stoÞ

_Qcoll;sto ¼ _Qcoll � ðUAÞcoll;loop;hotðT coll � T amb;stoÞ
�ðUAÞcoll;loop;coldðT sto � T amb;stoÞ

_Qem;sto ¼ _Qem þ ðUAÞem;loop;hotðT sto � T amb;stoÞ
þðUAÞem;loop;coldðT em � T amb;stoÞ

_Qdhw;sto ¼ _Qdhw þ ðUAÞdhw;loop;hotðT set;dhw � T amb;stoÞ
þðUAÞdhw;loop;coldðT tap � T amb;stoÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ
3.1.3.5. Auxiliary energy model. The “White Box” model
takes Qaux, the auxiliary energy used by the SCS, as input.
Yet, the store model needs Qaux,out, the heat supplied by the
auxiliary part. Thus, a simplified model describing the aux-
iliary system is required to evaluate its efficiency.
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So far, tested combisystems have been combined with
auxiliary gas boilers. This part of the model must be
adapted to be used with other kind of auxiliary energy.

The gas boiler model used in the “White Box” part is
derived from the model used in the French thermal regula-
tion for building (RT2005, 2005). This model evaluates the
energy losses of the boiler according to the heat demanded
with a simple second-order polynomial. The relationship
between the energy input and output of the boiler can be
expressed as follows:

_Qaux ¼ aaux
_Q2

aux;out þ ð1þ bauxÞ _Qaux;out þ caux ð8Þ

Parameters aaux, baux and caux are calculated with char-
acteristic powers and losses of the boiler. Calculations are
available in the French regulation. Qaux,out is determined
by solving simply the quadratic equation. The nearest root
to Qaux is taken as the solution.
Fig. 4. Scheme of a mathematical neurone.
3.1.4. The black box part

The “Black Box” part aims to model the tested combi-
system behaviour, i.e. how it manages energy according
to external variables and its own states (temperatures
described in Section 3.1.3 above).

Since combisystem behaviours are complex and non-lin-
ear, it seems appropriate to include in this “Black Box”

part, a powerful mathematical model such as an Artificial
Neural Network (ANN). ANNs are widely used nowadays
because, as (Kalogirou, 2001) highlights, they can learn
from examples, are fault tolerant and are able to deal with
non-linear problems. They are even widely used in solar
energy fields for predicting complex phenomenon and mod-
elling solar components as well as complete solar system.

Mellit and Massi Pavan (2010) and Paoli et al. (2010)
have used ANNs to forecast daily solar radiation, both to
predict performance of grid connected PV plant (at Trieste
for the former, Ajaccio for the latter). They have built dif-
ferent neural network architectures but results are relevant
for both authors. Paoli has even found that ANNs are more
precise compared to conventional prediction methods.

Baccoli et al. (2010) has inferred the steady state perfor-
mances of a thermal solar collector with evacuated pipes,
only from a 4 days experimental data set of the collector
in transient regime. He has tried two kind of model: a grey
box model (based on known physical model and parame-
ters identification) and a Dynamic Adaptative Neural Net-
work. Both models have shown good results compared to
the official EN 12975 efficiency curve.

Medinelli Sanino and Rojas Reischel (2007) has mod-
elled a solar domestic water heating system located near
Viña del Mar, Chile. After testing different model struc-
tures, the author turns to semi-physical modelling com-
bined with ANN: available system knowledge helps to
organise the conceptual form and ANN adjusts that
knowledge into a particular non-linear model structure.
According to the authors, this incorporation of physical
knowledge is advantageous because it shares advantages
of each one of the structures, providing a model at the
same time parsimonious and flexible. The so trained model
predicts with good accuracy the mean water temperature of
the storage tank.

Many other examples are reviewed in (Kalogirou, 2001)
but those presented above emphasise some interesting
points:

– Complex phenomenon, like solar radiation, can be mod-
elled by ANN and can even be more precise than usual
prediction method.

– Modelling and predicting global system performances
seem possible. It has been done for different kind of
solar domestic water heating systems.

– Integrating knowledge of the system as far as possible is
advantageous when modelling systems.

So far, nothing has been done to link ANN modelling
with SCS. These points encourage to consider the global
model structure presented in this paper and especially to
integrate ANN in the “Black Box” part of the model.

ANNs are numerical model inspired by biological neural
networks. They build their knowledge through a learning
process that strengthens connections between neurones,
like a brain.

The structure of a mathematical neurone is represented
in Fig. 4 and is described in Dreyfus et al. (2002). Neurone
inputs xi came from other neurones outputs or model
inputs. Those signals are transmitted to the neurone
through connections called “synapses”. Synaptic weights
wi are linked to each connection. There are several ways
to combine inputs with their corresponding synaptic
weights. In this model, a simple linear combination as
described in Eq. (9) is used. The result of this combination
t is the argument of a transfer function f. The outcome y is
the activation of the neurone.

t ¼ w0 þ
Xn�1

i¼1

wixi

y ¼ f ðtÞ
ð9Þ



Fig. 5. Scheme of the process for training and selection of a SCS global model.
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ANNs are built linking neurones together and with the
model inputs and outputs. When presenting a training data
set, an optimisation algorithm searches the best synaptic
weights set to minimise a cost function. All functions and
parameters selected for the neural network training of this
model are presented in Section 3.2.

3.2. Identification of the model

Once the training data set is obtained from the lab test,
it is used to train several neural networks. Then, the same
training set helps finding the best ANN to make the com-
plete SCS model reproduce the system behaviour as faith-
fully as possible. The complete process of training and
selection is represented in Fig. 5 and described below.

3.2.1. Pre-processing of inputs and outputs

The training set is processed to have data with a 30 min
time step. The “White Box” model is applied to the com-
plete data set to have estimations of the system’s states dur-
ing the lab test. This includes “White Box” part errors as
input of the neural network so that it learns to manage
them.
Dreyfus et al. (2002) suggest normalising inputs and out-
puts. Ideally, variables should be centred and reduced.
Another way proposed here to come close to this data reduc-
tion is to combine variables and parameters of the system
and its environment. This way, inputs and outputs of the
ANN are not raw temperatures and heat flows but reduced
criterions of the interaction between the system, the building
and the climate. The current proposed inputs and outputs
reduction is described in the following equation.

u ¼

_Qsol;net= _Qsol;ref

KðT em � T roomÞn= _Qd

ðT room � T set;roomÞ=ðT set;room � T a;dÞ
ðT room � T aÞ=ðT set;room � T a;dÞ

ðT sto � T set;dhwÞ=100

2
6666664

3
7777775

y ¼
_Qaux= _Qaux;nom

_Qcoll=ðAcoll
_Qsol;refÞ

_Qem= _Qd

2
64

3
75

ð10Þ

Qsol,net, the net solar irradiance on the collector defined
in Eq. (4) and Qcoll, the heat supplied by the collector are
both divided by a reference solar irradiance taken at
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1000 W/m2. Qem the heat received by the radiator and
K(Tem � Troom)n, the heat transferred from the radiator
to the room are divided by Qd, the standard heat load of
the building, which depends also on the climate. Troom is
compared with the set room temperature and the ambient
temperature. Both comparisons are divided by a reference
temperature difference that takes into account the set room
temperature and the design ambient temperature of the
building heating system. Qaux is simply divided by the nom-
inal power of the auxiliary energy system. Since there is no
obvious reference temperature in relationship with the
mean store temperature, Tsto is compare with the DHW
set point temperature and divided by 100, which is the dif-
ference between the boiling and the melting point of water
at standard pressure.

The DHW demand is not taken into account at the
bounds of the neural network. So far, none of the tested
or simulated SCS has shown difficulties to meet the
demand. In order to have an ANN as simple as possible
and to have a first validation of this approach, the current
hypothesis is that the system is able to supply DHW at the
desired temperature Tset,dhw. So the output Qdhw is simply
calculated and only affects the store model in the “White
Box” part. In the next steps of the project, this aspect must
be taken into account.

3.2.2. Construction of the ANN structure

The ANNs tested for the “Black Box” part of the model
are simple static Multi Layer Perceptrons (MLPs). By
means of trial and errors, a more precise structure is set
to limit the number of ANNs to test. The activation func-
tion for every neurone is a hyperbolic tangent. Only one
layer of hidden neurone is considered. The structure of
tested ANNs is represented in Fig. 6. Finally, tested ANNs
differ in the number of neurones in the hidden layer.

3.2.3. Determination of the maximum number of neurones

The main issue of ANN modelling is to find the correct
number of neurones. With too few neurones, the ANN will
not be able to learn enough the process. However, with too
many neurones, the ANN will learn well the training data
set but will not be able to generalise for other simulations.
Fig. 6. Structure of the trained ANNs.
This number is strongly dependent on the process to
model.

So far, there is no rule to find the right number of neu-
rones. It is a matter of trial and error. Nevertheless, to
develop an automatic way to find the best ANN for the
tested SCS, it is possible to refer to the Widrow rule of
thumb described in Widrow and Stearns (1985): the num-
ber of training patterns Ntp must be larger than Nsw, the
number of synaptic weights to be identified, divided by
the error tolerance etol.

N tp P
N sw

etol

ð11Þ

From this rule, a maximum number of hidden neurones
can be calculated. Since only one hidden layer is considered
in this ANN (see Section 3.2.2) and that a bias is added to
each neurone (including output neurones), Nsw can be
expressed with Ni, the number of inputs, No, the number
of outputs and Nn, the number of neurones.

N sw ¼ ðN i þ 1Þ � N n þ ðN n þ 1Þ � N o

¼ Nn � ðN i þ No þ 1Þ þ No ð12Þ

Therefore, the maximum number of hidden neurones is
expressed as follows:

Nn;max ¼
etol � N tp � N o

N i þ No þ 1
ð13Þ

During the selection process, networks with complexities
going from 1 to Nn,max neurones will be trained.

3.2.4. Initialisation of the synaptic weights

Initial synaptic weights of the ANN are determinant for
the optimisation algorithm convergence and the solution
found. Several initialisations of ANNs are tested in this
process (Imax).

Some weights initialisation methods enhance ANN
training. The one used in this process is the Nguyen–Wid-
row method (Nguyen and Widrow, 1990).

3.2.5. Training algorithm (open loop)
Optimisation algorithms search for the best synaptic

weights set to minimise a cost function. The cost function
J chosen here is the sum of squared errors over the training
data set.

J ¼
XN tp

i¼1

yi � ~yið Þ2 ð14Þ

Most training algorithms are based on the calculation of
the gradient of the cost function. In the case of feedforward
network with differentiable activation function for every
neurone (like the MLP considered here), this gradient can
be smartly calculated with the backpropagation technique
(Rumelhart et al., 1986). To improve algorithm speed com-
pared to a simple steepest descent method, the Levenberg–
Marquardt algorithm (Marquardt, 1963) is chosen. It cal-
culates an estimation of the inverse of the Hessian matrix
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H of the cost function and changes the step k at each iter-
ation. The recurrence relation is described by the following
equation.

wjþ1 ¼ wj � ð ~HðwjÞ þ kiIÞ�1 � rJðwjÞ ð15Þ
To avoid an overtraining phenomenon, a “regulariza-

tion” strategy has been chosen in the training process using
Bayesian regularization in complement of the Levenberg–
Marquardt algorithm (Mackay, 1992).

3.2.6. Test of the neural network (closed loop)

It is possible to test the trained network generalisation
to a certain extent with the same training data set. The
ANN has learnt the SCS behaviour in an “Open loop”

way, i.e. with fixed ideal states calculated in the pre-pro-
cessing step (see Section 3.2.1). It is interesting to check
whether the global model is stable and precise in a “Closed
loop” simulation of the training data set. In this case, ANN
errors affect the state estimation of the “White Box” part of
the global model. This way, the network shows if it can
handle its own errors. A still overtrained network will be
excluded in this step.

3.2.7. Selection criterion

ANNs with different complexities and different initialisa-
tions are trained in this process. To select the best one, they
are compared according to two criterions.

The Root Mean Square Error (RMSE) assesses the esti-
mation quality of the model at each time step. This is the cri-
terion commonly used to evaluate an estimator in statistics.

RMSE ¼ 1

N tp

XNtp

i¼1

yi � ~yið Þ2 ð16Þ

The quality expected for this kind of model is above all to
estimate precisely the global energy involved by the SCS
during any simulation. Even if occasional large errors hap-
pen, the model could be able to evaluate with a good accu-
racy the auxiliary energy used for a complete year.
Therefore, it is interesting to check the global estimation
error.

Err ¼ 1�
PN tp

i¼1~yiPN tp

i¼1yi

ð17Þ

To observe both expected model quality as only one cri-
terion, a coefficient d is introduced: it combines RMSE and
Err as follows

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE

aRMSE

� �2

þ Err

aErr

� �2
s

ð18Þ

where aRMSE and aErr are fixed coefficients which assigned
a different weight for RMSE and Err. So far, they were
arbitrarily set respectively to 5 and 0.9.

Among all networks trained (see Sections 3.2.3 and
3.2.4), the one that gives the lowest d coefficient when sim-
ulating the training sequence is selected to be part of the
final “Grey Box” model of the tested combisystem.
3.3. Final procedure

Considering the modelling aspect proposed in this paper
to improve the SCSPT, the procedure to evaluate SCS per-
formances can be summed up as follows:

– Install the SCS on the semi-virtual test bench as it is
installed in a real building.

– Collect parameters needed for the “White Box” (espe-
cially storage and auxiliary energy parameters).

– Carry out the test with the virtual environment corre-
sponding to the 12 days Zurich climate sequence, the
SFH60 radiator and building parameters and with the
collector parameters suggested by the manufacturer.
Models are all defined in Section 3.1.3.

– Collect data needed for the model training during the
test sequence.

– Apply the process defined in Section 3.2 to get a global
model of the tested SCS.

– Simulate the SCS behaviour over a year with different
buildings, climates and collector areas.

– Characterise the SCS with the FSC method (Letz et al.,
2009).
The FSC method considers that fractional energy sav-
ings fsav of a SCS can be expressed as a quadratic function
of the fractional solar consumption FSC, a dimensionless
quantity which only depends on the environment of the
SCS. Thus, the performances of the tested SCS are charac-
terised by a simple parabola.
4. Results and discussion

4.1. Numerical results

First, to validate this new approach, data from simula-
tions of three different SCS model were used to train global
models as described in Section 3.2. Simulations were done
with TRNSYS (Klein et al., 1994).
4.1.1. SCS TRNSYS models

The three detailed models used for this numerical evalu-
ation can be briefly described as follows.

– SCS1 is the reference system modelled during the IEA
SHC Task 32 (Heimrath and Haller, 2007). It is repre-
sented in Fig. 7. The model does not consider DHW
loop and space heating loop losses.

– SCS2 and SCS3 are commercial systems models used
during the Combisol project (Mette et al., 2010). They
can be represented by the generic SCS scheme B1
(Fig. 8) according to (Thür et al., 2010). Both systems
differ in their controls and their heat store charging
strategies (SCS3 use a special stratification device). No
losses are considered in the loops.



Fig. 7. Generic scheme of the reference combisystem model.

Fig. 8. Combisol generic scheme B1: immersed DHW Heat exchanger – auxiliary as return flow increase.
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Table 1
Climates, buildings and collector areas used for the 27 simulations of SCS
characterisation.

Climate Building Collector areaa (m2)

Barcelona SFH30 10
Zurich SFH60 15
Stockholm SFH100 20

a When changing the collector area, the design mass flow-rate in the
collector loop and the store volume also change according to fixed ratios
specified by the manufacturer (respectively 15 kg h�1 m�2 and 50 L m�2

for the reference SCS for example).
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4.1.2. Comparison with TRNSYS calculations

For each SCS model, the SCSPT test (corresponding to
the Zurich climate and the SFH60 building) has been sim-
ulated within TRNSYS. Then, data from this simulation
have been used to train and select one global “Grey Box”

model, according to the procedure describe in Section 3.2.
Global models have then been used to do the 27 annual

simulations as described in Table 1. In Figs. 9–11, results
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Fig. 9. Results of SCS1
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Fig. 10. Results of SCS2
are compared to the corresponding detailed models simula-
tions within TRNSYS. Each simulation is represented by
three points: Qaux (circles), Qcoll (dots) and Qem (stars).
On the whole, identified models and TRNSYS simulations
are very close. Differences between both methods to esti-
mate characteristic heats and energy are almost within
the ±10% range for all simulations. For low heat demand
simulations, absolute differences are not excessive but the
low energy level makes those differences proportionally
higher.

Correlations coefficients (R2) are close to 1 except for
Qcoll. This output seems harder to evaluate precisely. In
SCS working, the annual energy coming from the collector
depends not only on the quantity of heat stored in the tank
(measured by Tstore) but also on the quality of the heat
stored (linked to the good stratification in the tank). The
store model used in the “White Box” part does not take
this aspect into account. Another more detailed store
model may enhance Qcoll evaluation accuracy. Moreover,
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Fig. 11. Results of SCS3 energy estimations.
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Fig. 12. Results of SCS1 characterisation.
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Fig. 14. Results of SCS3 characterisation.
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estimations are less accurate for extreme conditions, i.e. for
simulations combining Barcelona climate and a large col-
lector area. In these cases, SCS, facing very low heat load,
high solar gains and a storage almost full all year long, can
behave very differently compared to their behaviours
observed during the training sequence. That is most prob-
ably why the global grey box model overestimates Qcoll for
those simulations, resulting in a bad correlation coefficient.

In Figs. 12–14, each combisystem is characterised from
TRNSYS results and global model results, according to
the FSC method (Letz et al., 2009). Characteristic curves
are close for the three combisystems models. Observation
made above for energy estimations impacts on the charac-
terisation. Curves are closer when FSC is below 0.6. For
simulations with higher FSC, the SCS behaviour start to
be different compared to the training set. Low power
consumptions enlarge proportional errors. Nevertheless,
estimated results are acceptable.

4.2. Experimental results

4.2.1. The tested SCS

A real combisystem has been tested according to this
procedure on the INES test bench. As SSC2 and SSC3
numerical models, this system can be represented by the
generic scheme B1 ( Fig. 8). The store volume is larger
(1000 L).

Two tests have been done for this combisystem, with dif-
ferent virtual environments:

(1) The standard 12 days test with the Zurich climate, the
SFH60 building and 16 m2 of collector area.



Table 2
Energy outputs comparison between measured data of test no. 2 and its
model evaluation.

Qaux Qcapt Qem

Measured (kJ) 2.98 � 106 3.35 � 105 2.68 � 106

Evaluated (ANN model) (kJ) 2.94 � 106 5.35 � 105 2.73 � 106

Difference (kJ) 4.35 � 104 �1.99 � 105 �4.97 � 104

Error (%) 1.46% �59.72% �1.85%
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(2) The 12 days test corresponding to the Stockholm cli-
mate, the SFH100 building and 10 m2 of collector
area.
4.2.2. Comparison between the two tests sequence

The former standard test data have been used to train
and select a global model of the tested combisystem. The
resulting model has been used to simulate the 2nd test
sequence.

Comparison between the global model simulation and
the real recorded power consumption are presented in
Fig. 15. It shows that the dynamic behaviour of the global
model is in the whole quite corresponding to the real sys-
tem. Even though model estimation does not fluctuate
exactly in the same way as the real system did during the
test, power variations are corresponding in average.

Table 2 shows that energy estimations are accurate for
Qaux and Qem. The error with Qcoll is higher. The “Grey
Box” model seems to overestimate the solar gains and com-
pensate this overestimation through the two other energies.
The difference is acceptable because the level of this output is
low compared to the others. Observations made about Qcoll

estimations in Section 4.1.2 are still valid in this case. Nev-
ertheless, those results are promising for other simulations.
4.2.3. Performance characterisation of the tested

combisystem

The same selected model has been used to characterise
the performances of the tested system with the FSC method
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Fig. 16. Characterisatio
(Fig. 16). So far, there is no more information about the
system for comparison but the tests data. The characteristic
curve of the tested system seems slightly above the perfor-
mances estimated by the classic SCSPT method for the two
tests. This is somehow in accordance with the performance
overestimation observed in the Section 4.2.2. Anyway,
Test1 and Test2 points are not that far from the estimated
curve in comparison with the general scatter of the other
points. The experimental application of the methodology
offers a characterisation that seems realistic.

Other real combisystems with better-known perfor-
mances (for example with several on-site data sets) should
be modelled and characterised like this to further validate
the methodology. However, this validation project would
need a lot of time to find available systems, to collect and
to analyse enough data for more complete comparisons.
5. Conclusion and perspectives

The improvement of the current SCSPT methodology is
promising. While the former version of those tests evaluate
with a good accuracy SCS performances for only one envi-
ronment (climate and building) and only one system sizing,
the “grey-box” model identification of the tested system
extend the results to any environment and several sizes of
collector. This extent let SCS be characterised only from
a 12 days test on a semi-virtual test bench.

The model to be identified is made of two parts: a
“White Box” part that gathers characteristics equations
of the SCS main components; and a “Black Box” part
using artificial neural networks that are taught how the sys-
tem deals with external variables and its own states to meet
the demands.

Comparison with numerical SCS models shows that the
methodology is accurate. Identified models estimations of
the energy consumed by the auxiliary boiler are closed to
the detailed models ones. However, errors are getting larger
when the environment become more extreme compared to
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the training one. Some more work about the storage model
may improve the accuracy of the model, especially for the
collector output energy evaluation. Further studies must be
done to check the validity range of estimations.

A real combisystem has been tested according to this
methodology. The model trained from a test data set imi-
tates well the SCS behaviour compared to a completely dif-
ferent experimental data set. Its characterisation seems to
be in accordance with experimental results but need more
information to be further validated. Some other real SCS
will be tested soon on the INES semi-virtual test bench.

So far, the methodology is adapted for SCS using gas
boiler as auxiliary energy and radiator as heat emitter.
Some additional work must be done to find other models
(like heating floor for instance) that suit the requirements
of the “White Box” part of the model and so to have a
methodology adapted for most of existing SCS. If the
results still show good prediction performances, it would
be interesting to consider this way as a standard test to
improve the SCS market development.
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Systèmes solaires combines en usage réel. Synthèse du programme de
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