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ABSTRACT

The deconvolution of large survey images with millions of galaxies requires developing a new generation of methods that can take a
space-variant point spread function into account. These methods have also to be accurate and fast. We investigate how deep learning
might be used to perform this task. We employed a U-net deep neural network architecture to learn parameters that were adapted for
galaxy image processing in a supervised setting and studied two deconvolution strategies. The first approach is a post-processing of
a mere Tikhonov deconvolution with closed-form solution, and the second approach is an iterative deconvolution framework based
on the alternating direction method of multipliers (ADMM). Our numerical results based on GREAT3 simulations with realistic
galaxy images and point spread functions show that our two approaches outperform standard techniques that are based on convex
optimization, whether assessed in galaxy image reconstruction or shape recovery. The approach based on a Tikhonov deconvolution
leads to the most accurate results, except for ellipticity errors at high signal-to-noise ratio. The ADMM approach performs slightly
better in this case. Considering that the Tikhonov approach is also more computation-time efficient in processing a large number of

galaxies, we recommend this approach in this scenario.

Key words. methods: statistical — methods: data analysis — methods: numerical

1. Introduction

The deconvolution of large galaxy survey images requires that
the spatial variation of the point spread function (PSF) across
the field of view is taken into account. The PSF field is usu-
ally estimated beforehand through parametric models and sim-
ulations as in Krist et al. (2011) or is directly estimated from
the (noisy) observations of stars in the field of view (Bertin
2011; Kuijken et al. 2015; Zuntz et al. 2018; Mboula et al. 2016;
Schmitz et al. 2020). Even when the PSF is known perfectly,
this ill-posed deconvolution problem is challenging, in partic-
ular because of the size of the image that is to be processed.
Starck et al. (2000) proposed an object-oriented deconvolution
that consists of first detecting galaxies and then deconvolving
each object independently, taking the PSF at the position of
the center of the galaxy into account (but not the variation in
the PSF field at the galaxy scale). Following this idea, Farrens
et al. (2017) introduced a space-variant deconvolution approach
for galaxy images that is based on two regularization strategies:
using either a sparse prior in a transformed domain (Starck et al.
2015a), or trying to learn without supervision a low-dimensional
subspace for galaxy representation using a low-rank prior on the
recovered galaxy images. When a sufficient number of galax-
ies were processed jointly (more than 1000), the authors found
that the low-rank approach provided significantly lower elliptic-
ity errors than sparsity. This illustrates the importance of learn-
ing adequate representations for galaxies. To proceed in learn-

* 1In the spirit of reproducible research, the codes will be made freely
available on the CosmoStat website (www.cosmostat.org). The test-
ing datasets will also be provided to repeat the experiments performed
in this paper.

ing, supervised deep-learning techniques that use databases of
galaxy images might be employed to learn complex mappings
that might regularize our deconvolution problem. Deep convolu-
tional architectures have also proved to be computationally effi-
cient in processing large numbers of images when the model
has been learned. They are therefore promising in the context
of modern galaxy surveys.

In recent years, deep-learning approaches have been pro-
posed in a large number of inverse problems with high empirical
success. This might be explained by the expressivity of the deep
architectures as shown in the theoretical works for simple archi-
tecture in Eldan & Shamir (2015), Safran & Shamir (2017), and
Petersen & Voigtlaender (2018). New architectures or new opti-
mization strategies have been proposed as well to increase the
learning performance (e.g., Kingma & Ba 2014; Ioffe & Szegedy
2015; He et al. 2016; Szegedy et al. 2016). Their success also
depends on the huge datasets that were collected in the different
applications to train the networks, and on the increased comput-
ing power available to process them.

We investigate here two different strategies to inter-
face deep-learning techniques with space-variant deconvolu-
tion approaches inspired by convex optimization. In Sect. 2
we review deconvolution techniques based on convex optimiza-
tion and deep-learning schemes. The space-variant deconvolu-
tion is presented in Sect. 3, where the two proposed methods
are described. The first method uses a deep neural network
(DNN) to post-process a Tikhonov deconvolution, and the sec-
ond includes a DNN that is trained to denoise in an iterative
algorithm derived from convex optimization. The neural net-
work architecture proposed for deconvolution is also presented
in Sect. 3. The experiment settings are described in Sect. 4 and
the results are presented in Sect. 5. We conclude in Sect. 6.
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2. Image deconvolution in the deep-learning era
2.1. Deconvolution before deep learning

The standard deconvolution problem consists of solving the lin-
ear inverse problem Y = HX + N, where Y is the observed noisy
data, X is the unknown solution, H is the matrix related to the
PSF, and N is the noise. Images Y, X, and N are represented by a
column vector of n, pixels arranged in lexicographic order, with
n, being the total number of pixels, and H is a n, X n, matrix.
Modern deconvolution techniques typically solve this ill-posed
inverse problem (i.e., without a unique and stable solution) by
modeling the forward problem based on physics and adding the
regularization penalty term R (X), which can be interpreted as
enforcing some constraints on the solution. This leads to the min-
imization

1
argminzllY—HXII%JrR(X), (D
X

where || - ||r is the Frobenius norm. The simplest (and old-
est) corresponding regularization is the Tikhonov regularization
(Tikhonov et al. 1977; Hunt 1972; Twomey 1963), where R (X)
is a quadratic term, R (X) = %IILXII%. The closed-form solution
of this inverse problem is given by

X=(H'H+IL'L) H'Y, )

which involves the Tikhonov linear filter (HTH + /lLTL) 'HT.
The simplest version is when L = Id, which penalizes solutions
with high energy. When the PSF is space invariant, the matrix
H is block circulant, and the inverse problem can then be writ-
ten as a simple convolution product. It is also easy to see that
the Wiener deconvolution corresponds to a specific case of the
Tikhonov filter; see Bertero & Boccacci (1998) for more details.

This rather crude deconvolution is illustrated in Fig. 1 in
a scenario with a low signal-to-noise ratio (S/N). It shows
the oversmoothing of the galaxy image, loss of energy in the
recovered galaxy, and colored noise that is due to the inverse
filter.

Most advanced methods are nonlinear and generally involve
iterative algorithms. The literature on image processing in
advanced regularization techniques applied to deconvolution is
copious: adding some prior information on X in a Bayesian
paradigm (Bioucas-Dias 2006; Krishnan et al. 2009; Orieux et al.
2010) or assuming X to belong to some classes of images that
are to be recovered (e.g., using total variation regularization
(Oliveira et al. 2009; Cai et al. 2010), sparsity in fixed represen-
tations (Starck et al. 2003; Pesquet et al. 2009; Pustelnik et al.
2016) or learned through dictionary learning Mairal et al. 2008;
Lou et al. 2011; Jia & Evans 2011), by constraining the solution
to belong to some convex subsets (such as ensuring that the final
galaxy image is positive).

For instance, a very efficient approach for galaxy image
deconvolution is based on sparse recovery, which consists of
minimizing

1
arg min Z[[Y - HX| + @7 X]|);, 3)
X

where @ is a matrix related to a fixed transform (Fourier,
wavelet, curvelets, etc.) or that can be learned from the data or
a training dataset (Starck et al. 2015b). The ¢; norm in the reg-
ularization term is known to reinforce the sparsity of the solu-
tion; see Starck et al. (2015b) for a review of sparsity. Sparsity
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Fig. 1. Deconvolution with Tikhonov regularization. From left to right,
we show the galaxy image from the HST that we used for the simu-
lation, the observed galaxy at S/N 20 (see below for our definition of
S/N), and the deconvolved image computed from Eq. (2).

was found to be extremely efficient for different inverse problems
in astrophysics, such as an estimation of the cosmic microwave
background (CMB; Bobin et al. 2014), estimation of compact
sources in CMB missions (Sureau et al. 2014), recovery of a
weak-lensing map (Lanusse et al. 2016), or reconstruction of a
radio-interferomety image (Garsden et al. 2015). We compare
our deconvolution techniques with this sparse-deconvolution
approach here.

Iterative convex optimization techniques have been devised
to solve Eq. (3) (see, e.g., Beck & Teboulle 2009; Zibulevsky
& Elad 2010; Combettes et al. 2011; Chambolle & Pock 2011;
Afonso et al. 2011; Condat 2013; Combettes & Vu 2014), with
well-studied convergence properties, but with a high comput-
ing cost when adaptive representation is used for galaxies. This
problem opens the way to a new generation of methods.

2.2. Toward deep learning

Recently, deep-learning techniques have been proposed to solve
inverse problems using the collected dataset and/or the advances
in simulations, and have been applied for the deconvolution of
galaxy images. These approaches have proved to be able to learn
complex mappings in the supervised setting, and to be compu-
tationally efficient when the model has been learned. Without
being exhaustive, we review here some recent work on decon-
volution using DNNs. We identified three different strategies for
using DNN in a deconvolution problem.

The inverse convolution filter can be directly approximated
using convolutional neural networks (Xu et al. 2014; Schuler
et al. 2016). In our application with space-variant deconvolu-
tion and known kernels, a complicated blind deconvolution like
this is clearly not necessary and would require a large amount of
data to try learning information that is already provided by the
physics included in the forward model. In the early years of using
sparsity for deconvolution, a two-step approach was proposed
that consisted of first applying a simple linear deconvolution
such as the pseudo-inverse or the Tikhonov filter, which allows
noise to enter the solution, and in the second step, applying
a sparse denoising (see the wavelet-vaguelette decomposition;
Donoho 1995; Kalifa et al. 2003, more general regulariza-
tion; Guerrero-Colon & Portilla 2006, or the forward method;
Neelamani et al. 2004). Similarly, the second step has been
replaced by denoising or removing artifacts using a multilayer
perceptron (Schuler et al. 2013), or more recently, using U-nets
(Jin et al. 2017). CNNs are well adapted to this task because
the form of a CNN mimics unrolled iterative approaches when
the forward model is a convolution. In another application, con-
volutional networks such as deep convolutional framelets have
also been applied to remove artifacts from reconstructed CT
images (Ye et al. 2018a). One advantage of this decoupling
approach is the ability to quickly process a large amount of
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data when the network has been learned if the chosen decon-
volution has a closed-form expression. The third strategy uses
iterative approaches that are often derived from convex opti-
mization coupled with deep-learning networks. Several schemes
have been devised to solve generic inverse problems. The first
option, called unrolling or unfolding (see Monga et al. (2019)
for a detailed review), is to mimic a few iterations of an iter-
ative algorithm with DNNs so as to capture in the learning
phase the effect of (1) the prior (Mardani et al. 2017), (2) the
hyperparameters (Mardani et al. 2017; Adler & Oktem 2017,
2018; Bertocchi et al. 2018), (3) the updating step of a gradient
descent (Adler & Oktem 2017), or (4) the whole update process
(Gregor & LeCun 2010; Adler & Oktem 2018; Mardani et al.
2018). These approaches allow a fast approximation of itera-
tive algorithms (Gregor & LeCun 2010), a better hyperparameter
selection (Bertocchi et al. 2018), and/or provide new algorithms
in a supervised way (Adler & Oktem 2017; Mardani et al. 2018;
Adler & Oktem 2018) that are better adapted to processing a spe-
cific dataset. This approach has noticeably been used recently
for blind deconvolution (Li et al. 2019). Finally, an alternative
is using iterative proximal algorithms from convex optimiza-
tion (e.g., in the framework of the alternating direction method
of multiplier plug&play (ADMM PnP; Venkatakrishnan et al.
2013; Sreehari et al. 2016; Chan et al. 2017), or regularization
by denoising; Romano et al. 2017; Reehorst & Schniter 2018),
where the proximity operator related to the prior is replaced by
a DNN (Meinhardt et al. 2017; Bigdeli et al. 2017; Gupta et al.
2018) or by a series of DNN that are trained in different denois-
ing settings, as in Zhang et al. (2017).

The last two strategies are therefore more adapted to the
problem we target here, and we investigate below how they can
be applied and how they perform compared to modern methods
in the space-variant deconvolution of galaxy images.

2.3. Deep deconvolution and sparsity

It is interesting to note that connections exist between sparse
recovery methodology and DNN. The first features learned in
convolutive deep neural networks typically correspond to edges
at particular orientation and location in the images (LeCun et al.
2015), which is also what the wavelet transforms extract at
different scales. Similar observations were noted for features
learned with a CNN in the context of cosmological param-
eter estimations from weak-lensing convergence maps (Ribli
et al. 2019). Understanding mathematically how the architec-
ture of such networks captures progressively powerful invari-
ants can also be approached through wavelets and their use in
the wavelet-scattering transform (Mallat 2016). Meinhardt et al.
(2017) has shown that using a denoising neural network instead
of a proximal operator (e.g., soft-thresholding in wavelet space
in sparse recovery) during the minimization iterations improves
the deconvolution performance. They also claimed that the noise
level used to train the neural network behaves like the regulariza-
tion parameter in sparse recovery. The convergence of the algo-
rithm is no longer guaranteed, but the authors observed exper-
imentally that their algorithms stabilized, and they expressed
their fixed points. Finally, the two parts of U-nets are very sim-
ilar to synthesis and analysis concepts in sparse representations.
This has motivated the use of wavelets to implement average
pooling and unpooling in the expanding path in U-nets (Ye et al.
2018a; Han & Ye 2018). Some other connection can be made
with the soft-autoencoder in Fan et al. (2018), which introduces
a pair of ReLU units that emulate soft-thresholding. This accen-

tuates the comparison with cascade-wavelet-shrinkage systems.
We thus observe exchanges between the two fields, in particu-
lar for U-net architectures, with significant differences, however,
such as the construction of a very rich dictionary in U-nets that
is possible through the use of a large training dataset, and non-
linearities at every layer that are essential to capture invariants in
the learning phase.

3. Image deconvolution with space-variant PSF

In the case of a space-variant deconvolution problem, we can
write the same deconvolution equation as before, Y = HX + N,
but H is no longer a block circulant matrix, and manipulating
such a huge matrix is not possible in practice. As in Farrens
et al. (2017), we instead consider an object-oriented deconvo-
lution by first detecting n, galaxies with n, pixels each and
then independently deconvolving each object using the PSF at
the position of the center of the galaxy. We use the follow-
ing definitions: the observations of n, galaxies with n, pixels
are collected in Y € R™*" (as before, each galaxy is repre-
sented by a column vector arranged in lexicographic order), the
galaxy images that are to be recovered are similarly collected,
X € R"™y = [Xi]i=1..n,» and the convolution operator with the
different kernels is noted H. This corresponds to applying in
parallel a convolution matrix H; to a galaxy x; (H; typically is
a block-circulant matrix after zero-padding that we perform on
the images Andrews & Hunt 1977). Noise is noted N € R"»*" as
before and is assumed to be additive white Gaussian noise. With
these definitions, we now have

Y =HX)+N, @
or more precisely,
{yi = Hixi + i}y, s 5

for block-circulant {H;};-; _,, , which illustrates that we consider
multiple local space-invariant convolutions in our model (ignor-
ing the very small variations in PSF at the scale of the galaxy, as
done in practice Kuijken et al. 2015; Mandelbaum et al. 2015;
Zuntz et al. 2018). The deconvolution problem of finding X
knowing Y and H is therefore considered as a series of inde-
pendent ill-posed inverse problems. To avoid multiple solutions
(due to a nontrivial null space of {H;};_,_, ) or an unstable solu-
tion (bad conditioning of these matrices), we need to regular-
ize the problem as in standard deconvolution approaches that
were developed for space-invariant convolutions. This amounts
to solving the following inverse problem:

1
arg min Z[[Y = HX)ll; + R(X), (6)
X
and in general, we choose separable regularizers so that we can

handle the different deconvolution problems in parallel:

Xi

1
%@mm?m—Hmﬁ+Rm% : (7
i i:l.“nq

Farrens et al. (2017) proposed two methods to perform this
deconvolution using either a sparse or a low-rank prior. In the
former, each galaxy is assumed to be sparse in the wavelet
domain. This leads to the minimization

1
argmin SV - HX)B + WP odX)|; st. X0, (8)
X
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where W® is a weighting matrix. Each galaxy is then
deconvolved independently of the others. As there are many
similarities between galaxy images, in the latter method
Farrens et al. (2017) proposed a joint restoration process, where
the matrix X has a low rank. This is enforced by adding a nuclear
norm penalization instead of the sparse regularization, as fol-
lows:

1
argmin Y - HXOIR + X[l st X>0, ©)
X

where |[X]|. = > 0x(X), and 0(X) denotes the kth largest sin-
gular value of X.

It was shown that the second approach outperforms sparsity
techniques as soon as the number of galaxies in the field is larger
than 1000 (Farrens et al. 2017).

3.1. Neural network architectures

The DNN allows us to extend the previous low-rank minimiza-
tion by using existing databases and learning more features from
the data in a supervised way, compared to what we could do with
the simple singular value decomposition used for nuclear norm
penalization. The choice of network architecture is crucial for
the performance. We identified three different features that are
important for our application: (1) the forward model and the task
imply that the network should be translation equivariant, (2) the
model should include some multiscale processing based on the
fact that we should be able to capture distant correlations, and
(3) the model should minimize the number of trainable param-
eters for a given performance, so as to be efficient (lower GPU
memory consumption), which is also important to facilitate the
learning. These objectives are hopefully not contradictory: the
first consideration leads to the use of convolutional layers, while
the second implies a structure such as the U-net (Ronneberger
et al. 2015), which has previously been used to solve inverse
problems (Jin et al. 2017), or it leads to the deep convolutional
framelets (Ye et al. 2018a). Because these architectures allow
rapidly increasing the receptive field in the layers of the network,
however, they can compete with their smaller number of param-
eters against CNNs with a larger number of layers and therefore
more parameters.

We therefore selected a global U-net structure as in Jin et al.
(2017), but included several modifications. We first replaced
2D convolutions by 2D separable convolutions (Chollet 2016,
2017). The separable convolutions allow us to limit the number
of parameters in the model by assuming that spatial correlations
and correlations across feature maps can be captured indepen-
dently. This has previously led to configurations that outper-
form architectures with non-separable convolution with a larger
number of parameters (Chollet 2016, 2017). We also changed
the convolutional layers at each “scale” by using dense blocks
(Huang et al. 2017). Dense blocks also allow us to reduce the
number of parameters by propagating all prior feature maps to
the input of the current layer through concatenation. This was
claimed to enable feature reuse, preservation of information, and
to limit vanishing gradients in the learning. We also changed the
pooling step because we observed that maximum-pooling leads
to oversegmentation of our final estimates. This is alleviated by
the use of average-pooling. Finally, we removed the skip connec-
tion between the input and output layers introduced by Jin et al.
(2017), which proved to be detrimental to the performance of the
network, especially at low S/N. The dense blocks may also have
preserved the flow of relevant information better and limited the
interest in using residual learning.
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Fig. 2. DNN model used in this work. The global architecture is a U-net,
which we slightly modified for performance and to limit the number of
model parameters.

The two first modification significantly limit the number of
parameters per scale of the U-net and potentially allow for more
scales to be used for a given budget of the number of trainable
parameters. We call our network XDense U-net and display it
in Fig. 2. We describe below how a network like this can be
used in two different ways in order to perform the space-variant
deconvolution.

3.2. Tikhonet: Tikhonov deconvolution post-processed
by a DNN

The Tikhonov solution for the space-variant PSF deconvolution
is

1
arg min 7Y - HXIF + ILXOIF, (10)

where £ is built similarly as . The closed-form solution of this
linear inverse problem is given by

-1
{f = (/m /L) By (1N

i=1...n,

which for each galaxy involves a different Tikhonov filter

-1
(HiTH,- + /l,-LiTLi) H’. We chose L; = Id, and the regulariza-
tion parameter A; was different for each galaxy, depending on its
S/N (see Sect. 3.4 for more details). The final estimate is then
only

{Xi = No(X}iz1..n, »

where the neural network predictions based on its parameters 6
for some inputs y are written Ny(y).

The success of the first approach therefore lies in the super-
vised learning of the mapping between the Tikhonov deconvo-
lution of Eq. (11) and the targeted galaxy. We call this two-
step approach Tikhonet, and the rather simple training process
is described in Algorithm 1.

(12)
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Algorithm 1 DNN training in the Tikhonet approach

1: Initialization: Prepare noise-free training set, choose noise
parameters (S/N range) and validation set. Choose architec-
ture for network N, learning parameters (optimizer and its
parameters, batch size B, and number of batches npcn, num-
ber of epochs 7nepoch), and cost function to minimize (here
mean-square error).

2: for n = 1 t0 nepoch do {loop over epochs}
3:  for b = 11t0 npyn do {loop over batches}
4. for i = 1 to B do {loop over galaxies in batch}
5: Add random noise to obtain a realization in the S/N
range chosen
6: Compute the Tikhonov solution X; using Eq. (2)
7: end for
8: Predict X; (Eq. (12)) and update network parameters 6
according to the cost function.
9: end for
10: end for

11: return Ny

3.3. ADMMnet: DNNs as constraint in ADMM plug-and-play

The second approach we investigated is using the ADMM
PnP framework with a DNN. The ADMM is an augmented
Lagrangian technique developed to solve convex problems under
linear equality constraints (see, e.g., Boyd et al. 2010). It oper-
ates by decomposing the minimization problem into subprob-
lems solved sequentially. One iteration consists of first solving
a minimization problem that typically involves the data fidelity
term, then solving a second minimization problem that involves
the regularization term, and an update of the dual variable com-
pletes the iteration.

It has previously been noted that the first two substeps can
be interpreted as an inversion step followed by a denoising step
(Venkatakrishnan et al. 2013; Sreehari et al. 2016; Chan et al.
2017). The steps are coupled by the augmented Lagrangian
term and the dual variable. These works suggested using this
ADMM structure with nonlinear denoisers in the second step in
an approach called ADMM PnP. This has been proposed more
recently to be implemented through DNNs (Meinhardt et al.
2017).

In the following, we adopt this iterative approach based on
the ADMM PnP because first, it separates the inversion step and
the use of the DNN, which offers flexibility by adding convex
constraints to the cost function that can be handled with convex
optimization. Second, it lessens the cost of learning by learn-
ing essentially a denoiser or a projector. This means fewer net-
works and fewer parameters to learn jointly compared to unfold-
ing approaches, where each iteration corresponds to a different
network. Finally, by iterating between the steps, the output of
the network is propagated to the forward model to be compared
with the observations. Large discrepancies are avoided in this
way, which is different from the Tikhonet approach, where the
output of the network is not used in a likelihood.

The training of the network Njy in this case is similar to
Algorithm 1, except that the noise-free training set is com-
posed of noise-free target images instead of noise-free con-
volved images, and the noise that is added has a constant
standard deviation. The algorithm for deconvolving a galaxy
is presented in Algorithm 2 and is derived from Chan et al.
(2017). The application of the network is illustrated in red. We
call this approach ADMMnet. The first step consists of solving
the following regularized deconvolution problem at iteration k

Algorithm 2 Proposed ADMM deep plug&play for deconvolu-
tion of a galaxy image

1: Inmitialize: set pg, Pomax. 77 € [0, 1),y > 1,A¢ = 0X0 = 0,20 =
0,4 = 0, ¢
2: for k = 0 to N;; do {main loop}
3:  Deconvolution subproblem:
FISTACY, X®, Z®, 4® o)
4:  Denoising subproblem: Z**D = N/, (X(k“) + ,u(k>)
Lagrange multiplier update: p**" = u® + (XU‘“) - Z(k”))

1
At =~ (IXED = XOY + 24D = ZO + D =y )

X(k+l) —

7: if Apy1 = nAr and ppiq < Pax then

8: Pr+1 = YPk

9: else

10: Pk+1 = Pk

11: end if

12:  if |Z%D — X®*D||, < € then
13: stop

14: end if

15: end for

16: return {X“‘“)}

using the accelerated iterative convex algorithm FISTA (Beck &
Teboulle 2009):

1 P k
argmin — [ly; — Hixill3 + to(x)) + Slix; — 20 + u®|3 :
Xi 20 2 i=1..n4

13)

where (¢ is the characteristic function of the non-negative
orthant, to enforce the non-negativity of the solution. The DNN
used in the second step is employed as an analogy with a
denoiser (or as a projector), as presented above. The last step
controls the augmented Lagrangian parameter and ensures that
this parameter is increased when the change in the estimates is
insufficient. This continuation scheme is also important, as noted
in Chan et al. (2017), because a progressive increase of the aug-
mented Lagrangian parameter ensures stabilization of the algo-
rithm. The convergence of this scheme is not guaranteed, and in
contrast to the convex case, the augmented Lagrangian parame-
ter p is expected to affect the solution. Finally, because the target
galaxy is obtained after reconvolution with a target PSF to avoid
aliasing (see Sect. 4), we also reconvolved the ADMMnet solu-
tion with this target PSF to obtain our final estimate.

3.4. Implementation and choice of parameters for the
network architecture

We describe here our practical choices for the implementation
of the algorithms. For the Tikhonet, the hyperparameter A; that
controls the balance in between the data fidelity term and the
quadratic regularization in Eq. (11) needs to be set for each
galaxy. This can be done either manually by selecting a value as
a function of an estimate of the S/N, or using automated proce-
dures such as a generalized cross-validation (GCV; Golub et al.
1979), the L-curve method (Hansen & O’Leary 1993), the Moro-
zov discrepancy principle (Engl et al. 1996), various Stein unbi-
ased risk estimate (SURE) minimizations (Eldar 2009; Pesquet
et al. 2009; Deledalle et al. 2014), or a hierarchical Bayesian
framework (Orieux et al. 2010; Pereyra et al. 2015). We com-
pared these approaches and report the results obtained by the
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SURE prediction risk minimization, which led to the best results
with the GCV approach.

For the ADMM, the parameters po, Pmax, 77, €, and y were
selected manually as a balance between quickly stabilizing the
algorithm (in particular, high p) and favoring the minimization
of the data fidelity term in the first steps (low p). We specifically
investigated the choice of pg , which illustrates the effect of the
continuation scheme on the solution.

The DNNs were coded in Keras' with Tensorflow” as back-
end. For the proposed XDense U-net, four scales were selected
with an increasing number of layers for each scale (to capture
distant correlations). Each separable convolution was composed
of 3 x 3 spatial filters, and a growth factor of 12 was selected
for the dense blocks. The total number of trainable parameters
was 184301. We also implemented a classical U-net to test the
efficiency of the proposed XDense U-net architecture. For this
U-net, we chose three scales with two layers per scale and 20 fea-
ture maps per layer in the first scale, which gave us 206381 train-
able parameters (12% more than the XDense U-net implemen-
tation). In both networks we used batch normalization and recti-
fied linear units for the activation. We also tested weighted sig-
moid activations for the approach we propose here (or swish in
Elfwing et al. 2018), which seems to improve the results slightly,
but at the cost of increasing the computational burden. We there-
fore did not use them in the following results.

In the training phase, we used 20 epochs, a batch size of 32,
and selected the Adam optimizer (we kept the default param-
eters) to minimize the mean-square error (MSE) cost function.
After each epoch, we only saved the network parameters when
they improved the MSE in the validation set.

4. Experiments

In this section we describe how we generated the simulations
we used for learning networks and testing our deconvolution
schemes. We also report the criteria that we used to compare
the different deconvolution techniques.

4.1. Dataset generation

We used GalSim® (Rowe et al. 2015) to generate realistic
images of galaxies to train our networks and test our deconvo-
lution approaches. We essentially followed the approach used
in GREAT3 (Mandelbaum et al. 2014) to generate the realistic
space branch from high-resolution HST images, but chose the
PSFs in a set of 600 Euclid-like PSFs (the same as in Farrens
et al. 2017). The process is illustrated in Fig. 3.

An HST galaxy was randomly selected from the set of about
58 000 galaxies that were used in the GREAT3 challenge, decon-
volved with its PSF. We then applied random shift (taken from
a uniform distribution in [—1, 1] pixel), rotation, and shear. The
same cut in S/N was performed as in GREAT3 (Mandelbaum
et al. 2014) to obtain a realistic set of galaxies that would be
observed in an S/N range [20, 100] when the noise level is the
same as in GREAT3. We here used the same definition of the
S/N as in this challenge:

SIN(X,) = ||Xi||2’
(o

(14)

where o is the standard deviation of the noise. This S/N cor-
responds to an optimistic S/N for a detection when the galaxy

! https://keras.io
2 https://www.tensorflow.org/
3 https://github.com/GalSim-developers/GalSim
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GalSim realistic simulations

convolution with
target gaussian PSF

convolution with one of
Euclid-like PSFs (about 600)

Fig. 3. Setup for a GalSim simulated realistic galaxy. In the upper
branch we obtain the targeted galaxy image. In the lower branch, we
simulate the corresponding Euclid-like observed galaxy. A log-scale
was adopted for the PSFs to illustrate their complicated structure.

profile X; is known. In other (experimental) definitions, the min-
imum S/N is indeed closer to 10, similarly to what is usually
considered in weak-lensing studies (Mandelbaum et al. 2014).

To obtain the target image in a 96 x 96 grid with a pixel size
0.05”, when the cut in S/N was passed, we first convolved the
HST deconvolved galaxy image with a Gaussian PSF with a full
width at half maximum FWHM = 0.07” to ensure that no alias-
ing occurred after the subsampling. To simulate the observed
galaxy without additional noise, we convolved the HST decon-
volved image with a PSF that we randomly selected among about
600 Euclid-like PSFs (the same set as was used in Farrens et al.
2017). The same galaxy rotated by 90° was also simulated as in
GREAT3.

Because we used real HST galaxies as input, noise from HST
images propagated to our target and observed images and was
colored by the deconvolution and reconvolution process. We did
not decide to denoise the original galaxy images to avoid losing
substructures in the target images (and making them less realis-
tic), and as this noise level is lower than the noise added in our
simulations, we expect it to change our results only marginally
and the ranking of methods not at all.

This process was repeated so that we finally had about
210000 simulated observed galaxies and their corresponding
targets. For the learning, 190 000 galaxies were employed, and
for the validation set, 10000 galaxies. The additional 10000
galaxies were used to test our approaches.

In the learning phase, additive white Gaussian noise was
added to the galaxy batches, and the standard deviation was cho-
sen so that we obtained a galaxy in a prescribed S/N range. For
the Tikhonet, we randomly chose an S/N in the range [20, 100]
for each galaxy in the batch, which corresponds to selecting
galaxies from the detection limit to galaxies with observable sub-
structures, as illustrated in Fig. 4. For the ADMMnet, we learned
a denoising network for a constant noise standard deviation of
o = 0.04 (same level as in GREAT3).

We then tested the relative performance of the differ-
ent approaches in a test set for fixed values of S/N €
{20, 40, 60, 80, 100} to better characterize (and distinguish) them,
and for a fixed standard deviation of o = 0.04, which corre-
sponds to what was simulated in GREAT3 for the real galaxy
space branch to obtain results for a representative observed
galaxy set. The corresponding S/N distribution in the last sce-
nario is represented in Fig. 5. All the techniques were compared
in exactly the same test sets.

When we tested at different S/N in the ADMMnet approach,
we adjusted the noise level in the galaxy images to the noise level
in the learning phase. We therefore rescaled the galaxy images to


https://keras.io
https://www.tensorflow.org/
https://github.com/GalSim-developers/GalSim
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937039&pdf_id=3
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Target S/N 40 S/N 60

: f i P @

0.00

S/N 80 S/N 100

S/N 20

o

Fig. 4. Range of the S/N we used for to train and test the simulations.
From left to right: targeted galaxy image, and the observed convolved
images at increasing S/N. In our definition, S/N 20 is barely at the
galaxy detection limit, while galaxy substructures can be visualized at
S /N 100.

Fig. 5. Distribution of the S/N of simulated galaxies for constant noise
simulations (oo = 0.04). The distribution peak is at about S/N 30, and
the mean at S /N 54.

reach this targeted noise level, based on the noise level estima-
tion in the images. We used a robust standard procedure based on
computing the median absolute deviation in the wavelet domain
for this (using orthogonal daubechies wavelets with three van-
ishing moments).

4.2. Quality criteria

The performance of the deconvolution schemes was measured
according to two criteria that are related to pixel error and shape
measurement errors. For the pixel error we selected a robust esti-
mator,

0
Perr (i) = MED (u] ,
i=1...n

(15)
IIx”]2

where xf) is the targeted value, and MED is the median over the

relative MSE computed for each galaxy x; in the test set in a
central window of 41 x 41 pixels common to all approaches.

For the shape measurement errors, we computed the elliptic-
ity using a Kaiser-Squires-Broadhurst approach implemented in
shapelens4 (Kaiser et al. 1995; Viola et al. 2011), which addi-
tionally computes an adapted circular weight function from the
data.

We first applied this method to the targets and also took
the target isotropic Gaussian PSF into account to obtain refer-
ence complex ellipticities €; and windows. We then computed the
complex ellipticity € of the deconvolved galaxies using the same
circular weight functions as their target counterpart. Finally, we
computed

e (X) = MED (lle” = €l)._, (16)

to obtain a robust estimate of the ellipticity error in the windows
set up by the target images, again in a central window of 41 x 41
pixels common to all approaches. We also report the distribution
of pixel and ellipticity errors prior to applying the median when
finer assessments need to be made.

4 https://github.com/pmelchior/shapelens
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Fig. 6. Visual effect of the hyperparameter choice for the Tikhonet
approach at S/N 20. Top: target and observations, followed by esti-
mates with different multiplicative factors for the hyperparameter based
on SURE. Bottom: residuals associated with the top row.
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Fig. 7. Effect of the hyperparameter multiplicative factor value for the
Tikhonet approach using the proposed XDense U-net architecture (left)
and classical U-net architecture (right) in terms of pixel errors. The box
indicates quartiles, and the vertical bars encompass 90% of the data.
Outliers are displayed with circles.
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Fig. 8. Effect of the hyperparameter multiplicative factor value for the
Tikhonet approach using the proposed XDense U-net architecture (leff)
and classical U-net architecture (right) in terms of ellipticity errors. The
box indicates quartiles, and the vertical bars encompass 90% of the data.
Outliers are displayed with circles.

5. Results
5.1. Setting the Tikhonet architecture and hyperparameters

For the Tikhonet, the key parameters to set are the hyperparame-
ters 4; in Eq. (11). In Fig. 6 these hyperparameters are set to the
parameters that minimize the SURE multiplied by factors, which
range from 10 to 0.01 for the proposed X-Dense architecture
at S/N 20 (similar visual results are obtained for the classical
U-net). It appears that for the lowest factor, which corresponds
to the smallest regularization of deconvolution (i.e., more noise
added to the deconvolved image), the Tikhonet is unable to per-
form as well as for intermediate values, in particular for exactly
the SURE minimizer.

This is confirmed in Fig. 7, which reports the pixel errors for
the two proposed X-Dense and classical architecture. Figure 8
shows the ellipticity errors.

For both architectures, the best results in terms of pixel or
ellipticity errors are consistently obtained across all S/N that we
tested for values of the multiplicative factor between 0.1 and 1.
Higher multiplicative factors also lead to larger extreme errors,
in particular, at low S/N. In the following, we therefore set this
parameter to the SURE minimizer.

Concerning the choice of architecture, Fig. 7 illustrates that
the XDense U-net provides less extreme outliers in pixel errors
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Table 1. Comparison of U-net architectures for the SURE selected
hyperparameter.

S/N 20 S/N 40 S/N 60 S/N 80 S/N 100

Median pixel error  0.157 (0.163) 0.117 (0.121) 0.105 (0.106) 0.097 (0.097) 0.090 (0.093)
Median ellipticity 0.109 (0.110) 0.063 (0.064) 0.045 (0.046) 0.035 (0.038) 0.030 (0.033)
error

Notes. The first number is obtained with the XDense U-net architecture,
and the second in parentheses with the classical U-net architecture.

Target Noisy Po=1

* s ¥ ¥ ®w 9w w E

Po =20 Po=50 Po=100 po=200

Fig. 9. Visual effect of initializing p for the ADMMnet for S/N 100.
Top: target and observations, followed by estimates with different aug-
mented Lagrangian parameters p,. Bottom: residuals associated with the
top row.

Target Po =50

po =100

/7 /7 7k

Po =200

Fig. 10. Visual effect of initializing p for the ADMMnet for S/N 20.
Top: target and observations, followed by estimates with different aug-
mented Lagrangian parameters py. Botfom: residuals associated with the
top row.

for a multiplicative factor of 10 regardless of S/N, which is
far from providing the best results, however. When we study
the median error values in Table 1 for the SURE minimizers
more closely, slightly better results are consistently obtained
for the proposed XDense U-net architecture. In this experiment,
the XDense obtains 4% (3%) fewer pixel errors at S/N 20
(S/N 100), and the most significant difference is an about 8%
improvement in ellipticity measurement at S /N 100.

5.2. Setting the ADMMnet architecture and hyperparameters

For the ADMMnet, we manually set the hyperparameters pp,x =
200, € = 0.01 to lead to an ultimate stabilization of the algo-
rithm, n = 0.5 and y = 1.4, to explore intermediate p values, and
we investigated the choice of parameter p to illustrate the effect
of the continuation scheme on the solution. This is illustrated
in Fig. 9 at high S/N and Fig. 10 at low S/N for the proposed
XDense U-net architecture. When pg is small, higher frequen-
cies are recovered in the solution, as illustrated in galaxy sub-
structures in Fig. 9, but this could lead to artifacts at low S/N, as
illustrated in Fig. 10.

Quantitative results for the two architectures are presented in
Fig. 11 for pixel errors and in Fig. 12 for ellipticity errors. The
error distribution is very stable with respect to the hyperparame-
ter po value, and it is similar for both architectures.

The pixel error at high S/N and low S/N for both architec-
tures shows that the lowest pixel errors in terms of the median
are obtained at low S/N for larger pg, while at high S/N, pg = 1
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Fig. 11. Effect of the hyperparameter p, value for the ADMMnet in
terms of pixel errors for the proposed XDense U-net (/eff) and classical
U-net (right). The box indicates quartiles, and the vertical bars encom-
pass 90% of the data. Outliers are displayed with circles.

| |
Z.i!||D
00 LI |

Fig. 12. Effect of the hyperparameter choice py for the ADMMnet in
terms of ellipticity error for the proposed XDense U-net (leff) and clas-
sical U-net (right). The box indicates quartiles, and the vertical bars
encompass 90% of the data. Outliers are displayed with circles.

Table 2. Comparison of U-net architectures for median errors.

S/N 20
po =50

po=1 po =20 po = 100 po =200

0.186 (0.184)
0.114 (0.116)

Median pixel error
Median ellipticity
error

0.185 (0.186) 0.182 (0.176)
0.114 (0.116) 0.118 (0.115)

0.183 (0.175) 0.182 (0.175)
0.119 (0.115) 0.119 (0.115)

S/N 100
po =20 po =50
0.096 (0.097) 0.098 (0.099)
0.028 (0.028) 0.029 (0.029)

po = 100 Po = 200
0.099 (0.099) 0.097 (0.098)
0.029 (0.029) 0.029 (0.028)

po =1
0.095 (0.096)
0.028 (0.028)

Median pixel error
Median ellipticity
error

Notes. The first number is obtained with the proposed XDense U-net
architecture, and the second in parentheses with the classical U-net
architecture.

is the best. In terms of ellipticity errors, pg = 1 allows us to
consistently obtain the best results at low and high S/N.

To better compare the differences between the two architec-
tures, the median errors are reported in Table 2. At low S/N, the
classical U-net performance varies more than that of the XDense,
and at S/N 20, the best results are obtained for the classical
U-net approach (4% improvement over X-Dense). At high S/N,
however, the best results are consistently obtained across p( val-
ues with the proposed XDense U-net (but the improvement is
only 1% over the U-net for the best pyp = 1). Finally, the best
results for the ellipticity median errors are obtained for the low-
est value py = 1 for both architectures, and the proposed XDense
U-net performs slightly better than the classical U-net (about 1%
better at low and high S/N).

Overall, this illustrates that the continuation scheme has a
weak effect, specifically, on the ellipticity errors, and that the
best results are obtained for different py and network architec-
tures when the pixel or ellipticity errors are considered, depend-
ing on the S/N. The classical U-net allows smaller pixel errors
than the proposed XDense at low S/N, but also leads to slightly
higher pixel errors at higher S/N and ellipticity errors at both
low and high S/N. In practice, we keep in the following py = 1
for the proposed XDense U-net approach for further compari-
son with other deconvolution approaches because the pixel error
varies slowly with this architecture as a function of pg.
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Target Noisy Sparse Low-Rank Tikhonet ADMMnet
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Fig. 13. Deconvolved images with the various approaches for S/N 20.
Each row corresponds to a different processed galaxy. From left to right:
image to recover, observation with a noise realization, sparse and low-
rank approaches, and the Tikhonet and ADMMnet results.

5.3. DNN versus sparsity and low-rank approaches

We compared our two deep-learning schemes with the XDense
U-net architecture and the hyperparameters set as described in
the previous sections with the sparse and low-rank approaches of
Farrens et al. (2017), which are implemented in sf_deconvolve’.
For the two methods, we used all parameters selected by default,
reconvolved the recovered galaxy images with the target PSF,
and selected the central 41 x 41 pixels of the observed galax-
ies to be processed in particular to speed up the computation
of the singular value decomposition used in the low-rank con-
straint (and therefore of the whole algorithm), as in Farrens et al.
(2017). All comparisons were made in this central region of the
galaxy images.

We now report the results for a variety of galaxies that we
recovered at different S/N for the sparse and low-rank decon-
volution approaches and for the Tikhonet and ADMMnet. We
first display several results at low S/N in Fig. 13 to illustrate
the robustness of the various deconvolution approaches. Impor-
tant artifacts appear in the sparse approach, which illustrates the
difficulty of recovering the galaxy images in this high-noise sce-
nario: the retained noise in the deconvolved images leads to these
point-like artifacts.

For the low-rank approach, low frequencies seems to be par-
tially well recovered, but artifacts appear for elongated galax-
ies in the direction of the minor axis. Finally, both Tikhonet
and ADMMnet seem to recover the low-frequency informa-
tion better, but the galaxy substructures are essentially lost.
The ADMMnet in this situation appears to recover sharper
images, but they have more propagated noise or artifacts than
the Tikhonet approach, with similar features as for the sparse
approach, but with fewer point-like artifacts.

3 https://github.com/sfarrens/sf_deconvolve
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Fig. 14. Deconvolved images with the various approaches for S /N 100.
Each row corresponds to a different processed galaxy. From left to right:
image to recover, observation with a noise realization, sparse and low-
rank approaches, and the Tikhonet and ADMMnet results.

Ellipticity error

Fig. 15. Deconvolution quality criteria for the different deconvolution
schemes. Left: median pixel error. Right: median ellipticity error.

We also display these galaxies at a much higher S/N in
Fig. 14 to assess the ability of the various deconvolution schemes
to recover galaxy substructures in a low-noise scenario.

The low-rank approach displays fewer artefacts than at low
S/N, but still does not seem to be able to adequately represent
elongated galaxies or directional substructures in the galaxy. The
reason probably is that the low-rank approach does not ade-
quately cope with translations, which leads to overly smooth
solutions. In contrast, Tikhonet, ADMMnet, and sparse recov-
ery lead to a recovery of galaxy substructures. Overall, the two
proposed deconvolution approaches using DNNs lead to the best
visual results regardless of S/N.

The quantitative deconvolution criteria are presented in
Fig. 15. For the median pixel error, this figure illustrates that
Tikhonet and ADMMnet both perform better than the sparse
and low-rank approaches in recovering the galaxy intensity val-
ues, regardless of the S/N. In these noise settings, the low-rank
approach performed consistently poorer than sparsity. For the
pixel errors, the median errors obtained with the sparse approach
are 27% (5%) larger at S/N 20 (S/N 100) than those of the
Tikhonet results. The Tikhonet approach also appears to perform
slightly better than the ADMMnet with this criterion.

The best results for the shape measurement errors are
obtained with the Tikhonet approach at low S/N (up to S/N 40),
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Table 3. Criteria for constant noise simulations (o = 0.04).

Sparse Low-rank Tikhonet ADMMnet

Median pixel error 0.130  0.169 0.112 0.119
Median ellipticity error 0.061  0.072 0.053 0.054

Notes. The best results are indicated in bold.

Table 4. Computing time for the various approaches (in hours).

Method Learning Processing 10000 galaxies
Sparse / 24.7

Low-rank 5.2

Tikhonet 21.5 0.1

ADMMnet 16.2 20.3

and then the ADMMnet outperforms the other approaches at
higher S/N. In terms of ellipticity errors, the median errors of
the sparse approach are 14% (5%) larger at S/N 20 (S/N 100)
than for the Tikhonet results. Finally, the low-rank approach per-
forms poorest regardless of the S/N. To summarize, these results
clearly favor the choice of the DNN approach because it consis-
tently produces lower errors regardless of S/N.

This is confirmed by a realistic distribution of galaxy S/N,
as shown in Table 3. The proposed deep-learning approaches
perform similarly in median pixel and ellipticity errors, and
they outperform the sparse and low-rank approaches: the median
pixel error is reduced by almost 14% (9%) for the Tikhonet
(ADMMnet) approach compared to sparse recovery, and the
ellipticity errors are reduced by about 13% for both approaches.
Higher differences are observed for the low-rank approach.

5.4. Computing time

Finally, we also report in Table 4 the time required to learn the
networks and process the set of 10000 galaxies on the same
GPU/CPUs. This is a crucial aspect when a large number of
galaxies is to be processed, such as in modern surveys. Of the
DNNss, learning the parameters of the denoising network for the
ADMMnet is faster than those of the post-processing network in
the Tikhonet approach because the latter requires each batch to
be deconvolved. However, when the network parameters have
been learned, the Tikhonet approach based on a closed-form
deconvolution is the fastest to process a large number of galaxies
(about 0.05 s per galaxy). On the other hand, learning and restor-
ing 10 000 galaxies is quite fast for the low-rank approach, while
iterative algorithms such as ADMMnet or the primal-dual algo-
rithm for sparse recovery are similar in terms of computing time
(about 7 to 10s per galaxy). All these computing times might
be reduced, however, when the restoration of different galaxy
images is performed in parallel. This is not implemented so far.

6. Conclusions

We have proposed two new space-variant deconvolution strate-
gies for galaxy images based on deep neural networks while
keeping all knowledge of the PSF in the forward model: the
Tikhonet approach is a post-processing approach of a sim-
ple Tikhonov deconvolution with a DNN, and the ADMM-
net approach is based on regularization by a DNN denoiser
inside an iterative ADMM PnP algorithm for deconvolution.
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We proposed to use a DNN architecture for the galaxy process-
ing that is based on the U-net, which is particularly adapted to
deconvolution problems, with small modifications implemented
(dense blocks of separable convolutions, and no skip connec-
tion) to decrease the number of parameters that are to be learned
compared to a classical U-net implementation. We finally eval-
uated these approaches compared to the deconvolution tech-
niques in Farrens et al. (2017) in simulations of realistic galaxy
images derived from HST observations, with realistically sam-
pled sparse-variant PSFs and noise, processed with the GalSim
simulation code. We investigated in particular how to set the
hyperparameters in the two approaches: the Tikhonov hyperpa-
rameter for the Tikhonet approach, and the continuation param-
eters for the ADMMnet approach. We compared our proposed
XDense U-net architecture with a classical U-net implementa-
tion. Our main findings are listed below.

In the Tikhonet and ADMMnet approaches, the hyperparam-
eters affect the performance, but the results are quite stable in a
range of values for these hyperparameters. In particular for the
Tikhonet approach, the SURE minimizer is within this range.
For the ADMMnet, more hyperparameters need to be set, and
the initialization of the augmented Lagrangian parameter affects
the performance: small parameters lead to higher frequencies in
the images, and larger parameters lead the recovery of overly
smooth galaxies.

Compared to the classical implementation, the XDense
U-net leads to consistently improved criteria for the Tikhonet
approach. The situation is more balanced for the ADMMnet,
where smaller pixel errors can be achieved at low S/N with the
classical architecture (with high hyperparamer values), but the
XDense U-net provides the best results for pixel errors at high
S/N and ellipticity errors at high and low S/N (with low hyper-
parameter values). The ranking of the methods is unchanged,
regardless of which architecture with their best hyperparameter
value is selected.

The two methods visually outperform the sparse recovery
and low-rank techniques, which display artifacts at the low S/N
we probed (also for high S/N in the low-rank approach). This is
also confirmed in all S/N ranges and for a realistic distribution
of S/N. In the latter, an improvement of about 14% is achieved
in terms of the median pixel error and an improvement of about
13% for the median shape measurement errors for the Tikhonet
approach compared to sparse recovery.

In the DNN approaches, the Tikhonet approach outperforms
the ADMMnet approach in terms of median pixel errors regard-
less of the S/N, and in terms of median ellipticity errors for low
S/N (S/N < 40). At higher S/N, the ADMMnet approach leads
to slightly smaller ellipticity errors. The Tikhonet approach is
fastest when the network parameters have been learned. About
0.05 s are required to process a galaxy. This is to be compared
with sparse and ADMMnet iterative deconvolution approaches,
which take about 7-10s per galaxy.

Note that ADMMnet approach can further be improved, as
additional constraints could be added easily to the framework
(while the success of the Tikhonet approach also lies in the
ability to compute a closed-form solution for the deconvolution
step). Overall, these results illustrate that the Tikhonet is the best
approach in this scenario to fastly process a large number of
galaxies with high accuracy.

Acknowledgements. The authors thank the Galsim developers/GREAT3 col-
laboration for publicly providing simulation codes and galaxy databases, and
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